Classifying Ingestive Behavior of Dairy Cows via Automatic Sound Recognition

Thumbnail Image
Li, Guoming
Xiong, Yijie
Du, Qian
Shi, Zhengxiang
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Animal Science

The Department of Animal Science originally concerned itself with teaching the selection, breeding, feeding and care of livestock. Today it continues this study of the symbiotic relationship between animals and humans, with practical focuses on agribusiness, science, and animal management.

The Department of Animal Husbandry was established in 1898. The name of the department was changed to the Department of Animal Science in 1962. The Department of Poultry Science was merged into the department in 1971.

Historical Names

Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of

Determining ingestive behaviors of dairy cows is critical to evaluate their productivity and health status. The objectives of this research were to (1) develop the relationship between forage species/heights and sound characteristics of three different ingestive behaviors (bites, chews, and chew-bites); (2) comparatively evaluate three deep learning models and optimization strategies for classifying the three behaviors; and (3) examine the ability of deep learning modeling for classifying the three ingestive behaviors under various forage characteristics. The results show that the amplitude and duration of the bite, chew, and chew-bite sounds were mostly larger for tall forages (tall fescue and alfalfa) compared to their counterparts. The long short-term memory network using a filtered dataset with balanced duration and imbalanced audio files offered better performance than its counterparts. The best classification performance was over 0.93, and the best and poorest performance difference was 0.4–0.5 under different forage species and heights. In conclusion, the deep learning technique could classify the dairy cow ingestive behaviors but was unable to differentiate between them under some forage characteristics using acoustic signals. Thus, while the developed tool is useful to support precision dairy cow management, it requires further improvement.


This article is published as Li, Guoming, Yijie Xiong, Qian Du, Zhengxiang Shi, and Richard S. Gates. "Classifying Ingestive Behavior of Dairy Cows via Automatic Sound Recognition." Sensors 21, no. 15 (2021): 5231. DOI: 10.3390/s21155231. Posted with permission.

Fri Jan 01 00:00:00 UTC 2021