Heat and Moisture Production of Poultry and Their Housing Systems: Pullets and Layers

Thumbnail Image
Date
2004-10-01
Authors
Xin, Hongwei
Puma, Manuel
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Person
Xin, Hongwei
Distinguished Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

Heat and moisture production rates (HP, MP) of modern pullets and laying hens were measured using large-scale indirect calorimeters that mimic commercial production settings. The experimental birds were Hy-Line W-36 strain at 1-5, 10, 21, 37, and 64 weeks of age and Hy-Line W-98 strain at 1-5 weeks of age. Total HP (THP) was partitioned into latent and sensible HP (LHP, SHP) at bird level (excluding moisture evaporation from feces) or room level (including fecal moisture evaporation from feces). The W-98 and W-36 pullets reached their metabolic peak at about 10 and 14 days of age, respectively. The W-98 pullet showed higher THP than the W- 36 counterpart. Modern pullets have significantly higher THP (12% to 37%; P < 0.05) than pullets of 20 to 50 years ago. At the initial stage of egg production, the W-36 layers showed 12% higher THP than that predicted by the CIGR (1999) model, and the difference diminished with time. Evaporation of fecal moisture elevated room LHP by 8% to 38% (average 14%) during light period and by 21% to 79% (average 43%) during dark period but reduced room SHP by 4% to 17% (average 11%) during light period and by 14% to 33% (average 22%) during dark period with reference to bird LHP or SHP. All HP responses in the dark were significantly (P<0.05) reduced to various degrees (e.g., 23% to 34% for THP) as compared with those during light period. Diurnal bird and room LHP amounted to, respectively, 17% to 87% (average 47%) and 33% to 99% (average 62%) of THP for pullets and, respectively, 29% to 50% (average 39%) and 29% to 55% (average 45%) of THP for laying hens. Respiratory quotient (RQ) ranged from 0.77 to 1.18 (average 0.94) for pullets and from 0.68 to 1.02 (average 0.91) for laying hens. Regression functions that relate daily mean THP, LHP, and SHP of the bird or room to bird body mass were established. Results of this study provide an updated thermal load database for design and operation of poultry housing ventilation systems, as well as the latest bioenergetics of modern pullets and hens.

Comments

This article is from ASHRAE Transactions 110, no. 2 (2004): 286–299.

Description
Keywords
Citation
DOI
Source
Copyright
Thu Jan 01 00:00:00 UTC 2004
Collections