Regulation of Migration in Mythimna separata (Walker) in China: A Review Integrating Environmental, Physiological, Hormonal, Genetic, and Molecular Factors

Thumbnail Image
Date
2011-06-01
Authors
Jiang, Xingfu
Luo, Lizhi
Zhang, Lei
Sappington, Thomas
Hu, Yi
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Sappington, Thomas
Collaborating Professor
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Entomology
Abstract

Each year the Mythimna separate (Walker), undertakes a seasonal, long-distance, multigeneration roundtrip migration between southern and northern China. Despite its regularity, the decision to migrate is facultative, and is controlled by environmental, physiological, hormonal, genetic, and molecular factors. Migrants take off on days 1 or 2 after eclosion, although the preoviposition period lasts ≈7 d. The trade-offs among the competing physiological demands of migration and reproduction are coordinated in M. separata by the “oogenesis-flight syndrome.” Larvae that experience temperatures above or below certain thresholds accompanied by appropriate humidity, short photoperiod, poor nutrition, and moderate density tend to develop into migrants. However, there is a short window of sensitivity within 24 h after adult eclosion when migrants can be induced to switch to reproductive residents if they encounter extreme environmental factors including starvation, low temperature and long photoperiod. Juvenile hormone (JH) titer is low before migration but high titers are associated with termination of migratory behavior and the switch to reproduction. Early release of JH by the corpora allata in environmentally stressed 1-d old adults, otherwise destined by larval conditions to be migrants, switches them to residents. Offspring inherit parental additive genetic effects governing migratory behavior. However, they also retain flexibility in expression of both flight and reproductive life history traits. The insect neuropeptide, allatotropin, which activates corpora allata to synthesize JH, controls adult flight and reproduction. Future research directions to better understand regulation of migration in this species are discussed.

Comments

This article is from Environmental Entomology 40 (2011): 516, doi:10.1603/EN10199.

Description
Keywords
Citation
DOI
Copyright
Collections