Interaction Dynamics Between Ferroelectric and Antiferroelectric Domains in a PbZrO₃-Based Ceramic

Zhongming Fan,¹ Fei Xue,² Goknur Tutuncu,¹ Long-Qing Chen,² and Xiaoli Tan¹,*

¹Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, USA
²Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA

(Received 16 January 2019; revised manuscript received 8 May 2019; published 21 June 2019)

The antiferroelectric-ferroelectric phase transition in PbZrO₃-based oxides is of both fundamental and practical importance. In ceramics in which such a transition readily occurs, the antiferroelectric and the ferroelectric phases often coexist in individual grains with a coherent interphase interface. In this work, the electric biasing in situ transmission electron microscopy technique is employed to directly observe a unique microstructural dynamic when ferroelectric and antiferroelectric domains are driven by a moderate electric field to interact. It is found that, under monotonic loading, the ferroelectric domain grows until it is blocked by the ferroelectric-antiferroelectric interface. At the same time, a kink is formed on the interface at the contact point. The interaction of the growing domain with the interface is interpreted in terms of depolarization field-assisted phase transition, which is supported by our phase-field simulation. Upon further bipolar cycling, the ferroelectric domain becomes less mobile and no longer reaches the ferroelectric-antiferroelectric interface, indicative of electric fatigue of the ferroelectric phase.

DOI: 10.1103/PhysRevApplied.11.064050

I. INTRODUCTION

The domain dynamics under an applied electric field (E_{appl}) is crucial to understanding the macroscopic phenomena observed in ferroelectric (FE) or antiferroelectric (AFE) crystals. In FE materials, the polarization tends to align with the external E field, realized through the domain switching process [1,2]. In AFE compounds [3,4], on the other hand, AFE \rightarrow FE phase transition receives much more attention as AFE domains are nonpolar and do not directly respond to applied fields [5]. Meanwhile, in some AFE materials with certain compositions, both AFE and FE phases can coexist, either in separate grains or in single grains [5,6]. As a result, the electric field-induced AFE \rightarrow FE phase transition occurs more readily, making these compositions suitable for devices such as electrocaloric coolers or electromechanical actuators [7,8]. However, the interaction between the FE and AFE domains under E_{appl}, even though unavoidable in these compositions during service, has rarely been discussed.

PbZrO₃-based compositions are the most studied AFE ceramics and their AFE-FE phase equilibrium can be effectively tuned via chemical modifications with Ti and Sn, along with minor amounts of La or Nb [9,10]. For instance, the solid solution Pb$_{0.99}$Nb$_{0.02}$[(Zr$_{0.57}$Sn$_{0.43}$)$_{1-y}$Ti$_{y}$]O$_3$ (abbreviated as PNZST 43/6/2) is in single FE phase at room temperature for $y \geq 0.09$, single AFE phase for $y < 0.05$, and mixed FE and AFE phases in between [10]. Generally speaking, the critical field for FE domain switching is lower than that for the AFE \rightarrow FE transition in AFE ceramics (E_F). Therefore, there exists a window for E_{appl} that only switches the FE domains but does not trigger the phase transition in compositions of $0.05 < y < 0.09$ with mixed phases. It can be expected that the microstructural dynamics under such an intermediate E_{appl} will involve the interactions between FE and AFE domains. Apparently, such microstructural dynamics is distinct from either the pure FE domain switching process or the AFE \rightarrow FE phase transition. It is with an interest toward this unique physics problem that we select PNZST 43/6/2 as a model system with the AFE phase as the main phase and the FE phase as the minor phase. The electric biasing in situ TEM is employed to directly reveal the dynamic interactions between FE and AFE domains.

II. EXPERIMENTAL PROCEDURE

The PNZST 43/6/2 ceramic is prepared using the solid-state reaction method. Raw powders with purity better than 99.9% of PbO, Nb$_2$O$_5$, ZrO$_2$, SnO$_2$, and TiO$_2$ are batched according to the chemical formula with 5% excess PbO powder to compensate for the lead evaporation loss in the subsequent thermal process. The powders are calcined at 850 °C for 4 h in a covered alumina crucible two times to ensure the chemical homogeneity and the phase
purity. Sintering is performed at 1300 °C for 3 h with PbZrO3 protective powder. After the pellet is grounded and electroded, the electric field-induced strain (S-E) measurement is performed. The detailed setup is described elsewhere [11].

