
Control of Physical Objects Utilizing Brain Computer Interfaces

by

Nick Schmidt

A creative component submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:
Lotfi Ben Othmane, Co-major Professor

David Jiles, Co-major Professor

The student author, whose presentation of the scholarship herein was approved by the program of
study committee, is solely responsible for the content of this dissertation/thesis. The Graduate
College will ensure this dissertation/thesis is globally accessible and will not permit alterations

after a degree is conferred.

Iowa State University

Ames, Iowa

2020

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGMENTS . vii

ABSTRACT . viii

CHAPTER 1. Introduction . 1

1.1 Problem . 1

1.2 Approach . 1

1.3 Contribution . 2

1.4 Organization . 2

CHAPTER 2. Background . 3

2.1 Methods of Brain Data Extraction . 3

2.2 EEG Based Brain Computer Interfaces . 4

2.3 Brain Waves . 5

2.4 Emotiv Epoc + . 6

2.5 Current BCI Deficiencies . 8

CHAPTER 3. Solution Approach . 10

3.1 EEG Interpretation Method . 10

3.2 Categorization . 15

3.2.1 R Based Programming . 15

3.2.2 Keras Programming with Python . 16

3.3 Real World Control . 17

iii

3.4 Requirements . 19

CHAPTER 4. Plugin Architecture . 21

4.1 Architecture Description . 21

4.1.1 WordPress Architecture . 21

4.1.2 Eclipse Architecture . 23

4.1.3 Combining the Ideas . 23

CHAPTER 5. Architecture Implementation . 25

5.1 Layout . 25

5.2 Plugin . 25

5.3 Extension Points . 27

5.4 Device Plugins . 29

5.5 Interface Plugins . 30

5.6 Core Program . 31

CHAPTER 6. Program Implementation . 33

6.1 Training Program . 33

6.1.1 Device Type: GUI . 33

6.1.2 Device Implementation: Training GUI . 33

6.1.3 Device Type: EEG . 34

6.1.4 Device Implementation: Emotiv . 34

6.1.5 Interface: Recorder . 35

6.1.6 Plugin: Pow Creator . 35

6.1.7 Interface: Learner . 36

6.2 Running Program . 36

6.2.1 Device Type: EEG . 37

6.2.2 Device Implementation: Emotiv . 37

6.2.3 Interface: Interpreter . 37

6.2.4 Plugin: Lighting . 38

iv

6.2.5 Plugin: Pacman . 38

CHAPTER 7. Evaluation . 39

7.1 Machine Learning Evaluation . 39

7.2 Architecture Evaluation . 41

CHAPTER 8. Conclusion . 44

v

LIST OF TABLES

Page

3.1 Advantages and Disadvantages of EEG Analysis Methods. 11

7.1 Accuracy Rating of Neural Networks on Datasets 40

7.2 Dataset Sizes . 40

vi

LIST OF FIGURES

Page

2.1 Emotiv Epoc+ Sensor Placement Map[1] . 7

2.2 Emotiv Header Data[1] . 7

2.3 Emotiv EEG Data[1] . 8

3.1 EEG Interpretation Method Analysis[2] . 18

4.1 Plugin Architecture Example[3] . 22

5.1 Generic Plugin Definition . 27

5.2 Extension Point Definition . 29

5.3 Device Type Definition . 30

5.4 Interface Definition . 31

6.1 Plugin Based Training . 34

6.2 Plugin Based Control . 36

vii

ACKNOWLEDGMENTS

I would like to take this opportunity to thank all of those who contributed to my completion of

this project. First, I would like to thank Dr. Lotfi ben Othmane for all of his guidance throughout

my project as well as my graduate degree. His kind advice and technical knowledge kept me on

the path to success. Additionally, I want to thank Dr. David Jiles for his time on my committee

and his help with the project.

I would also like to thank my friends, in particular Brady Opsahl and Noah Halbur. Their

constant input and humor kept me happy, motivated and on the right path. Without them my

time at college would not have been nearly as fun or memorable.

Finally, I would like to thank my family. My brothers: Sam, Joey, and Paul were always

available to talk and to make me laugh. My Mom, Colleen, and Dad, Mike, also gave me invaluable

advice time and time again. Last, but not least, my dog Buddy’s unconditional happiness always

spread to me. Without my family’s love and support none of this would have been possible.

viii

ABSTRACT

Brain Computer Interfaces (BCI) are a rapidly growing and expanding field. BCIs are capable

of creating an interface between the human brain and a computer. This paper lays out the required

background knowledge to work with a BCI. It attempts to answer the question ”Can a BCI be used

to control a set of real work objects?”. To do so, common methods of BCI were analyzed to create

a reliable BCI. Then, an architecture was designed to allow for this BCI to be easily expanded to

include functionality with as many devices as possible. The architecture developed as well as the

logic and rationale behind it is laid out within this paper.

1

CHAPTER 1. Introduction

Brain Computer Interfaces are devices which are capable of interfacing between the brain and

any computer device. The goal of this research was to create a general use Brain Computer Interface

(BCI) that could operate with software as well as physical objects. To do this, an architecture was

developed to allow for expansion into as many use cases as possible. Additionally, a proof of concept

program was created to show that this architecture and BCI method worked.

1.1 Problem

The current problem with the field of BCI is the lack of a unified platform. There are many

different commercially available devices to work with a BCI, but they are typically medically focused

or only have first party software. This severely limits the capability for large scale development of

BCI capable apps and devices. In order for BCI software to progress, a platform must exist which

is capable of controlling physical and digital devices and which can be easily expanded.

To solve this problem, we set out to answer the question:

Can a user control a set of digital objects using their brainwaves?

An affirmative answer to this question impacts the way we interact with machines even if the

techniques are limited in practice.

1.2 Approach

To address this research question, the first step taken was to begin researching available BCI

devices. There are many commercial products available, including the Emotiv Epoc+ used for

the project. Next, the problems with each of these BCI were researched to find what needed

to be solved. A machine learning and data collection method was created to attempt to match

2

performance with the available devices own prediction methods. Finally, this methodology was

tested to see if it could accurately control real world objects and a general use architecture was

developed.

1.3 Contribution

The major contributions of this thesis are :

• Developed an algorithm that allows a user to control a digital object using their brainwaves.

• Developed a framework that allows for the collection of Electroencephalogram (EEG) and

other BCI data from devices and allow for the easy development of applications that use this

data to control digital objects.

1.4 Organization

This paper is divided into 8 chapters. This chapter describes the paper itself. Chapter 2

describes necessary background information on BCIs and data collection from the brain. Chapter

3 describes in depth the steps taken during the project to answer the research question. Chapter 4

describes the different types of plugin architecture. Chapter 5 lays out the architecture created to

solve the research question. Chapter 6 lays out the system created to prove the architecture works

and the research question was answered. Chapter 7 lays out the evaluation of the machine learning

methods and architecture.

3

CHAPTER 2. Background

The following section will highlight the relevant background information in the research of brain

computer interfaces. For the implementation of a proof of concept of this architecture, an EEG

based headset was used. This section will also cover the methods used to create this interface,

highlighting the processes used for creating usable data.

2.1 Methods of Brain Data Extraction

There are several methods for reading information from the brain: non-invasive, partially inva-

sive, and invasive [4].

A non-invasive method, which is the most common, involves reading information from the

brain from outside of the skull. This usually involves the placement of scanners on the head of

the subject. The most common implementation of a non-invasive brain computer interface is the

electroencephalogram [5]. The main benefit of non-invasive methods is that the process is safe

and easy. All that is required is a scanner and there is no advanced procedure required to use the

sensors. The second major benefit is that these types of scanners are cheaper than other methods.

The size and quality requirements for a scanner placed outside of the skull are also significantly less

than internal scanners [5]. Larger scanners of lower material quality can be used when the scanner

is external.

The main issue with this method is signal positioning. Since all data is measured from sensors

outside of the skull, locating where these readings take place is difficult. There are a few mitigation

methods, but they are usually computationally expensive [6]. The second issue with this method of

data recording is interference. Since this data is read from outside of the skull, there is interference

from muscles throughout the head as well as the insulation and interference of the skull. This can

4

cause readings to be inaccurate and can limit the ability to read signals of neurons deeper within

the brain [7].

