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ABSTRACT

In this thesis we discuss two topics: domination parameters and inducibility. In the first chap-
ter, we introduce basic concepts, definitions, and a brief history for both types of problems. We
will first inspect domination parameters in graphs, particularly independent domination in regular
graphs and we answer a question of Goddard and Henning [23]. Additionally, we provide some
constructions for regular graphs of small degree to provide lower bounds on the independent dom-
ination ratio of these classes of graphs. In Chapter 3 we expand our exploration of independent
domination into the realm of directed graphs. We will prove several results including providing a
fastest known algorithm for determining existence of an independent dominating set in directed
graphs with minimum in-degree at least one and period not eqeual to one. We also construct a set
of counterexamples to the analogue of Vizing’s Conjecture for this setting. In the fourth chapter,
we pivot from independent domination to split domination in directed graphs, where we introduce
the split domination sequence. We will determine that almost all possible split domination se-
quences are realizable by some graphs, and state several open questions that would be of interest
to continue in this field. In the fifth chapter we will provide a brief introduction to flag algebras,

then determine the unique maximizer of induced net graphs in graphs of order 6 for each k.



CHAPTER 1. DEFINITIONS AND INTRODUCTION

This thesis will focus largely on two subjects. First, we will explore several domination pa-
rameters of graphs, then we will provide an extremal graph theory result through the use of flag
algebras. This chapter will provide basic definitions and some samples of techniques used to show
results used later in the thesis. We will begin with fundamental graph theory definitions. A graph
is an ordered pair (V| E), where V is a set of objects called vertices, and E is a set of pairs of V
called edges.

Graphs are well suited to help study the relationships between possible states in a discrete
system. Often, graphs are introduced by imagining that vertices may be people and a pair of people
is included in the edge set if they are friends. In this way, we could use model a social network as
a large graph and ask questions about its structure. For example, one might be interested in the
expected number of pages you might have to click through on your favorite social network until
you end up at Adam Blumenthal’s page. Another problem that can be modeled with graph theory

is known as the 8 Queen’s Problem, posed by de Jaenisch in 1862 [11]:

Question 1. Can you place 8 queens on a chessboard such that no two queens can attack each

other?

More generally we can ask instead how many queens can we place on a chessboard such that
no two queens can attack each other? The answer is that one can place 8 such queens. It is
also easy to see that one can certainly place one queen and satisfy the non-attacking condition.
This condition is a well studied graph parameter (if we model the chessboard in a particular way)
called independence. We say a set of vertices S in a graph G = (V| E) is independent if for all
{u,v} € S xS {u,v} ¢ E. That is, an independent set is a set of vertices which contains no edges.
Finding the maximum size of an independent set in a graph, called the independence number of the

graph, is one of the most heavily studied graph parameters due to its applications and relationships



to many other parameters. Much of this thesis will be based on this idea of optimizing such a graph
parameter. We now turn our attention to domination of graphs.

In a graph G = (V, E), a dominating set of G is a set of vertices S C V such that for each
v € V\ S there exists some u € S such that {u,v} € E. Intuitively, this means that a set of
vertices is dominating if it has an edge to every vertex outside of the set. We note now that
like independence, there is a trivial way to guarantee the existence of such a set. Namely, we may
choose S =V, so there do not exist vertices outside of the set chosen and the condition is vacuously
satisfied. Therefore, the interesting question to ask about domination in a graph is to determine
the size of a smallest dominating set, called the domination number of G denoted v(G).

It is easy to see that for de Jaenisch’s question, finding a set of 8 non-attacking queens would
be a maximum independent set, since each queen attacks every other square in its column. Slightly
weaker, we notice that this property makes such a set a mazimal independent set. That is, an
independent set S such that for any vertex v ¢ S, v U S is not independent. From this definition,
we can see that every maximal independent set is a dominating set. We note now that not all
dominating sets are independent. We define an independent dominating set as a set of vertices that
is both independent and dominating, and observe that an independent dominating set is a maximal

independent set.

Observation 1. Let S C V(G) for some graph G. Then S is an independent dominating set if

and only if S is a maximal independent set.