Bulk specimens with dimensions of 1.0 × 0.9 × 6.0 mm³ are prepared for the in situ synchrotron x-ray diffraction study and are conducted at the Advanced Photon Source, Argonne National Laboratory. The in situ TEM experiments are conducted on FEI Tecnai G2-F20 at room temperature. As-sintered pellets are mechanically ground and polished to 120-µm thickness. Disks of 3 mm in diameter are ultrasonically cut and the center portion is thinned to 10 µm by mechanical dimpling. The dimpled disks are annealed at 200 °C for 2 h to minimize the residual stress before Ar-ion milling to perforation. During the in situ TEM fatigue test, bipolar electric fields in a triangular waveform with a frequency of 0.1 Hz are applied.

III. RESULTS

Figure 1(a) displays a grain with coexisting AFE and FE phases viewed along the [001] zone axis. The AFE-FE interface runs from lower left to upper right with both phases containing two domains. The FE phase, with an inclusion domain embedded in a large matrix domain, displays only fundamental spots in its selected electron diffraction pattern [12]. The AFE phase contains two domains with different contrasts and the selected electron diffraction pattern recorded from the domain wall region (white circle) shows two orthogonal sets of satellite spots, indicative of the orthogonal arrangement of incommensurate modulations in the two AFE domains [13]. This gain has an ideal morphology to study the interaction of a growing FE domain with an AFE domain. Since the remainder of this grain (grain size approximately 5 µm) is farther away from the interface, it is not imaged in this experiment.

The evolution of this area under \(E_{\text{appl}} \) is subsequently monitored. The bright arrow in Fig. 1(b) marks the direction of the initial field loading. At 35 kV/cm, no apparent changes in microstructure are observed. Then the polarity of \(E_{\text{appl}} \) is reversed (Fig. 2). At the amplitude of 25 kV/cm, the embedded inclusion FE domain is observed to grow primarily lengthwise before it reaches the AFE-FE interface and is blocked [Fig. 2(b)]. As \(E_{\text{appl}} \) continues to increase, further growth of the FE domain proceeds with an apparent lateral widening. More importantly, the AFE-FE interface is poked toward the AFE side until a right angle is formed between the rotated AFE-FE interface and the long FE domain [Fig. 2(c)]. The dark triangles in Fig. 2 mark a point defect cluster, presumably immobile under the applied fields in this experiment. Using this feature as a reference point, the displacement of the AFE-FE interface can be more clearly appreciated. It should be noted that 35 kV/cm is chosen again to be the peak field for the purpose of revealing the asymmetric response of the microstructure under \(E_{\text{appl}} \) of the same

![FIG. 1. The grain of interest, imaged along the [001] zone axis, with coexisting AFE and FE phases in PNZST 43/6/2 at (a) virgin state, (b) 35 kV/cm. The insets in (a) show the electron diffraction patterns recorded from highlighted areas. The bright arrow in (b) indicates the direction of \(E_{\text{appl}} \).](image1)

![FIG. 2. The microstructural evolution during the monotonic electric field loading with the polarity opposite to Fig. 1. The micrographs are taken at (a) 0 kV/cm, (b) 25 kV/cm, (c) 35 kV/cm, and (d) back to 0 kV/cm. The dark triangles mark a defect cluster, which is used as a reference point to reveal the displacement of the AFE/FE interface. The edge-on wall of the inclusion FE domain is on the \{110\}_c plane.](image2)
amplitude but opposite polarities. Meanwhile, no noticeable changes are detected in the AFE phase away from the interface, indicating that the AFE to FE phase transition only takes place at the preexisting AFE-FE interface. Once the E_{appl} is removed, the AFE-FE interface rotates back to its original position and the inclusion FE domain resumes its initial size as well [Fig. 2(d)]. This shows that the AFE \leftrightarrow FE phase transition and the FE domain switching in the minor FE phase are both reversible in PNZST 43/6/2.

