A digital tuning scheme for digitally programmable integrated continuous-time filters and techniques for high-precision monolithic linear circuit design and implementation

Thumbnail Image
Date
1993
Authors
Yu, Chong-Gun
Major Professor
Advisor
Randall L. Geiger
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Abstract

Multiple topics which all focus on precision monolithic circuit design but beyond this are not directly related to each other are presented. The first topic is a digital tuning scheme for digitally programmable integrated continuous-time filters (4), (8) - (10). Emphasis of this research is on development of a more general tuning scheme which can be applicable to various filter functions as well as high-frequency applications. The tuning scheme consists of two phases: system identification and adjustment. Various continuous-time filter identification methods including time-domain and frequency-domain approaches are investigated, and a filter adjustment algorithm is presented. Potential of high accuracy of the proposed tuning scheme and successful applicability to high-frequency filters with versatile functions have been demonstrated through simulations and experiments;Four other topics are separately presented. First, nonidealities associated with high-precision amplifiers (5), (7) are discussed. Special emphasis is given on analysis of statistical characteristics of random CMRR and offset of CMOS op-amps which can help estimating yield of high-volume production and help engineers design for a given yield. Next, an automatic offset compensation scheme for CMOS op-amps with ping-pong control (2), (6) is presented. A very low-voltage circuit design technique using floating gate MOSFETs (3) is introduced. Finally, an accurate and matching-free threshold voltage extraction scheme using a ratio-independent SC amplifier and a dynamic current mirror (1) is discussed.

Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
dissertation
Comments
Rights Statement
Copyright
Fri Jan 01 00:00:00 UTC 1993
Funding
Subject Categories
Supplemental Resources
Source