The second method for reading information from the brain is the partially invasive method.

This method is mainly focused on removing any interference from muscles and the skull. It involves

placing scanners within the skull and on top of brain matter but does not involve inserting anything

within the gray matter [8]. Sensors can be placed on the relevant portions of the brain to focus

data readings. Therefore, it is easier to identify the portions of the brain that are producing a

signal without interference from muscles or the skull. This helps to increase the accuracy of the

data being read.

The final method for reading information from the brain is the invasive method. This method

requires sensors be placed within the grey matter of the brain. This is by far the most accurate

method of data collection, but also highly intrusive [6]. This method allows for highly accurate

readings from all sections of the brain, including those deep within the brain. This allows for much

more accurate 3D modeling of signal locations within the brain. Additionally, sensors can be highly

focused within known areas of the brain to focus on things like vision or hearing. The final major

benefit of invasive methods of data collection is the minimal level of noise from outside sources [9].

2.2 EEG Based Brain Computer Interfaces

Currently, the most common method for creating a non-intrusive BCI (Brain Computer Inter-

face) is through using an EEG. An EEG, short for Electroencephalogram, reads in raw voltages from

the brain. It is non-invasive and is also the most commercially available. Traditionally, the EEG

was used within medical settings to diagnose issues within patients. However, cheaper methods

have allowed for commercial use of these products.

The process for using an EEG follows. Sensitive electrodes are placed on the head of the

individual. These electrodes measure minute voltages generated within the brain in micro volts.

EEGs can utilize any number of electrodes with a higher number of electrodes allowing for a more

accurate signal placement. Due to interference from the skull and the 3D nature of the brain,

5

pinpointing the exact position of a signal is difficult. Probabilistic methods can estimate the

locations of signals based on the activation of surrounding electrodes. Due to its simplicity, the

EEG has several benefits over other methods of data collection [10].

The first benefit of the EEG is that it is easy to use. The placement of sensors on the head

requires minimal setup and no advanced training. The second major benefit of an EEG is the low

cost afforded by the simpler parts. Many other methods of data collection require advanced and

expensive machinery, such as the MRI. The third advantage of the EEG is the temporal accuracy of

the readings. Since the electrodes read the voltage present at their location, near-instant recording

of this data is available. There is no requirement of advanced processing or measurement to receive

this raw data. Unfortunately, these benefits are not without their consequences[7].

The major issues with EEG based voltage recordings are mostly related to accuracy. The first

issue is related to muscle interference. Electrodes are placed on top of the head and read in raw

voltages, any muscle flexing on the subject’s head results in a reading on the electrode. This can

cause inaccuracies and inconsistencies throughout the data. The second major issue is the lack of

location-based data. Complex probabilistic methods are required to attempt to estimate locations.

Additionally, voltages read at one electrode may not necessarily come from that section of the

brain. With many different parts of the brain generating signals, these signals will cause changes

on all electrodes throughout the head.

Overall, the EEG is the most accessible data collection method. The issues related to EEG-

based data collection aren’t necessarily a negative in all use cases. For instance, the limitations in

knowing the location of the signal does not affect differentiating signal groupings. If the patterns

are unique, the details of how these patterns are unique aren’t as important.

2.3 Brain Waves

The previous section described EEG voltage collection. This data has many different uses but

can vary greatly over time. To create more consistent readings, this data can be transferred into

brainwaves. By collecting these signals over a chosen time period, the raw voltages can be converted

6

into a measure of wave-forms. These waves are referred to as brain waves. The conversion of this

data is performed using several available methods, these will be discussed in Chapter 3. Much

research has been performed on brain waves and their corresponding thought patterns [11].

The types of brainwaves were split into a few different categories. These categories are Delta,

Theta, Alpha, Beta, and Gamma. The first type of brain wave, delta waves, consist of those waves

which are of the frequency .5 – 4 Hz. These very low frequency brain waves are often associated

with meditation or dreamless sleep. Theta waves are those waves which range from 5 – 8 Hz and

are often associated with drowsiness or dreaming. Alpha brain waves are those waves which range

from 9-14 Hz and are often associated with a relaxed or resting brain. Beta brain waves are those

brainwaves that range from 15-30 Hz and are often associated with an alert or working brain.

Finally, gamma waves are all other waves and are associated with a highly active brain [12].

The concept of a power band is used to measure the prevalence of different brainwaves. This

concept essentially measures the prevalence of each type of wave within the brain. This opera-

tion utilizes the spectral density operation. This operation calculates the amount of power each

frequency range is expected to contribute to the overall range of frequencies.

2.4 Emotiv Epoc +

The Emotiv Epoc+ was used for the implementation and testing of our theory. This headset

is a commercially produced EEG device. The device has 14 electrodes which provide EEG data

wirelessly. The internal EEG readings take place at a rate of 2048 readings per second and are

provided to the user at a rate of either 128 or 256 samples a second. The device also has a built in

gyroscope and accelerometer.

The Emotiv Epoc+ electrodes are placed at the following zones within the head: F7, F3, AF3,

AF4, F4, F8, T7, T8, P7, P3, P4, P8, O1, and O2. Nodes P3 and P4 are only for reference readings

and will not provide EEG data to a user. These sensor locations are provided by Emotiv in the

brain map in Figure 2.1.

7

Figure 2.1 Emotiv Epoc+ Sensor Placement Map[1]

Figure 2.2 Emotiv Header Data[1]

The Emotiv Epoc+ utilizes an application to pass any data to a user. The user must have

an account with their service in order to send and receive data. Once an account is created and

the application is downloaded, a user can send and receive information from the headset by first

submitting a JSON request to the localhost port provided by the application. The application

will then handle all back-end communication. After this request is received by the localhost port

a header describing the data’s format will be sent followed by the data on a preset interval. The

format of the request utilized for subscribing to EEG data is below. Figure 2.2 shows a sample

of the header data sent as the initial message from the software. Figure 2.3 shows a sample of a

typical EEG body message received from the software on a regular interval. Figure 2.1 shows the

Emotiv Epoc+ Sensor Placement Map.[1]

8

Figure 2.3 Emotiv EEG Data[1]

2.5 Current BCI Deficiencies

Currently, few commercial offerings are available in the BCI space. Those that are available

are typically geared towards medical use. However, a few commercial products with a focus on a

more general audience were identified and some of the issues with these platforms were targeted for

improvement in this paper. One of these devices was the previously mentioned Emotiv Epoc+. A

few other products identified were the NeuroSky, OpenBCI, and OpenVIBE. Each of these products

will be discussed below.

The first two types of devices available are the Emotiv Epoc+ and NeuroSky devices. These

headsets both offer a similar style of service. The devices come with a software pack or interface

that allows for a user to communicate with the device for their own software’s uses. Emotiv elects

to use a localhost webserver to allow for the extraction of data, while NeuroSky includes a library

for the development of apps which will appear on the NeuroSky app store. While both of these

offerings work from a development standpoint, they suffer from the requirement that a proprietary

device is used. There is no way to develop for a general EEG and any piece of software would have

to develop specifically for that brand of EEG device.

The second style of device available is OpenBCI. OpenBCI is targeted at allowing for open use

of EEG software. The company sells separate Arduino boards for use with electrodes. A series of

python libraries are then offered by the company to allow for interfacing with these devices. This

9

allows for a more open environment than the offerings from Emotiv or NeuroSky, but still runs into

compatibility issues with devices which do not implement the OpenBCI libraries.

The final solution available is OpenVIBE. OpenVIBE seeks to solve the major issue brought up

with the previous styles of device, the lack of compatibility. OpenVIBE does so by implementing a

GUI coding interface with pre-made blocks which handle various operations. Users can implement

their own ”boxes” using either python or C++. This allows for developers to create their own

logical flow for a BCI device and tie it into their own software. However, one of the major pitfalls

of OpenVIBE is its use of a graphical coding interface and a relatively complex method of coding

support without the use of the GUI. The use of a graphical coding interface requires that developers

learn to use this GUI and brings developers outside of their own environment. This can be an issue

for some development projects where developers would prefer that the solution be included in their

own software. Additionally, a developer must understand the flow of a BCI device in order to

develop the core implementation of the software utilizing the GUI.