Proof. Let S C V(G). S is independent dominating if and only if S is independent and for every
v € V(G)\ S, there exists some u € S such that {u,v} € E(G) if and only if S is independent and

for every v € V(G) \ S, vU S is not independent if and only if S is a maximal independent set. [

We now slightly modify de Jaenisch’s question for an interesting graph theoretic optimization
problem which allows us to ask for either a maximum or a minimum set size. For a graph G, we
now provide several definitions to make the optimization version of these questions easier to discuss.

The independent domination number of a graph, denoted i(G) is the size of a smallest independent



dominating set. The independence number, a(G) is the size of a largest independent set, and the

domination number, v(G) is the size of a smallest dominating set.
Question 2. Can we determine the independent domination number of a graph?

This question is the minimization version of de Jaenisch’s question, and is what we will focus
on in Chapters 2 and 3. Chapter 2 will focus on the case of regular graphs with large degree and
Chapter 3 focuses on independent domination number in directed graphs. In Chapter 4 we will
move to discuss a different variation of domination, called split domination in directed graphs. A
set of vertices S C V(G) is a split dominating set if it is both dominating and its removal leaves
the graph disconnected. We will take this notion into the setting of directed graphs and build the
notion of a split domination sequence of a directed graph.

Finally, in Chapter 5 we will employ the method of flag algebras to answer a question on the
inducibility of a graph. To introduce this question, we need several more definitions, but technical
definitions and description of the method will be discussed in that chapter. We say that a graph G
is a subgraph of a graph H if there exists an injective function f : V(G) — V(H) such that for every
edge {u,v} € E(G), {f(u), f(v)} € E(H). We say that a subgraph is induced if there exists an
injective function f : V(G) — V(H) such that for every edge {u,v} € E(G), {f(u), f(v)} € E(H)
and for each non-edge {z,y} ¢ E(G), {f(z),f(y)} ¢ E(H). For a host graph H and potential
subgraph G, we may be interested in finding the number of mappings which testify that it is a
subgraph or induced subgraph. As the host graphs grow in size, the simple number of mappings
becomes less clearly informative so we focus instead on the density with which the mapping satisfies
the conditions. In particular, way say that the density of G in H is the number of distinct mappings
which testify that G is a subgraph (or an induced subgraph) divided by the total number of injective
mappings. We will denote the density of G in a graph H as di(G), and when context is clear we will
drop the subscript corresponding to the host graph. Often we think about this as a probabilistic
approach: “if T were to pick |V(G)| vertices at random, how likely is it that those vertices are
isomorphic to G?” We may now state the one of the driving questions behind extremal graph

theory in a general form.



Question 3. For a given graph G, which graphs with n vertices maximize the density of induced

copies of G?

One of the most famous results is due to Turdn, which is one of the first theorems which began
the field of extremal graph theory. Turan determined the graphs that maximized the number of
edges while also forbidding induced complete graphs (or clique). We say a graph G is a complete
graph (or clique) if for all u,v € G, {u,v} € E(G). A complete graph on n vertices will be denoted
K,.

Theorem 1 (Turdn’s Theorem). Let G be a graph on n wvertices that contains no Kyi1 as a

subgraph. Then G contains at most %”—22 edges.

This theorem can be viewed as an answer to the following optimization question: What is the
maximum number of edges in a graph on n vertices which has dy(K,4+1) = 07 Several general-
izations of this theorem exist, the most famous being a result of Erdés and Stone which uses the
chromatic number to determine the maximum number of edges a graph can contain before any
graph G must appear as a subgraph. The theorem of Erd6s and Stone still has its limitations,
namely that for bipartite graphs the bound is not terribly meaningful. Advances toward under-
standing the extremal nature of bipartite graphs continue to be of significant interest in the field.
One property that one might be interested to find is which graphs are maximized simply by bigger
versions of themselves? To formalize this question, we define the iterated blow-up of a graph G
as follows: For each v € V(G), replace V' with several vertices {v1,va, ... ,v|V(G)|} all adjacent to
the same vertices as v, and such that {vi,v2,...,vy(g)} is isomorphic to G. Call this new graph
(1 and we can repeat this process, replacing each vertex with a copy of G as many times as we
like to create graphs Ga,Gs, ..., G,. Each of these graphs is what is called an iterated blow up of
G. We will say that a graph G that has its density maximized only the iterated blow ups of G
are called fractalizers. This turns out to be the natural formalization of our question due to the
surprising theorem of Fox, Huang, and Lee [19] which states that almost all graphs are fractalizers.
The peculiarity of this result is that it uses random graphs, which means that the only known

fractalizers are the empty graphs (graph with no edges) and complete graphs. In Chapter 5 in joint



Figure 1.1 The Net Graph and a Blow Up of the Net

work with Michael Philips, we sought to find another fractalizer (see Figure 1.1). We will instead
show that the net is not a fractalizer, but for certain graph sizes, the iterated blow up is the only

maximizer for the density of the net.



