Impact of Transmammary-Delivered Meloxicam on Biomarkers of Pain and Distress in Piglets after Castration and Tail Docking

Thumbnail Image
Date
2014-12-01
Authors
Karriker, Locke
Stock, Matthew
Pertzborn, Kelly
Wulf, Larry
Lee, C. J.
Wang, Chong
Coetzee, Johann
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Karriker, Locke
Morrill Professor
Person
Research Projects
Organizational Units
Organizational Unit
Veterinary Diagnostic and Production Animal Medicine
The mission of VDPAM is to educate current and future food animal veterinarians, population medicine scientists and stakeholders by increasing our understanding of issues that impact the health, productivity and well-being of food and fiber producing animals; developing innovative solutions for animal health and food safety; and providing the highest quality, most comprehensive clinical practice and diagnostic services. Our department is made up of highly trained specialists who span a wide range of veterinary disciplines and species interests. We have faculty of all ranks with expertise in diagnostics, medicine, surgery, pathology, microbiology, epidemiology, public health, and production medicine. Most have earned certification from specialty boards. Dozens of additional scientists and laboratory technicians support the research and service components of our department.
Journal Issue
Is Version Of
Versions
Series
Department
Veterinary Diagnostic and Production Animal Medicine
Abstract

To investigate a novel route for providing analgesia to processed piglets via transmammary drug delivery, meloxicam was administered orally to sows after farrowing. The objectives of the study were to demonstrate meloxicam transfer from sows to piglets via milk and to describe the analgesic effects in piglets after processing through assessment of pain biomarkers and infrared thermography (IRT). Ten sows received either meloxicam (30 mg/kg) (n = 5) or whey protein (placebo) (n = 5) in their daily feedings, starting four days after farrowing and continuing for three consecutive days. During this period, blood and milk samples were collected at 12-hour intervals. On Day 5 after farrowing, three boars and three gilts from each litter were castrated or sham castrated, tail docked, and administered an iron injection. Piglet blood samples were collected immediately before processing and at predetermined times over an 84-hour period. IRT images were captured at each piglet blood collection point. Plasma was tested to confirm meloxicam concentrations using a validated high-performance liquid chromatography-mass spectrometry method. Meloxicam was detected in all piglets nursing on medicated sows at each time point, and the mean (± standard error of the mean) meloxicam concentration at castration was 568.9±105.8 ng/mL. Furthermore, ex-vivo prostaglandin E2(PGE2) synthesis inhibition was greater in piglets from treated sows compared to controls (p = 0.0059). There was a time-by-treatment interaction for plasma cortisol (p = 0.0009), with meloxicam-treated piglets demonstrating lower cortisol concentrations than control piglets for 10 hours after castration. No differences in mean plasma substance P concentrations between treatment groups were observed (p = 0.67). Lower cranial skin temperatures on IRT were observed in placebo compared to meloxicam-treated piglets (p = 0.015). This study demonstrates the successful transfer of meloxicam from sows to piglets through milk and corresponding analgesia after processing, as evidenced by a decrease in cortisol and PGE2levels and maintenance of cranial skin temperature.

Comments

This article is from PLOS ONE 9 (2014); e113678, doi: 10.1371/journal.pone.0113678. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2014
Collections