Overall the issues with these different styles of implementation are similar. The first two styles

have issues with implementation of devices outside of their scope. OpenBCI devices cannot easily

work with NeuroSky or Emotiv devices and NeuroSky and Emotiv devices require coding specif-

ically for their devices. The other issue identified is with OpenVIBE which can require complex

understanding of the flow of a BCI to implement. Additionally, to easily work with OpenVIBE

a developer must move outside of their environment and work within the OpenVIBE GUI code

editor. The solution proposed by this paper will attempt to reduce these issues.

10

CHAPTER 3. Solution Approach

This chapter describes the approach used to test whether a single object could be controlled

using their brainwaves. The first step in the approach involved researching details for common

methods of EEG interpretation. The second step proved that these readings could be categorized

using machine learning. The third step determined whether these categorizations would be fast

and efficient enough to allow for realistic and real time control over a real world object. The final

step was the expansion of these categorization techniques into an extendable architecture to allow

for multiple input devices, methods of communication, and output devices.

3.1 EEG Interpretation Method

There are several common methods for extracting usable data from EEG voltage signals. Three

of the most effective and common methods of EEG transformation are the fast Fourier transform,

auto-regressive methods, and wavelet transform methods. Each of these classification methods has

their own advantages and disadvantages.

The first and most common method of EEG interpretation for BCI applications is the FFT.

The main advantage of the FFT is that it is computationally lighter than other methods. However,

this method is more susceptible to noise and has issues interpreting quick changes in data. A signal

must be held for a consistent period of time for the FFT to identify it. The FFT also suffers from

issues with quick spikes in a signal. This can happen with an EEG signal due to muscle or eye

movements triggering electrical signals in the muscle. These disadvantages are counterbalanced

with the fact that the FFT requires no heavy computation or modeling. The FFT does not require

a special model for each input signal[13].

11

Table 3.1: Advantages and Disadvantages of EEG Analysis

Methods.

Model Advantages Disadvantages Analysis Suitability

Fast

Fourier

Transform
1. Good tool for station-

ary signal processing

2. It is more appropri-

ate for narrow-band

signals, such as sine

wave

3. It has an enhanced

speed over virtually

all other available

methods in real-time

applications

1. Weakness in analyz-

ing non-stationary

signals such as EEG

2. Doesn’t have good

spectral estimation

and cannot be em-

ployed for analysis of

short EEG signals

3. FFT cannot reveal

the localized spikes

and complexes that

are typical among

epileptic seizures in

EEG signals

4. FFT suffers from

large noise sensitiv-

ity, and it does not

have shorter duration

data record

Frequency

Domain

Narrow-

band,

stationary

signals

Continued on next page

12

Model Advantages Disadvantages Analysis Suitability

Wavelet

Transform
1. It has a varying win-

dow size, being broad

at low frequencies

and narrow at high

frequencies

2. It is better suited

for analysis of sudden

and transient signal

changes

3. Better poised to an-

alyze irregular data

patterns that is, im-

pulses existing at dif-

ferent time instances

Needs selecting proper

mother wavelet

Both

time

and freq.

domain

and

linear

Transient

and sta-

tionary

signal

Continued on next page

13

Model Advantages Disadvantages Analysis Suitability

Auto-

regressive
1. AR limits the loss

of spectral problems

and yields improved

frequency resolution

2. Gives good frequency

resolution

3. Spectral analysis

based on AR model

is particularly advan-

tageous when short

data segments are

analyzed, since the

frequency resolution

of an analytically

derived AR spectrum

is infinite and does

not depend on the

length of analyzed

data

1. The model order in

AR spectral estima-

tion is difficult to se-

lect

2. AR method will

give poor spectral

estimation once the

estimated model is

not appropriate, and

model’s orders are

incorrectly selected

3. It is readily suscep-

tible to heavy biases

and even large vari-

ability

Frequency

Domain

Signal

with sharp

spectral

features

The second common method of EEG analysis is the auto-regressive method. This method deals

with spikes in signal much more readily than the FFT. Additionally, the frequency resolution on an

auto-regressive method is much higher. This allows for more accurate readings on the frequency.

14

The major issue with an auto-regressive model is the fact that it requires a predetermined model

which can become inaccurate. Additionally, the AR method is more computationally intensive than

the FFT[13].

The third common method of EEG analysis is the wavelet transform. This method deals with

EEG data accurately, but requires the selection of a clear mother wavelet to analyze the data. It

is also more computationally intensive than the FFT method.

In selecting which method to utilize for the categorization of commands, considerations were

made based on the common issues related to each method. The first major concern was speed.

Developing software that wouldn’t allow for use across many types of hardware would be a hindrance

to the research and future work. There was also a consideration placed on ease of use. Requiring

modeling and complex data collection for each individual user would not be feasible and would also

go against the spirit of the research. The idea is to allow for the accessible and easy utilization of

brain-waves for control of objects.

The final criteria was the requirement for accurate data. In a medical setting, the frequency

resolution is highly important and must allow for the observation of minute changes and quick

jumps in frequency. However, for the development of a BCI, this does not need to be as heavily

considered. The main focus of the BCI developed in this paper is to allow for the control over

several real world object using a set of trained commands. This does not require as high of a

frequency resolution, as the only concern is matching patterns and not analyzing them.

Due to these considerations, the FFT was selected. The data collection rate of the Emotiv

Epoc+ is 128 signals per second, computing an FFT on this data is already CPU intensive. These

signals must also be passed off to other programs at later steps of development. Computationally

intensive methods such as AR and wavelet transforms should be avoided.

After the initial interpretation method was selected, this had to be built out to allow for the

machine learning method to work with the data. One way to make FFT data more readable and

consistent is through a conversion to power band data. In order to perform an FFT, enough samples

must be collected for the algorithm to work. In our case, 256 samples were utilized. This method

15

also requires noise be removed from the data. This is can be accomplished with the hanning

window and detrend methods, which will emphasize the major points of the wave and remove

smaller ripples near the outsides of the waveform. Finally this data is squared to retrieve the power

band data.The final stage is to iterate over the frequencies and to add the waves to the correct

bucket. This algorithm is described below. This method is provided by Emotiv and is also heavily

utilized in the BCI community for the fast and easy interpretation of data[13].

Algorithm 1: Power Band Conversion

Result: Power Band Data By Bucket

EEGData = new Array;

while Receiving Data do

EEGData.insert(Data);

if length(EEGData) = 256 then

Detrend(EEGData);

Hanning(EEGData);

FFT(EEGData);

PowerDensity = FFT * FFT;

for Frequencies in PowerDensity do

Add frequency to corresponding power band bucket;

end

Print bucket information to a log file;

EEGData.remove(Oldest 16);

end

end

3.2 Categorization

The second major step in the research approach was selecting and implementing a categorization

method for the data. These approaches and steps are described below.

3.2.1 R Based Programming

The initial steps in the process involved testing several common and simple machine learning

methods on large files of converted EEG data. This data was converted using both the pre-built

16

Emotiv method as well as the power-band method described in section 3.1. However, according to

available Emotiv documentation, these methodologies are similar if not the same.

To begin, the data was brought into a simple R program. The data was numbered based upon

the command it corresponded too. Ten samples were pre-recorded with five neutral samples and

five samples issuing a command. The neutral commands were numbered zero and the command was

numbered one. A separate set of ten commands was recorded to utilize for testing the methods. The

first few methods applied to the data were to determine if a simple solution would work. Initially,

a regression was utilized in R. It became very clear that this method was not working for the sheer

number of inputs. In total, there were 70 data nodes which had to be utilized for classification.

A clustering approach suffered similar issues, failing to categorize even 50 percent of the models

correctly.

3.2.2 Keras Programming with Python

Due to the issues encountered almost immediately and the major lack of accuracy using these

methods, it was determined that a library capable of using complex neural nets and deep learning

would be utilized. A neural network was selected for this task due to its capability of finding

non-linear relationships between inputs and outputs. The major downside to a neural network is

the requirement for a large dataset [14]. However, the volume of data that could be easily recorded

through the headset mitigated this issue. The most readily available and powerful of these libraries

was Keras, available in python. Keras utilized tensor flow to leverage a graphics card’s computation

power for the categorization of commands. This new process is described below.

