Sustainability of Glyphosate-based Weed Management: The Benchmark Study

Thumbnail Image
Date
2010-01-01
Authors
Owen, Michael
Dixon, Philip
Shaw, David
Weller, Stephen
Young, Bryan
Wilson, Robert
Jordan, David
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Dixon, Philip
University Professor
Research Projects
Organizational Units
Organizational Unit
Statistics
As leaders in statistical research, collaboration, and education, the Department of Statistics at Iowa State University offers students an education like no other. We are committed to our mission of developing and applying statistical methods, and proud of our award-winning students and faculty.
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
StatisticsAgronomy
Abstract

One key to improved global crop production efficiency is the effective management of weeds, which are ranked as the number one crop pest by a majority of farmers1. This is no great surprise, as weeds are constantly evolving within the man-caused agroecosystems by adapting to high selection pressures imposed by crop production practices and, importantly, developing resistance to herbicides. Genetically engineered (GE) herbicide resistant (HR) crops facilitate better weed management and thus improved yields and more efficient use of resources, while minimizing risks to the environment (e.g., soil erosion). Since the commercial introduction of glyphosate resistant (GR) crops in 1996, this technology has likely been the most rapidly-accepted agronomic production practice in the history of agriculture. Farmers in the United States plant an estimated 50% of the GE GR crops grown globally, and in 2009 the National Agricultural Statistics Service (NASS) reported that 85% of corn, 88% of upland cotton, and 91% of soybean hectares were planted to GE GR varieties. The rapid adoption of GE GR crops occurred because glyphosate controls most economically important weeds and simplifies weed management. The consistent and high level of weed control provided by glyphosate facilitated the widespread adoption of no-tillage systems that conserve soil and energy resources as well as improve time management efficiencies for farmers. However, the wide-spread adoption of GE GR crops, resulting in the grower decision to simplify weed management to the applications of glyphosate, imposed considerable selection pressure on weed communities. This pressure predictably resulted in weed population shifts, including the inevitable evolution of weeds with resistance to glyphosate2.

Comments

This is an article from ISB News Report (2010): 1. Posted with permission.

Description
Keywords
Citation
DOI
Source
Copyright
Fri Jan 01 00:00:00 UTC 2010
Collections