Implementation of network moving target defense in embedded systems

Thumbnail Image
Finstad, Robert
Major Professor
Doug W. Jacobson
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of

Moving target defense provides opportunities for adaptive defense in embedded systems. A great deal of work has been done on incorporating moving target defense techniques into enterprise systems to increase the cost to attackers and level the playing field. A smaller body of work focuses on implementing these techniques in embedded systems, which can greatly benefit from adaptive self-defense techniques. This work implements a network shuffling proof of concept in the Zephyr real time operating system to tackle the challenge of incorporating shuffling techniques into embedded systems. A host-centric, high security implementation is provided which maximizes attacker uncertainty and minimizes the impact of host compromise. Identifiers are utilized at the datalink, network, and transport layers and rotated per connection using keys shared between host pairs.Existing shuffling schemes are explored, including those targeted to IoT contexts. Existing limitations in protecting embedded systems are considered along with the presented by moving target defense. The design details and implementation of incorporating a moving target defense module to in the Zephyr networking stack is provided. The protection provided by the scheme is evaluated and it is compared to existing address shuffling schemes. Future work in better handling data forwarding and collisions in the proof of concept scheme are considered. Options for adapting and building on the scheme to meet the needs of system designers are explored. This work provides system designers with insights into implementing address shuffling in embedded systems.

Tue Dec 01 00:00:00 UTC 2020