Keras is a powerful and open source machine learning solution [15]. It utilizes tensor flow, which

leverages the graphics card in the computation of machine learning data. This is powerful for large

and complex data sets and allows for the model to configure itself to most accurately categorize

data. This section will describe the deep learning methodology and describes the method arrived

at based on experimentation.

17

Deep learning is a complex method of machine learning. Deep learning is modeled on the

decision making observed within an animals brain. A deep learning network consists of several

nodes, referred to as neurons. Based upon previous inputs, these neurons will either activate or

deactivate. The first layer in the network is an input layer with one node to correspond to each input

signal. In the case of the data we are using, there will be 70 input nodes. Five brain wave buckets

in the power-band data for each of the 14 data recording electrodes. Next, this data is passed into

hidden layers within the network. These hidden layers each hold a predefined number of nodes or

neurons. During training, these hidden layers continually reconnect with different hidden layers’

nodes and with nodes within their own layers. Each hidden node continually adjusts its parameters

to formulate the requirements for when the node should activate. This is determined based upon

the connections with previous nodes as well as a weight which is assigned to these connections to

determine how important they are in the final determination. This process is repeated many times

over the pre-classified test data until the model goes through the preset amount of iterations, in

our case 10 [16].

The final model arrived at for the use in the machine learning method was relatively simple with

one input layer, 2 hidden layers, and 1 output layer. This model can be easily adjusted to allow

for tweaks based on the accuracy and needs of other users, However this model proved accurate on

our test models. A full evaluation on the tested models is provided in Chapter 7.

3.3 Real World Control

The third stage in the approach was to test the machine learning methodology in real time.

In order to provide a proof of concept, a simple program was developed to attempt to control a

lamp utilizing EEG. This lamp was connected to a Raspberry Pi running a local webserver. This

webserver would listen on the localhost for a command sent from the computer running the EEG

software and would toggle a relay to enable electrical signal to flow to the lamp. In order to do so,

the following process was followed:

18

Figure 3.1 EEG Interpretation Method Analysis[2]

1. Record five ten second long logs containing the raw EEG data for sending no command

(neutral)

2. Record five ten second long logs containing the raw EEG data for sending a lamp toggle

command (toggle)

3. Convert these logs into power band data using the FFT algorithm described above

4. Train a model using the described method in Keras

5. Import this model into a new program that will listen to EEG data and utilize the model to

determine when a command will be sent

In order to accomplish the final step, a new algorithm had to be developed to work with the

live data. This algorithm works very similarly to the power band data but adds additional steps

for working with the live data and for the categorization step.

19

Algorithm 2: Command Interpretation

Result: Command

import keras model;

while Receiving Data do

EEGData.insert(Data);

if length(EEGData) = 256 then

Detrend(EEGData);

Hanning(EEGData);

FFT(EEGData);

PowerDensity = FFT * FFT;

for Frequencies in PowerDensity do

Add frequency to corresponding power band bucket;

end

keras.predict(PowerDensity);

EEGData.remove(Oldest 16);

end

end

This categorization algorithm proved to work, as is shown in Chapter 7. Additionally, I was

able to have a usable level of accuracy for playing Pacman. This test was created using MAME,

an open source arcade machine emulator. Additionally, Pyvjoy and Vjoy were utilized. Vjoy is an

open source software which allows for control of a virtual joystick on windows machines. Pyvjoy

is a python library which allows for interaction with Vjoy using only python. A model trained for

four inputs was also required, one for each joystick direction. This Pacman classification could be

run at the same time as the lighting classification. This proved that brain data could be used to

control objects in the real world.

3.4 Requirements

A major requirement for a solution was that it must be modifiable and expandable to allow

for many different use cases. This would theoretically allow for any object in software or in the

real world to be controllable using this headset. In order to do so, we investigated several com-

mon architectural solutions to the problems of modifiability and usability. Several solutions were

proposed, including things likes micro-services or server-client information, which is similar to the

20

Emotiv approach. However, the approach which stood out the most was the plugin architecture.

This architecture will be discussed in detail in the next chapter.

21

CHAPTER 4. Plugin Architecture

In the course of the research into modifiable and easily usable architectures, it was determined

that a plugin architecture would best fit the needs of this project. This selection was made due

to the easy addition of new functionalities from third party developers when compared to other

architectures. This worked well to mitigate the issues encountered by other BCI implementations.

This section will describe the benefits of a plugin architecture. It will also describe some of the

examples of how this architecture is implemented. The next section will focus on the implementation

developed for the use as a BCI plugin architecture.

4.1 Architecture Description

A plugin architecture is an architecture whose core functionality can be expanded or modified

based on the insertion of new classes or objects. These classes or objects must fit a predefined

definition for the structure of a plugin. These are dependent upon the software being expanded,

but usually involve some type of scripting language or .XML file. There are many different ways

in which a plugin-based architecture can be implemented. We will begin by describing two very

popular implementations of a plugin architecture, the WordPress architecture and the Eclipse

architecture. Figure 4.1 demonstrates a common plugin implementation. A core piece of code is

expanded through the use of plugins, developed by the creator or other users. These plugins can

be added and removed without affecting the core itself [17].

4.1.1 WordPress Architecture

WordPress is a popular website development and hosting service. A user of the service can create

their own website using the tools available. However, this website also includes the possibility of

expanded functionality through the use of plugins. These plugins can modify or add to the behavior

22

Figure 4.1 Plugin Architecture Example[3]

of a website. Some popular plugins include plugins to seamlessly upload podcasts to your site as

well as plugins to modify your site to be a web store.

These plugins work by utilizing the idea of a ”hook” in the WordPress site. These hooks are

predefined areas which allow for user defined code to run. A plugin developer writes code to access

a piece of software when a particular hook happens. For example, a hook defined by WordPress is

”the post”. Registering your plugin to wait for this hook will allow your plugin to interact with a

post object before it is sent to the site. There are other actions that allow for more simple actions,

such as ”wp loaded” which simply runs your code after the website is loaded.

This method of plugin interaction is simple to understand and relatively powerful. Through the

use of hooks, WordPress allows developers to make modifications to many portions of the website.

However, this method is less effective when applied outside of the website context. There are many

cases in which you would want your plugin to allow for complex data interaction and usage of user

23

defined objects in a more robust way. This is one of the major downsides of utilizing the WordPress

style of plugin outside of website formats[18].

4.1.2 Eclipse Architecture

The Eclipse architecture builds on the idea of a plugin architecture, and expands it to the entire

program. As opposed to WordPress, a majority of the Eclipse core functionality is implemented

as plugins. The design of the core program is very minimal, with plugins expanding out a nearly

non-existent core functionality. This architecture is more complex to fully implement, but allows

for robust control over plugins and nearly limitless expansion.

In order to implement this idea, the Eclipse architecture utilizes a few key concepts. First,

instead of utilizing ”hooks” as in WordPress, an Eclipse architecture utilizes extension points.

These extension points are defined within each individual plugin through the use of an .XML

file. This file lays out the required fields which an extending plugin must implement, as well as

the format of any data that will be transferred between the two. This is typically implemented

as a Java class which can then be used to call specific needed methods. The plugins themselves

are then defined within .XML files which describe some basic information about the plugin. The

implementation of these plugins is then completed using a Java class [19].

The advantage of this is clear. A user can easily add any plugins they desire onto the pro-

vided extension points and allow for complex interaction between plugins. Additionally, the core

Eclipse platform is implemented as plugins, allowing for theoretical modification of the core Eclipse

functionality. This allows for a high level of customization and modification of the available func-

tionalities for the software.

4.1.3 Combining the Ideas

Each of these different architectures has a few strengths. The first major strength of the Word-

Press architecture is that it allows for the simple implementation of plugins based on a website.

