Symptoms of SCN Damage Apparent Early, Yield Loss Likely Great in 2012

By Greg Tylka, Department of Plant Pathology and Microbiology

As if the direct effects of Iowa’s hot, dry growing season on crops were not damaging enough, the soybean cyst nematode (SCN) probably will be more damaging this year than in the past two decades due to the lingering drought conditions.

Symptoms of damage appearing sooner in 2012

Damage from SCN does not always cause aboveground symptoms, especially in years with adequate to excess moisture. But when symptoms occur, they usually appear in mid to late July (see 2011 ICM News article here).

This season, stunting and yellowing of soybean foliage caused by SCN feeding has been apparent throughout the state since late June, which is much earlier than usual.

Symptoms of SCN damage can be relatively mild when SCN population densities, or numbers, are low (Figure 1). But stunting and foliar yellowing can be severe in very dry soils and when SCN population densities are high (Figure 2). The earlier those symptoms appear in the growing season and the more severe they become, the greater the yield loss that occurs with SCN.

Figure 1. Mild yellowing and stunting of plants caused by SCN.

Key Points:

- Stunting and yellowing of soybeans caused by SCN feeding has occurred much earlier this growing season than normal.
- The earlier SCN symptoms appear in the season and the more severe symptoms become, the greater the yield loss that occurs.
- Greater yield loss and larger increases in SCN population densities (numbers) on resistant soybean varieties are possible for 2012.
- Managing SCN requires scouting fields, soil sampling, growing resistant soybean varieties and nonhost crops like corn, and considering use of nematode protectant seed treatments.
Yield loss with SCN-resistant soybean varieties in 2012

Soybean yield losses from SCN have been minimized over the past 20 years through use of resistant soybean varieties. Good SCN-resistant soybean varieties keep nematode reproduction in check and produce profitable yields in fields infested with the nematode, at least under most conditions.

Almost all SCN-resistant soybean varieties available for the Midwest have resistance genes from a breeding line called PI 88788. Because of repeated exposure to the same type of resistance, many of the SCN populations in Iowa fields have increased reproduction on varieties with PI 88788 SCN resistance genes.

SCN populations with elevated reproduction on PI 88788 resistance were first noticed in Iowa seven or eight years ago. But to date, the increased SCN reproduction has not severely reduced yields of resistant varieties or caused large increases in SCN population densities in Iowa.

Unfortunately, greater yield loss and larger increases in SCN population densities on SCN-resistant soybean varieties are possible for 2012 because root stunting from SCN feeding makes plants even more drought stressed and also, there seems to be greater reproduction of the nematode in dry soils (as discussed in an ICM News article earlier this year).

Management of SCN requires persistence

Successfully managing SCN is not an achievement to be accomplished in one growing season; it is a continual process. To ensure profitable soybean production in SCN-infested fields long-term, a sustained, integrated approach is necessary.

Every field in Iowa in which soybeans will be grown should be checked for SCN. This can be done by checking roots for SCN females (see ICM News article here) or by collecting soil samples to test for SCN (see ICM News article here).

Fields that are known to be infested with SCN and have had resistant soybean varieties grown should be sampled periodically to assess SCN population densities. Knowing if SCN population densities are decreasing, increasing or staying the same in a field over a period of six years or so will indicate how aggressive of an approach to management is needed to maintain profitable soybean production in the field in the future.
Growing nonhost corn in alternating years with SCN-resistant soybean varieties is key to keeping SCN numbers from increasing. Growing varieties with various sources of SCN resistance, if possible, reduces the selection of SCN populations with increased reproduction on the very common PI 88788 source of resistance. Finally, there are new nematode-protectant seed treatments that can be used in conjunction with SCN-resistant soybeans for added defense against the nematode.

More information about the biology and management of SCN can be found at www.soybeancyst.info and the [Plant Health Initiative’s website](http://www.extension.iastate.edu/CropNews/2012/0723tylka.htm).

Greg Tylka is a professor with extension and research responsibilities in management of plant-parasitic nematode in the Department of Plant Pathology and Microbiology. He can be reached at gltylka@iastate.edu or 515-294-3021.

This article was published originally on 7/23/2012. The information contained within the article may or may not be up to date depending on when you are accessing the information. Links to this material are strongly encouraged. This article may be republished without further permission if it is published as written and includes credit to the author, Integrated Crop Management News and Iowa State University Extension. Prior permission from the author is required if this article is republished in any other manner.