Modeling of hot water and steam protective performance of fabrics used in Firefighters' clothing

Thumbnail Image
Date
2021-05-09
Authors
Mandal, Sumit
Song, Guowen
Grover, Indu Bala
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Song, Guowen
Professor
Research Projects
Organizational Units
Organizational Unit
Apparel, Events and Hospitality Management

The Department of Apparel, Education Studies, and Hospitality Management provides an interdisciplinary look into areas of aesthetics, leadership, event planning, entrepreneurship, and multi-channel retailing. It consists of four majors: Apparel, Merchandising, and Design; Event Management; Family and Consumer Education and Studies; and Hospitality Management.

History
The Department of Apparel, Education Studies, and Hospitality Management was founded in 2001 from the merging of the Department of Family and Consumer Sciences Education and Studies; the Department of Textiles and Clothing, and the Department of Hotel, Restaurant and Institutional Management.

Dates of Existence
2001 - present

Related Units

  • College of Human Sciences (parent college)
  • Department of Family and Consumer Sciences Education and Studies (predecessor)
  • Department of Hotel, Restaurant, and Institutional Management (predecessor)
  • Department of Textiles and Clothing (predecessor)
  • Trend Magazine (student organization)

Journal Issue
Is Version Of
Versions
Series
Department
Apparel, Events and Hospitality Management
Abstract

Every year, numerous firefighter burn injuries and deaths occur in the U.S. Most of these burn injuries and deaths occur due to inadequate performance of firefighters' thermal protective clothing under various thermal exposures including hot water and steam exposures. Therefore, it is necessary to develop models for conveniently predicting the hot water and steam protective performance of fabrics used in firefighters' clothing. This study aims at developing a new approach for creating models to predict the hot water and steam protective performance of fabrics used in firefighters' clothing. This aim was achieved by fulfilling two objectives – firstly, by characterizing the performance of fabrics; secondly, by empirically modeling the performance of fabrics. To accomplish these objectives, physical properties (eg, thickness, air permeability) and the performances of single‐ and multilayered fabrics used in firefighters' clothing were measured. The measured data were statistically analyzed to identify the key fabric properties affecting the performance. Using these key properties, multiple linear regression (MLR) and artificial neural network (ANN) models were developed. It has been found that thickness, air permeability, and evaporative resistance are the key properties to affect the performance, and ANN is the best‐fit model to predict the performance. The approach suggested in this study could be used to develop state‐of‐the‐art models for predicting the performance of wider range of fabrics under hot water and steam exposures. These models could inform firefighters about the potential protective performance of their clothing before working in hot water and steam exposures.

Comments

This accepted article is published as Mandal, S, Song, G, Grover, IB. Modeling of hot water and steam protective performance of fabrics used in Firefighters' clothing. Fire and Materials. 2021; 1-13. doi:10.1002/fam.2982. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2021
Collections