The architecture doesn’t need complex interaction because the data being transferred is all related

24

to the website itself. This is different with an Eclipse plugin where a user may have many complex

objects which are being created and passed between plugins. The benefit of the WordPress im-

plementation is its simplicity and ordered execution. The WordPress core controls the flow of the

logic through it’s activation of various hooks, as opposed to the Eclipse architecture which hands

off a certain level of control to the plugins which interact with each other.

This method of communication has some clear advantages in the world of BCI. A core program

could manage input from the interface device and activate available plugins through the use of

hooks. This would ensure that data is managed by the core program and that plugins are responding

to data and not holding up the execution of the remaining program. However, the major downfall

of the hook method is the lack of complex interaction of user defined objects. This is necessary

for the use of a BCI architecture which could allow interaction with many different plugins meant

to do unknown tasks. The design of such a software should allow for more complex Eclipse style

plugins to be meshed with simple WordPress style hooks. This is the goal of the architecture that

was developed and is defined in the next section.

25

CHAPTER 5. Architecture Implementation

This chapter outlines the architecture developed to address the concerns of a BCI environment.

This architecture is designed utilizing the ideas presented by WordPress and Eclipse and with the

issues encountered by other solutions in mind. To start, this section will describe the concepts of

this architecture. It will then break down each of the elements of the architecture as well as how

new plugins can be implemented. Specific implementation details can be found in Appendix A.

This architecture utilizes three types of plugin: interfaces, devices, and plugins.

5.1 Layout

The core of this architecture is defined based upon the Eclipse architecture. However, due to

the nature of a BCI, there must be plugins which drive the rest of the application. To facilitate

this need, the WordPress architecture was leveraged. Two new types of plugins were developed,

the device plugin and the interface plugin. A device plugin will be responsible for communicating

with a BCI, in this case the Emotiv EEG headset. The definition for devices will be defined in

the Device section. These devices have a generic interface, similar to those available in WordPress.

Interface plugins will connect to these generic hooks within the device plugins and wait for input.

Generic plugins will then act based upon any interfaces which they extend.

5.2 Plugin

This section outlines the implementation of the generic plugin in this architecture. The generic

plugin will make up a majority of plugins designed within this architecture. Generic plugins are

capable of defining their own extension points and are also capable of implementing extensions to

as many plugins as desired. A plugin consists of three types of files, plugin definition files (.xml),

implementation files (.py) and extension definition files (.ext).

26

A plugin file should include any required functionality for the core of a plugin. Logic related to

specific extension points should be placed into extension point implementation files, which will be

touched on later. A plugin implementation may contain no functionality so that these functionalities

can be passed off to extension points. These extension points as well as any extensions implemented

by the plugin should be defined within the plugin definition file.

A plugin definition file defines the details of a plugin. An example of this file is included in

figure 5.1. The file begins with enclosing plugin tags to allow for parsing by the core program. The

plugin then identifies some basic facts about itself including its name, id, what type of plugin it is,

the plugin version, and the developer.

The next portion of the plugin definition file is the extension list. Each extension point

extended by this plugin must be defined within the extension tags. To begin an extension, the id

of the extension point must be entered. Next, any additional elements required by the extension

point must be enclosed within their own tags. In the example from figure 5.1, we can see that there

are two elements required by the extension point interpreter.interpreter.command. The extension

point concept will be expanded upon in the next section. What is required to understand the

plugin definition file is the knowledge that within each tag we pass an extension point’s elements

the required variables. For example, we are passing the actionSet element the variables setName,

setDescription, setModel, and setWeights. We are also passing the actionSet element a different

element, known as commandAction. This commandAction element is being given the variables

actionName, actionDescription, commandNumber, commandTimer, and a class which implements

the required interface.

The final requirement within a generic plugin definition file is the inclusion of any extension

points. The plugin provided within figure 5.1 does not have any extension points built into its

functionality, so an example extension point was created. To declare an extension point, the

extension-point tag is used. This definition must include an ID for the extension point, as well as a

27

name and a schema. This schema will point to the file which holds the definition for that extension

point.

Figure 5.1 Generic Plugin Definition

5.3 Extension Points

The developed architecture also implements a form of Eclipse style extension points. These

extension points are defined by each plugin within an extension point schema file (.ext). An

extension point schema file for the extension point referenced by figure 5.1 is available in figure 5.2.

Similar to the plugin definition file, this extension point file begins with a schema tag to allow for

the core program to parse it. The next tag is an element tag. This defines the elements that can

be implemented by any plugin wishing to extend this point. The first element in any extension

point is the extension tag. This tag lists which elements must be implemented by default. In

this example, any extension wishing to extend out the extension point must include at least one

actionSet element.

Next, a second element is listed. This is the required actionSet element. This actionSet requires

the use of a commandAction element and also requires several arguments. The argument tag defines

these arguments name and type, as well as whether they are required. A similar definition is created

28

for the commandAction element, but as you can see from the example figure, there are no required

elements for a commandAction.

The next part of an extension point is the extension point implementation file. For many

plugins, this is where a majority of the functionality will go. This file must have the same name

as the extension definition file and will contain the python code for this extension point. This

code will execute based on the methodology implemented by the developer. It is possible for

an extending plugin to cause the extension point to take action but it is also possible for an

extension point to cause its extensions to take action. Each extension point must also implement

an extensionHandler() method. This method will be called as the generic communication method

between an extension point and it’s extension, performing the implemented behavior for each

extension.

The final part of an extension point are the element implementation files. These files can range

in usability. Some definition files may contain nothing but the expected methods that an element

must implement and pass the functionality to the extension point. Other elements may be fully

implemented and function based solely on the attributes passed into the extension point from an

extending plugin. These decisions are up to the plugin developer.

29

Figure 5.2 Extension Point Definition

5.4 Device Plugins

The next type of plugin available is the device plugin. This type of plugin was created specifically

for working with a BCI. The plugin definition is divided into two parts. The first is the creation

of a type. These types will hold the extension point definition for all devices which utilize this

type. This will force consistency across all implementations of this type. For example, a new EEG

headset could be used with the software and no changes would have to be made to other plugins. An

example type definition is supplied in figure 5.3. This definition must include the name, the type,

the version, the developer, and a schema describing the extension point definition. Additionally,

the type can include required arguments for an interface wishing to access the device. As can be

seen from the ”nodes” requirement, these requirements can be setup as identifiers with the ident

argument. A requirement set as an identifier can be used by an interface to select a device with a

requirement whose argument matches their passed arguments.

The second part of defining a device plugin is through the implementation. This is where the

specific code for each device should be implemented. For the Emotiv headset, this implementation

30

contains all information about how the Emotiv should run. Each device implementation must

include a run method which will execute for the device within its own thread. The Emotiv imple-

mentation will continually collect data and pass it off through the extension point, which has been

forced to be the generic EEG extension due to its implementation as a device.

Figure 5.3 Device Type Definition

5.5 Interface Plugins

The final type of plugin available is the interface plugin. This type of plugin functions very

similarly to the generic plugin. The only difference is that this plugin extends out a device. An

example of an interface definition is provided in figure 5.4. This definition file behaves exactly the

same as the plugin definition file but requires one extra tag, the interface tag. This tag defines the

type of device being accessed, in this case the rawEEG type. Additionally, the interface can pass in

any arguments defined as identifiers by the type. In this case, the interface is asking for a rawEEG

device implementation which contains 14 nodes. It must also pass in the required receiver element,

attributes, and implementation class for its receiver.

31

Figure 5.4 Interface Definition

5.6 Core Program

The core program within the architecture is responsible for managing all of the plugins, devices,

and types within the current implementation. It does so by scanning predefined folders for files

of the expected type and format. It begins by scanning for device type implementations, then for

device implementations. These devices are given a schema and any defined identifiers are assigned

as keys to the possible devices within a type.

After all devices have been loaded, generic plugins and interfaces are scanned. Once these

plugins are found, they are parsed and a schema object is generated for each of the extension

points within the plugin. These schema objects will be used to ensure that plugins extending an

extension point include the correct variables. Any plugin which extends an extension point is added

to a list within that extension point for tracking. Additionally, the extension point is added to a

list within the extending plugin to allow for two way communication. The core program manages

all connections between the plugins by adding them to the relevant plugin and extension point lists

based on the IDs provided within the definition file.