Then the responses of the FE and AFE domains to bipolar cyclic fields of ± 35 kV/cm are studied (Fig. 3). After 100 cycles, it is found that the AFE-FE interface slightly shifts upward [Fig. 3(a)]. When a dc field of 35 kV/cm (same polarity with Fig. 2) is applied [Fig. 3(b)], the inclusion FE domain grows lengthwise, but is apparently shorter and thinner than that under the first field application [Fig. 2(c)]. The AFE-FE interface returns to its original position while being slightly poked. After 1000 cycles, the AFE-FE interface seems to continue to shift upward [Fig. 3(c)]. At a dc field of 35 kV/cm, very minor growth of the inclusion FE domain takes place and the AFE-FE interface again returns to its original position. Previously, some macroscopic investigations on the electric fatigue in AFE ceramics claimed that either the AFE or FE phase can be stabilized during cycling [14–16]. Microscopically, this may be manifested in the shift of the AFE-FE interface toward either direction. However, the exact mechanism is still unclear at this moment, hence it requires more detailed investigations.

IV. DISCUSSION

A. FE domain dynamics

The responses of the inclusion FE domain to the applied field could imply the polarization directions in the FE phase. It is well known that an E_{appl} is able to switch the polarization in FE domains via nucleation and growth of new domains [1,2], or via expansion of existing domains with favored polarization at the expense of those that are unfavorable [17]. Assisted by this principle and the rhombohedral symmetry of the FE phase, the crystallographic information of the experimental results in Fig. 2 can be elaborated in Fig. 4. Considering that the polarizations are along the $\langle 111 \rangle_c$ directions in the rhombohedral phase, the most likely polarization directions for both matrix and inclusion domains are projected onto the (001), observation plane, represented by the bright arrows in Fig. 4(a). Under the situation in Fig. 2, the lenticular inclusion FE domain serves as a seed with the favored polarization direction. As a consequence, the inclusion FE domain grows and expands at the expense of the matrix domain.

However, it should be noted that the walls between the matrix FE domain and the inclusion FE domain are...
not electrically neutral. The associated electrostatic energy not only makes the growth of the inclusion domain difficult, but also assists the recovery of the initial size upon removal of E_{appl}. This explains why the FE domain switching observed in Fig. 2 is slow and reversible. In addition, the fatigue degradation (Fig. 3) might also be ascribed to the charged FE domain walls. As with other normal FE ceramics, the mobility of a charged domain wall decays quickly during cycling with bipolar electric fields [18,19]. In particular, in PNZST 43/6/2, the nonneutral FE domain walls may gradually trap charged point defects (most likely O vacancies) and the growth of the FE domain becomes more difficult. After 1000 cycles, the accumulated point defects pin the domain walls and prevent the domain from growth [Fig. 3(d)].

Apparently, the growth of the inclusion FE domain is driven by E_{appl}, of which the amplitude, combining Figs. 1 and 2, is known to be insufficient to trigger the AFE to FE phase transition. This is further evidenced by the strain versus electric field hysteresis loop data measured on a bulk PNZST 43/6/2 specimen where E_F is determined to be roughly 40 kV/cm (Fig. 5). The in situ x-ray diffraction experiments on a bulk specimen also indicate that PNZST 43/6/2 under $E_{\text{appl}} < 40$ kV/cm is best fitted in the AFE phase with the $Bnnm2$ space group with lattice parameters of $a = 5$ Å, $b = 4.1000$ Å, and $c = 5.8378$ Å (0 kV/cm), while in the induced FE phase under $E_{\text{appl}} > 40$ kV/cm, it is best fitted with the $R3c$ space group of $a = 5.8282$ Å and $c = 14.2878$ Å (at approximately 56 kV/cm). From the in situ TEM results shown in Fig. 2, the majority of the AFE phase does not change under E_{appl}. The observation seems to suggest that the asymmetric responses under bipolar fields (Figs. 1 and 2) may not result from the aged AFE phase [20]. Therefore, $E_{\text{appl}} = 35$ kV/cm indeed lies in the field window that only switches the FE domain but does not trigger a global AFE \rightarrow FE transition. However, it should be pointed out that the AFE to FE phase transition does take place locally, manifested as the displacement of the AFE-FE interface in Figs. 2(b) and 2(c). Such a localized transition is attributed to the fact that the growing FE domain intersects with the interphase interface. This also explains why the AFE-FE interface cannot rotate anymore once the FE domain loses its mobility and does not reach the interface (Fig. 3).