CHAPTER 2. INDEPENDENT DOMINATION IN REGULAR GRAPHS

2.1 Introduction

In this chapter, we explore independent domination in regular graphs, proving that there exist
finite graphs G with independent domination number arbitrarily close to |V(G)|/2 which are not
complete bipartite graphs. The study of independent domination in regular graphs began with a
result of Rosenfeld [37] which showed that in any regular graph, the largest independent dominating

set is of size at most |V (G)|/2. Indeed this bound is achieved by the complete bipartite graph K nn,
but if we exclude complete bipartite graphs, the question becomes more interesting. Let ¢, denote
the supremum of i(G)/n taken over all connected r-regular graphs G of order n except K, ,. Note
that ¢, < 1/2 for all r by the theorem of Rosenfeld. It has been proven that c3 = 2/5 [30, 12]
and it can be shown the cy = % Further problems have been considered with different classes
of forbidden graphs beyond just the complete bipartite graph. This problem is motivated by a

question of Goddard and Henning from 2013 [22].

Question 4 ([22]). Is it true that ¢, tends to 3 asr goes to 0o ?

2.2 ¢, as r Approaches Infinity

In this section we expand on the results of P.C.B. Lam et al. (On independent domination
number of regular graphs) [30] in which they prove that for all € > 0, there exists some r > 0 such
that ¢, > 51—

We notice first that there are some simple results that suggest that Question 4 should be

answered affirmatively. It is known that ¢, is, in some very weak way, non-decreasing.

Theorem 2 ([22]). For all positive integers r and s, ¢ys > ¢;.



Figure 2.1 The Graph K§75

Theorem 3.

lim (¢,) = 1/2.

00

We will prove the theorem by producing a family of graphs F such that for every € > 0, there
exists G € F such that i(G)/n > % — &. The construction of F hinges on the following seemingly
odd lemma. For all r > k, let Kﬁr be the graph K, , with the edges of a star with £ — 1 leaves

removed.

Lemma 1. Any independent set of Kffir with S being the star removed which dominates all vertices

of degree r is a subset S containing the center or has order > r —k — 1.

Proof. Notice also that any subset of S containing the center is such a set. Let D C S not containing
the center. We notice that D is not a dominating set of all vertices of degree R since r > k.

Let R be the vertices in Kff’T having degree r.

Let the bipartition of K,, be {X,Y} and without loss of generality, let the center of the star
removed be in X. Suppose x € X \ v is in an independent dominating set. Since z is adjacent
to all vertices in Y, we must select all vertices of X to dominate X, so any such independent set
dominating R has size r — 1. Suppose instead that y € Y\ (SNY') is in the independent dominating
set. Similarly y is adjacent to all vertices in X so all of Y\ (S NY) must be chosen, so any such
independent set dominating R has size r — k — 1.

To see the second part of the lemma, we note that by this proof if any vertex not from the star

is chosen, the independent set dominating R must be of size at least » — k — 1. O



Figure 2.2 The Graph G5 4.

We now construct the family F as follows. Let » > k > 2 with k even. We begin with K} and
let M be a perfect matching of Kj. For each vertex v € Kj we add 2r — 1 additional vertices,

» where v is the center of the star removed. In each K,’ir we see that all

inducing a copy of Kff
vertices have degree r except those which are not adjacent to the center of the star removed. Using
the matching M, we now add a matching between the vertices missing one degree to those in the

corresponding Kﬁr from the matching. The constructed graph G} is now r-regular.
Proposition 1. G, is an r-regular connected graph of order 2rk.

Proof. Easy to see order. Looking at Kff’T subgraphs, we see most vertices are r regular, those
involved in stars as the center gain k — 1 degree from the complete graph. Vertices involved as
pendants of the star are paired off using the matching to regain the one deficient degree.