After all devices and plugins have been parsed, the run step begins. Each device’s implemented

run method is called with a new thread. This allows for multiple devices to be driving different sets

of plugins. The lists created by the core program then allow for each of the devices to communicate

32

with their interfaces, who communicate with their extending plugins and so on. At the moment

these connections are implemented using synchronous connections, meaning that each plugin must

finish executing for its extensions before the next plugin can begin. However, the framework and

definitions are in place for asynchronous communication with slight changes to threading to allow

for the creation of asynchronous communication.

33

CHAPTER 6. Program Implementation

This chapter will describe the proof of concept program created utilizing this plugin architecture.

There are two separate programs for use with different use cases, but these programs could be

combined if needed. The first section will describe the training version of the program. The plugins

added to this project allow for the recording of EEG data and for the creation of new learning

models. The second section will describe the running version of the program. The plugins added

to this project allow for the simultaneous usage of the Pacman and lamp exercises.

6.1 Training Program

This section will lay out each of the plugins utilized by the training version of the program.

Figure 6.1 shows the overall structure of this plugin for reference during the description.

6.1.1 Device Type: GUI

The first plugin created for use with the training plugin is the GUI type. As described in section

5.4, this device type creates a generic extension point for any device implementing this type. The

GUI type includes the guiExten extension point with the following elements: guiBlock, Button,

Entry, Text. The guiBlock will hold the Button, Entry, and Text elements. The entry element

allows for user input to be processed, the text element allows for text to be placed, and the button

element takes a class as an argument which will be called when the button is pressed.

6.1.2 Device Implementation: Training GUI

The implementation of a training type utilized for this project is the training GUI. It is created

using TkInter and creates the GUI elements corresponding to any elements passed into it using its

34

Figure 6.1 Plugin Based Training

GUI extension point. Additionally, it assigns each extending plugin its own subsection of the GUI

with its name placed as a divider.

6.1.3 Device Type: EEG

The EEG device type includes a simple extension point which allows for interfaces to register

themselves as receivers for the EEG device. It also includes an identifier, numNodes, which allows

for an interface to request an EEG device with the number of nodes if it is available. The extension

point includes a generic extensionHandler method which will simply pass the received EEG signal

to each of the registered extensions. This data should be formatted as a list of raw EEG values

with all extra data removed.

6.1.4 Device Implementation: Emotiv

The Emotiv device implements the communication with the Emotiv headset. It begins by

registering with the local app by passing it the credentials for login. It then subscribes to the raw

35

EEG data stream and begins receiving data. Whenever this data is received, it passes it to the

EEG extension point so that all extending plugins can access the raw data.

6.1.5 Interface: Recorder

The Recorder interface allows for the collection of raw EEG data into log files. In order to

organize these logs, the GUI device type is used. The Recorder plugin registers a GUI Block with

two text and two entry fields as well as a button. The text fields are utilized to label the two entry

fields. The first entry field contains the name of the model being trained. This name will be used to

generate a unique folder for the log files. The second entry field contains the name of the command

being recorded. When pressed, the button will generate data for 10 seconds, placing the collected

raw EEG file into the folder defined by the first entry field with the name provided by the second

entry field. If multiple recordings exist for a single command, a number will be appended to the

recording name.

This plugin is also an interface for the EEG device. The recorder plugin listens to the raw EEG

data extension point, but only processes and uses the data when a recording is taking place. During

this time, the raw EEG data is simply placed into the defined text file. The Emotiv Recorder plugin

also contains a single extension point which allows for other plugins to record data without utilizing

the GUI.

6.1.6 Plugin: Pow Creator

The PowCreator plugin is utilized for the conversion of raw EEG logs into power band data

logs. This plugin contains a single extension point, fileParser, which allows for extending plugins to

convert data themselves. This data conversion follows the process described in 3.1 and the output

data is saved into separate log files for each command. The data takes the form of a csv file.

36

6.1.7 Interface: Learner

The Learner plugin implements the machine learning portion of the project. Learner interfaces

with the GUI device type to allow for control utilizing the GUI. One text field is used to label

the one text entry field present. This entry field allows for the definition of a model name. This

model name will be the folder that the Learner checks for power band data. Finally, the GUI

extension includes a button which will activate the training method. The model and method used

is discussed in section 3.2.2. To verify the data, a quarter of the recordings are set aside for testing.

The Learner plugin then creates a model for the given data and outputs it into the provided folder.

The Emotiv Learner plugins extends the Pow Creator plugin. If the data present within the

model folder is formatted as raw EEG data, the Emotiv Learner plugin will utilize the Pow Creator

plugin for data conversion. The Emotiv Learner plugin also includes it’s own extension point, learn,

which allows for external plugins to provide a path which the learning algorithm should run on.

6.2 Running Program

This section will lay out the plugins and devices utilized by the running plugin. Figure 6.2

shows the overall structure of this implementation for reference during description.

Figure 6.2 Plugin Based Control

37

6.2.1 Device Type: EEG

The EEG device type includes a simple extension point which allows for interfaces to register

themselves as receivers for the EEG device. It also includes an identifier, numNodes, which allows

for an interface to request an EEG device with the number of nodes if it is available. The extension

point includes a generic extensionHandler method which will simply pass the received EEG signal

to each of the registered extensions. This data should be formatted as a list of raw EEG values

with all extra data removed.

6.2.2 Device Implementation: Emotiv

The Emotiv device implements the communication with the Emotiv headset. It begins by

registering with the local app by passing it the credentials for login. It then subscribes to the raw

EEG data stream and begins receiving data. Whenever this data is received, it passes it to the

EEG extension point so that all extending plugins can access the raw data.

6.2.3 Interface: Interpreter

The interpreter plugin implements the categorization described in Algorithm 2 within chapter

3. The Interpreter plugin contains one extension points which allows for other plugins to register

their desired commands with the interpreter. This plugin interfaces with the EEG device type

and collects raw EEG data until 256 samples are collected for categorization. Once this takes

place, the FFT data is passed to each extension’s handler where the required machine learning

model can determine the command that should be run. The extensions are then free to act on this

categorization as needed.

The interpreter extension point includes two elements. The first element is the Action Set.

This element contains a grouping of commands, each assigned an number index within the machine

learning prediction matrix. By default, the command number whose index most closely matches

the most recently received prediction matrix will be called. These commands are implemented with

a Command Action element. The interpreter extension point allows for the creation of a custom

38

Action Set class. In this case, the prediction matrix will instead be handled by the user defined

class. If no user defined Action Set is used, an extending plugin must implement a Command

Action class to define the behavior for each command.

6.2.4 Plugin: Lighting

The lighting program implements the communication with an external Raspberry Pi for control

of a light switch. The plugin extends the interpreter plugin, passing a model for use with 2

commands as well as a command to toggle lights. The Interpreter plugin can then handle all of

the logic and actions on categorization. The Lighting plugin itself only implements a method to

be called with command 1 is activated. This method simply passes the command to toggle to the

Raspberry Pi. To do so, the plugin extends the interpreter’s extension point, passing the desired

method into the Command Action Element within the extension point.

6.2.5 Plugin: Pacman

The Pacman plugin allows for the control of a Pacman simulator using a virtual joystick. The

plugin extends the interpreter plugin and provides a model for use with 4 commands. To do so, the

plugin passes its own manager into the Action Set element within the interpreter plugin. Rather

than relying on the default command handling, the Pacman plugin can now implement its own

categorization methodology. The plugin waits for 4 categorizations to take place and then makes a

prediction based upon the most common command sent during that time. This command is then

passed to the corresponding PyVjoy joystick command to allow for control of the virtual joystick.

39

CHAPTER 7. Evaluation

This chapter will lay out the evaluation on the accuracy of the utilized machine learning method

as well as an evaluation into the successes and failures of the implemented architecture. Where

failures or issues are present, theories on fixes or future work are provided.

7.1 Machine Learning Evaluation

Several iterations upon the machine learning methodology were utilized. A sample of tested

models is shown in table 7.1. Each data input consists of 4 separate commands. Each command

has the same number of data points recorded, with this number being described in table 7.2. Each

individual data set consists of a 10 second EEG recording, which is converted into power band data

before being utilized by the training model. In order to record test accuracy, three quarters of the

data was used for training and one quarter was used in Keras’s provided evaluation function.