B. E_d assisted AFE to FE phase transition

A depolarization field (E_d) exists near electrodes or FE domain walls if the polarization-induced bound charges are not fully compensated [21,22]. Presumably, the interface between the polar FE phase and the nonpolar AFE phase should also be a location bearing E_d. It is known that an uncompensated E_d is likely to lead to morphology instability, for example, the minimization of depolarization energy (U_d) accounts for the breakage of a single domain into multiple smaller domains, as U_d is quantitatively proportional to the domain width [23]. Given the fact that the original AFE-FE interface is stable, it must be close to a crystallographic plane with minimal E_d. According to this condition, the three-dimensional (3D) configuration of the AFE-FE interface is schematically illustrated in Fig. 4(b), with the electron beam direction pointing from the front to the back. Originally, the AFE-FE interface lies on a $[110]_c$ plane (red). The polarization of the matrix FE domain is along the $\langle 111 \rangle_c$ direction (green arrow) in-plane with the interface. After the inclusion FE domain intersects with the interface, its polarization (blue arrow) forms a 54.7° angle with the interface, accompanied by the emergence of an uncompensated E_d. In order to minimize the U_d, the AFE-FE interface has to rotate until it becomes in-plane with the switched polarization. A stable AFE-FE interface segment is hence established before which the uncompensated E_d has assisted the AFE to FE phase transition at a local scale. In other words, the contact of the growing inclusion FE domain with the AFE-FE interfaces generates E_d; E_{appl} and E_d act in synergy (Fig. 5) and trigger the AFE to FE transition by displacing and/or rotating the AFE-FE interface [1,24]. Apparently, E_d itself is not sufficient to maintain the induced FE phase, so the AFE phase is restored after E_{appl} is removed.

We also employ phase-field simulations to elucidate the origin of this local phase transition. To describe the AFE to FE phase transition, the model includes two sets of order parameters, polarization P_i ($i = x,y,z$) and AFE orders q_i ($i = x,y,z$). The AFE order parameter q_i is defined by the difference of two sublattice polarizations, that is, $\vec{q} = (1/2)(\vec{P}_a - \vec{P}_s)$, where \vec{P}_a and \vec{P}_s are polarizations of...
two sublattices \[25,26\]. The total free energy is given by

\[
F = \int_V \left(\sum_{ijkl} g_{ijkl} P_i P_j + \sum_{ijklm} \alpha_{ijklm} P_i P_j P_k P_l + \sum_{ijklmn} \beta_{ijklmn} P_i P_j P_k P_l P_m P_n + \sum_{ijkl} \beta_{ijkl} q_i q_j + \sum_{ijkl} \beta_{ijkl} q_i q_j q_k q_l + \sum_{ijklm} \beta_{ijklmn} q_i q_j q_k q_m q_n + \sum_{ijkl} t_{ijkl} q_i q_j + \frac{1}{2} \sum_{ijkl} \kappa_{ijkl} \frac{\partial q_i}{\partial x_j} \frac{\partial q_k}{\partial x_l} - E_i P_i - \frac{1}{2} \varepsilon_0 \kappa_b E_i E_i \right) dV,
\]

where \(\alpha_{ijkl}, \alpha_{ijklm}, \beta_{ijkl}, \beta_{ijklm},\) and \(t_{ijkl}\) are the coefficients for the Landau free energy function, \(g_{ijkl}\) and \(\kappa_{ijkl}\) are the coefficients for the gradient energy terms, \(x_i\) is the spatial coordinate, \(E_i\) is the electric field, \(\varepsilon_0\) is the permittivity of free space, and \(\kappa_b\) is the background permittivity \[27\]. With coupling term coefficients \(t_{ijkl}\) sufficiently positive, \(P_i\) and \(q_i\) are competitive with each other. Since there is no report for the Landau energy coefficients for PNZST, we use the Landau coefficients of the FE and AFE phases for the Sm-doped BiFeO\(_3\) system \[27\]. Note that the Sm-doped BiFeO\(_3\) system shows similar relative stabilities of the FE and AFE phases as the PNZST system due to the similar change of the tolerance factor \[the tolerance factor is given by \(t = (R_A + R_O)/\sqrt{2}(R_B + R_O)\], where \(R_A\), \(R_B\), and \(R_O\) are the ionic radii of the A and B cations and O anion, respectively\] \[27–29\]. Therefore, we expect similar AFE to FE phase transition dynamics in the two systems. Also, the phase transition dynamics from phase-field simulations are insensitive to the specific values of Landau energy coefficients. In this study, we focus on the AFE to FE phase transitions, and the coefficients producing similar relative FE and AFE energies will give rise to similar domain structure evolutions in the simulations.