It should be noted that this data was collected on a user with extensive use of the headset.

These accuracy ratings fall on users who do not have experience utilizing the headset. Consistently

recreating commands on the headset is an acquired talent. Additionally, the test data accuracy is

higher than will be experienced by the user during regular use. This is due to higher irregularities

in data during use with other activities as opposed to training. Unfortunately, this data can not

be numerically evaluated due to the inability to track a user’s desired input in real time.

The second issue with the model training is the variation in readings over time. A few days or

even hours after data has been collected, the model begins to fall out of date. This is due to new

background noise in the brain patterns as well as variations in headset placement that can cause

issues with accuracy.

However, this issue is offset by the fact that it can be seen that relatively small data sets allow

for use-able accuracy within the data. Retraining the headset only requires around 4 collections for

40

Table 7.1 Accuracy Rating of Neural Networks on Datasets
Hidden

Lay-

ers

Node

Count

Model

A

Model

B

Model

C

Model

D

Model

E

Model

F

Model

G

Model

H

Model

I

Model

J

1 1 25% 50% 51.19% 73.02% 52.54% 50.79% 72.30% 74.35% 24.96% 32.26%

1 3 80% 100% 57% 100% 100% 98.42% 76.05% 98.81% 99.01% 70.16%

1 7 93.75% 100% 72.23% 100% 100% 100% 98.12% 99.37% 98.30% 95.16%

1 35 97.19% 100% 73.41% 100% 100% 100% 98% 99.32% 99.29% 95%

1 50 97.80% 100% 72.22% 100% 100% 100% 99% 99.39% 98.17% 91.19%

2 30, 7 97.96% 100% 72.62% 100% 100% 100% 95% 98.81% 98.73% 93.55%

2 50,

13

97.97% 100% 73.41% 100% 100% 100% 97.02% 99.39% 99.81% 94.35%

Table 7.2 Dataset Sizes
Model

A

Model

B

Model

C

Model

D

Model

E

Model

F

Model

G

Model

H

Model

I

Model

J

Data Points 10 5 4 4 5 5 10 30 11 2

41

each command. This means that if a user will be having a session with the headset they will only

need to record 160 seconds of data (4 commands * 4 collections * 10 seconds a collection). Finally,

these accuracy issues do not apply with models utilizing two commands.

Overall, this learning method is effective. It can be observed in table 7.1 that a user is capable

of issuing commands to software or a device with a high level of accuracy. When compared to the

Emotiv Epoc+’s built in categorization method, the model is at least as effective. The Emotiv

methodology also suffers from the same drawbacks, requiring a daily re-calibration as well as suf-

fering from accuracy issues when more commands are added. It can be observed from the collected

data that this is true of the Keras neural network method, but support for 4 commands is also

achievable by an experienced user.

7.2 Architecture Evaluation

In order to determine whether an EEG device could be utilized to control real world objects, an

architecture that could support the communication with these devices would have to be established.

For this architecture to be as effective as possible, it should be capable of controlling more than one

device, and should allow for modification to support new devices and software in order to resolve

the issues encountered by other implementations. To evaluate the effectiveness of the architecture,

several criteria were utilized: modifiability, usability, and scalability.

In order to measure modifiability, a few requirements were laid out for the architecture. First,

a new plugin should not require knowledge of another plugin’s implementation. This ensures that

new plugins can easily be developed for new devices without complex knowledge about any step of

the process. Second, a new plugin should be added to the core functionality of a program without

requiring user input. This ensures that new devices and software can be supported without having

to modify the existing functionality of the program. Third, a new plugin should be able to allow

other plugins to extend it. This will allow for devices to be accessed by other devices and greatly

increase the functionality of the EEG communication.

42

It can be shown that the current architecture meets these modifiability requirements. This

was accomplished in several iterations, with early iterations on the architecture failing to meet the

necessary requirements. First, a new plugin does not require knowledge of another plugin’s imple-

mentation. This is demonstrated in Chapter 6, the only necessary knowledge for implementation

is the format and meaning of the extension points. Second, a new plugin can be added to the core

functionality of the program without requiring user input. To add a plugin to the system, it must

be added to the plugin folder. After this is complete, the plugin will be automatically added to

the system. Third, a new plugin can add its own extension points as well as data format. This

is accomplished through the xml definition files laid out in the architecture as well as the python

implementation files and extension point files.

In order for the plugin to meet the usability requirement, it should not require user knowledge

of plugins or BCI devices to use. This is one of the issues identified with the OpenVIBE solution

where users must create their own BCI logic flow. This is accomplished through the implementation

of BCI devices as well as the nature of a plugin architecture. This ensures that new devices and

software can be added to the system through pre-developed plugins. A user would not need to have

an understanding of how a BCI would work, they would just need to grab a set of plugins which

accomplish all of this for them.

The final criteria for the success of the system is scalability. The architecture should not

suffer when more plugins are added to the system. Currently, this issue is partially addressed. In

the final iteration of the architecture, devices are each provided with a thread to run in. This

allows for a larger level of scalability between devices. Additionally, a skeleton framework has been

implemented to allow for asynchronous execution of plugins. However, at the moment this has not

been fully implemented. This means that a plugin which sits idle could slow down the other plugins

as they wait for their turn with the data. Further work must be completed to fully implement the

asynchronous execution of plugins and solve scalability issues.

The architecture overall fits the needs of a BCI architecture and solves the compatibility and

usability issues identified in other solutions. It allows for the easy extension of the core BCI

43

framework and allows for the use of multiple type of BCI device. It implements a GUI as well as

the full implementation of plugins for the execution of commands for an EEG device. This allows

for the development of new device controllers with no machine learning or BCI knowledge.

44

CHAPTER 8. Conclusion

It can be seen from the evaluation of the architecture as well as the machine learning model

that the question: ”Can a user control a set of digital objects using their brainwaves?” has been

answered positively. In the current architectural implementation, a user is capable of controlling

multiple digital and physical devices simultaneously with an EEG device. This device reads in

brainwave data, and passes it to a machine learning algorithm which can accurately categorize these

commands. The implemented architecture allows for the extension of these core functionalities to

include any new devices. This is accomplished through robust custom interface definitions.

However, it can also be determined that future work can be accomplished with this solution.

First, more experimentation and data collection can be accomplished on new users. This will allow

for a more universal and in depth machine learning algorithm. Second, the architecture should be

extended to allow for asynchronous execution of plugins. This will ensure that the architecture is

scalable to as many plugins as possible, with slower plugins consuming data as they finish execution.

Finally, more methods of BCI can be tested with the architecture. The architecture is implemented

to allow for the implementation of new BCI methods, but none were available for testing. These

areas of future research would allow for further development of a universal BCI platform that can

be utilized for the control of multiple physical and digital objects.

45

Bibliography

[1] Emotiv: Emotiv pro

[2] Wikipedia: Artificial neural network (2020)

[3] Sharjith: Simple plug-in architecture in plain c (2012)

[4] Bogue, R.: Brain-computer interfaces: control by thought. Industrial Robot 37(2) (2010)

126–132

[5] Shih, J., Krusienski, D., Wolpaw, J.: Brain-computer interfaces in medicine. In: Mayo Clinic

Proceedings, Mayo Clinic (2012) 268–279

[6] Waldert, S.: Invasive vs. non-invasive neuronal signals for brain-machine interfaces: Will one

prevail? Frontiers in Neuroscience 10(295) (2016)

[7] Kamp, A., Pfurtscheller, G., Edlinger, G., da Silva, F.L.: Electroencephalograph: Basic Prin-

ciples, Clinical Applications, and Related Fields. Ippincott Williams & Wilkins, Philadelphia,

PA (2005)

[8] Vourvopoulos, A., Liarokapis, F.: Robot navigation using brain-computer interfaces. In:

2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and

Communications. (2012) 1785–1792

[9] Baars, B., Gage, N.: Cognition, Brain, and Consciousness: Introduction to Cognitive Neuro-

science. 2, revised edn. Academic Press, Cambridge, MA (2010)

[10] Zhang, W., Tan, C., Sun, F., Wu, H., Zhang, B.: A review of eeg-based brain-computer

interface systems design. Brain Science Advances 4(2) (2018) 156–167

46

[11] da Silva], F.L.: Neural mechanisms underlying brain waves: from neural membranes to net-

works. Electroencephalography and Clinical Neurophysiology 79(2) (1991) 81 – 93

[12] Koudelková, Z., Strmiska, M.: Introduction to the identification of brain waves based on their

frequency. MATEC Web of Conferences 210 (01 2018) 05012

[13] Al-Fahoum, A., Al-Fraihat, A.: Methods of eeg signal features extraction using linear analysis

in frequency and time-frequency domains. ISRN neuroscience 2014 (02 2014) 730218

[14] Shahid, N., Rappon, T., Berta, W.: Applications of artificial neural networks in health care

organizational decision-making: A scoping review. PLOS ONE 14(2) (02 2019) 1–22

[15] Chollet, F.: Keras

[16] Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016) http://www.

deeplearningbook.org.