This is also the case experimentally, that is, two systems at the same position relative to the FE-AFE phase boundaries should show similar phase transition behaviors under external electric fields, which may be regarded as one type of universality. From the lattice parameter of the FE R\(3\)c phase, the shear strain component of the phase transformation strain in the pseudocubic coordinate system is smaller than 0.03\%, and we expect that the elastic energy makes small contributions to the domain wall orientation. Thus, the elastic energy term is neglected in Eq. (1) compared to a typical ferroelectric phase-field model \[27\]. It is assumed that the gradient energy coefficient tensor \(g_{ijkl}\) and \(\kappa_{ijkl}\) are isotropic. Therefore, the orientation of FE domain walls and the FE-AFE interface is determined by the minimization of the electrostatic energy.

The phase-field equations for \(P_i\) and \(q_i\) are solved with periodic boundary conditions along three directions \[30\]. The system size is \(256\Delta x \times 256\Delta x \times 256\Delta x\), and the grid spacing is \(\Delta x = 1.0\) nm. The initial condition is the coexistence of a FE domain and an AFE domain with a charge-free interface, and a FE inclusion domain is artificially added within the FE domain, as shown in Fig. 6(a). To simulate the FE-AFE interface pinning effect, the AFE order parameter in the regions far away from the inclusion is fixed. Then we apply a constant electric field, which favors the FE inclusion domain over the FE matrix domain.

The temporal evolution of domain structures from a phase-field simulation is given in Figs. 6(b) and 6(c). As shown in Fig. 6(b), the FE inclusion domain grows primarily lengthwise until it reaches the FE-AFE interface. Then the FE-AFE interface neighboring the inclusion domain is rotated by approximately 45\°, as demonstrated in Fig. 6(c). In a phase-field model described as by Eq. (1), the interface orientation is determined by the minimization of the electrostatic energy. The local distortion of the FE-AFE interface is, hence, driven by the electric field in the vicinity of the intersecting point. Afterward, the main growth mode of the FE inclusion domain is lateral widening as in Fig. 6(d). Therefore, even though it is incapable of perfectly reproducing the observed morphology, the phase-field simulation has confirmed our hypothesis that the AFE to FE phase transition near the intersection of the grown FE domain and the AFE-FE interface is actually assisted by \(E_d\).

V. CONCLUSIONS

In summary, a unique microstructural dynamic during the interaction between the FE and AFE domains in a PbZrO\(_3\)-based AFE ceramic under an intermediate \(E\) field is directly visualized with in situ TEM. It is found that...
when the FE domain reaches the AFE-FE interface, the emerged depolarization field is able to assist triggering the AFE to FE phase transition at a local region by introducing distortions to the AFE-FE interface. In the initial electric cycle, both the FE domain growth and the phase transition are reversible and all the microstructure changes are recovered when the field is unloaded. However, the mobility of the FE domain is significantly suppressed after further bipolar cycling due to fatigue degradation. The results not only reveal an alternative scenario of electric field-driven microstructural evolution, but also shed light on the complex nature of phase transitions in ferroic crystals.

ACKNOWLEDGMENTS

The National Science Foundation (NSF), through Grant No. DMR-1700014, supported the experimental work. The phase field simulation work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Grant No. FG02-07ER46417 (F.X. and L.Q.C.), and by the National Science Foundation under DMREF Grant No. DMR-1629270 (F.X).

[10] H. He and X. Tan, Raman spectroscopy study of the phase transitions in Pb0.99Nb0.02[1(Zr0.57Sn0.43)1-x]Ti0.98O3, J. Phys. Condens. Matter 19, 136003 (2007).

[11] X. Tan, J. Frederick, C. Ma, E. Aulbach, M. Marsilius, W. Hong, T. Granzow, W. Jo, and J. Rödel, Electric-field-induced antiferroelectric to ferroelectric phase transition in mechanically confined Pb0.99Nb0.02[1(Zr0.57Sn0.43)0.94 T10.06]0.98O3, Phys. Rev. B 81, 014103 (2010).