[17] Birsan, D.: On plug-ins and extensible architectures. ACM Queue 3 (2005) 40–46

[18] WordPress: Wordpress

[19] Bolour, A.: Notes on the eclipse plug-in architecture (2003)

http://www.deeplearningbook.org
http://www.deeplearningbook.org

47

Appendix A

Configuration: Running

1. Plugin: EEG Type

(a) Description: Describes the implementation of EEG device types. Allows for generic

interface.

(b) Requirements

i. Nodes

ii. Updates per Second

(c) Extension Point: EEG

i. Receiver

A. Update Rate

B. Number of EEG Nodes

2. Plugin: Interpreter

(a) Description: Converts raw EEG voltages into power band data and outputs which com-

mand is being input.

(b) Interface: Interfaces with a Raw EEG device.

(c) Extension Point: Command

i. Description: Extensions to this point can define a set of commands, interpreter will

output which command is being input.

ii. Element: Action Set

A. Description: Set of commands that can be input

B. setName: Name of the command set

C. setDescription: Description of the command set

D. setModel: Path to the Keras model that should be used for categorizing the

power band input

48

E. setWeights: Path to the weights for the Keras model that should be used for

categorzing the power band input

F. class: class that implements full actionSet categorization, command classes

won’t be used if this is used. Action set will handle command selectoin

iii. Element: Command Action

A. Description: Describes the command that should be activated when this com-

mand is input

B. actionName: Name of the command

C. actionDescription: Description of the command

D. commandNumber: Index number of this command, should be from 0-N

E. commandTimer: Amount of time that must pass before this command can be

used again, can be 0

F. class: Class that implements command action if wanted

3. Plugin: Lighting

(a) Description: Communicates with a webserver running on a Raspberry PI to toggle a

light switch

(b) Extends: Extends Interpreter.Command

i. setName: Light Controls

ii. setDescription: A set of actions to control a light switch through a connection to a

raspberry PI

iii. setModel: Ligthing.json

iv. setWeights: Lighting.h5

v. commandAction

A. actionName: Toggle Light

B. actionDescription: Toggle the light using the PI

49

C. commandNumber: 1

D. commandTimer: 5

E. class: lightToggle

4. Plugin: Pacman

(a) Description: Communicates with a webserver running on a Raspberry PI to toggle a

light switch

(b) Extends: Extends Interpreter.Command

i. setName: Joystick Controller

ii. setDescription: A set of actions to send command to vJoy a virtual joystick emulator

iii. setModel: Pacman.json

iv. setWeights: Pacman.h5

v. class: joystickManager

Configuration: Training

1. Plugin: EEG Type

(a) Description: Describes the implementation of EEG device types. Allows for generic

interface.

(b) Requirements

i. Nodes

ii. Updates per Second

(c) Extension Point: EEG

i. Receiver

A. Update Rate

B. Number of EEG Nodes

2. Plugin: Device Type

50

(a) Description: Describes the implementation of GUI devices

(b) Extension Point: GUI

i. Element: GUI Block

A. Button: Button to activate a function

B. Text: Text to display on the GUI

C. Entry: Text Entry form

D. Name: Name of the GUI element

E. Description: Description of the GUI Element

ii. Element: Text

A. Text: Text to display

B. Width: Width of the element

C. Height: Height of the element

iii. Element: Button

A. Text: Text to display on the button

B. Class: Class to activate when button is pressed (path to .py File)

iv. Element: Entry

A. ID: ID that can be referred to in other elements to access the text in this entry

form

3. Plugin: PowCreator

(a) Description: Converts EEG data logs into power band data logs

(b) Extension Point: FileParser

i. Element: ParseHandler

A. readPath: Path that the EEG logs are in

B. outPath: Path that the power band logs should be placed into

51

C. recordLength: Amount of EEG records that should be read in before a power

band calculation is performed

D. incrementAmount: Amount of old elements that should be dropped after a

power band calculation is performed

4. Plugin: Emotiv Learner

(a) Description: Reads log files categorized by command to crates a Keras model for the

data

(b) Interface: GUI

i. Name: Emotiv Learn

ii. Description: Learn the logs currently in the log folder

iii. Element: Text

A. Text: Model Name

B. Width: 15

C. Height: 1

iv. Element: Entry

A. ID: learnModelName

v. Element: Button

A. Text: Learn Model

B. Class: learnButton

(c) Extends: powCreator.powCreator.fileParser

i. parseHandler

A. readPath:

B. outPath:

C. recordLenth: 256

D. incrementAmount: 16

52

(d) Extension Point: Learn

i. Elements

A. Element: LearnManager

B. modelPath: Path to the model

C. modelName: Name of the model

5. Plugin: Emotiv Recorder

(a) Description: Records data from a EEG Headset.

(b) Interface: GUI

i. Name: Emotiv Recorder

ii. Description: Learn the logs currently in the log folder

iii. Element: Text

A. Text: Model Name

B. Width: 15

C. Height: 1

iv. Entry

A. ID: recorderModelName

v. Element: Text

A. Text: Command Name

B. Width: 15

C. Height: 1

vi. Element: Entry

A. ID: recorderCommandName

vii. Element: Button

53

A. Text: Record Log

B. Class: recordButton

(c) Interface: EEG

(d) Extension Point: recordLog

i. Element: LogRequest

A. logName: Name of the log file that should be used

B. commandName: Name of the command being used

C. logTimer: Amount of time in seconds the log should be recorded for

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT
	1. Introduction
	1.1 Problem
	1.2 Approach
	1.3 Contribution
	1.4 Organization

	2. Background
	2.1 Methods of Brain Data Extraction
	2.2 EEG Based Brain Computer Interfaces
	2.3 Brain Waves
	2.4 Emotiv Epoc +
	2.5 Current BCI Deficiencies

	3. Solution Approach
	3.1 EEG Interpretation Method
	3.2 Categorization
	3.2.1 R Based Programming
	3.2.2 Keras Programming with Python

	3.3 Real World Control
	3.4 Requirements

	4. Plugin Architecture
	4.1 Architecture Description
	4.1.1 WordPress Architecture
	4.1.2 Eclipse Architecture
	4.1.3 Combining the Ideas

	5. Architecture Implementation
	5.1 Layout
	5.2 Plugin
	5.3 Extension Points
	5.4 Device Plugins
	5.5 Interface Plugins
	5.6 Core Program

	6. Program Implementation
	6.1 Training Program
	6.1.1 Device Type: GUI
	6.1.2 Device Implementation: Training GUI
	6.1.3 Device Type: EEG
	6.1.4 Device Implementation: Emotiv
	6.1.5 Interface: Recorder
	6.1.6 Plugin: Pow Creator
	6.1.7 Interface: Learner

	6.2 Running Program
	6.2.1 Device Type: EEG
	6.2.2 Device Implementation: Emotiv
	6.2.3 Interface: Interpreter
	6.2.4 Plugin: Lighting
	6.2.5 Plugin: Pacman

	7. Evaluation
	7.1 Machine Learning Evaluation
	7.2 Architecture Evaluation

	8. Conclusion