To see that the graph is connected, we note that since r > k there exists a vertex in each Kfm

adjacent to the complete graph, and Kﬁr is connected, hence the entire graph is connected. O
Lemma 2. Forr >>k, i(Gyy) > k+(r—k—-1)(k—1).

Proof. We observe first that by construction, at most one induced copy of Kff’r can achieve an
independent dominating set of size k. By Lemma 1, any set of size < r — k — 1 that is independent
and dominates the vertices not involved in the removed star contains the center of the star. Hence,

to maintain independence, at most one induced copy of Kfﬂﬂ has a dominating set of size k. Notice



also that for each of the remaining induced Kﬁr, we must dominate the vertices of degree R which
are adjacent only to vertices in the induced Kfm. By Lemma 1, such an independent dominating
set must have size at least r — k& — 1.

Therefore i(G, 1) > k+ (r —k —1)(k — 1), as desired. O
Theorem 4. c, tends to % as r — 0.

Proof. Let € > 0. We seek to find a regular graph G such that i(G) > % —¢. Let k > é, r > k2.

Then

CT>Z(GT,I€)

- 2rk
E+(r—k—-1)(k—-1)

- 2rk
rk+2k—r—k> —k+1
- 2rk

T T T T TN
AR R AN
Sl e e e & &
-2 2 2 2 2
1

>§—5.

O]

We note that with this, the question of Goddard and Henning [22] is resolved. We see though,
that as a limit argument, this answers the question of independent domination ratio in large graphs.
It remains to get a better understanding of independent domination in the context of graphs with

fixed regularity r for specific small values of r.

2.3 Graphs with Fixed Regularity

We continue this chapter with a brief discussion of the construction technique which was used
above roughly based on the ideas of the construction above. That is, given a regular graph G, we
can construct a graph of higher regularity by replacing each vertex with a copy of a graph close to

a complete bipartite graph.
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Figure 2.3 The Graph Gs.

We will construct a connected r-regular graph G, for each r > 2. First let G be some k
regular graph for k& < r. For each v € V(G), replace v with 2(k — r) + 2 vertices labeled
{vo,v1,.. ., Va—r)42}. Add edges between v;,v; € {vi,v2,...,vpk—r)+2} if and only if i # j
mod 2. and make vy adjacent to all vertices v was adjacent to as well as all odd labeled vertices
in {va(k—r)42s - -+, V2k+2, Vor+1}. We notice that all vertices in {v1,v3,vs,...,vox—1} are one degree
short. Repeat this process for all vertices in G. To fix this, we note that there must be an even
number of total vertices missing degree 1, therefore we can find a matching between them (such
that no two vertices in the same vertex image are paired). Note that this construction is how the
previous section was proven, using the base graph as Kji. Below we provide an argument with a
more simple construction which gives a lower bound general r for small r.

Begin with three disjoint copies of K, , — e, call them H; for ¢ € {1,2,3}. Pick one vertex in
H with degree 2, and add an edge to a vertex of degree 2 in Hs, then do the same for Hs and Hj
and the same for Hs and Hp. Notice that there will always be a vertex of degree 2 to pick in this

process since we pick exactly 2 vertices of degree 2 from each H;.

Lemma 3. For each subgraph H = K, ,—e in G, any independent set dominating vertices of degree
r contains either 2 or > r — 1 vertices of H. Furthermore, the only such set of size 2 is the vertices

incident to the removed edge.

Proof. Let x. and y. be the vertices incident to e in part X and Y respectively. If x € X — x. is

chosen, it is adjacent to all of Y, hence no vertices of Y can be chosen and be independent of x,
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so at least r — 1 vertices must have been chosen to cover X — x., so at least » — 1 vertices must
be chosen. Similarly if a vertex of y € Y — g, is chosen, at least » — 1 vertices must be chosen.

Otherwise z., y. are chosen as the dominating set. ]

Lemma 4. If in a subgraph H = K, — e, an independent dominating set of order 2 is chosen,

each remaining subgraph must have at least 2(r — 1) vertices chosen.

Proof. Suppose 2 vertices are chosen in H. We look at the two adjacent copies of K, , —e subgraphs.
By construction, each is forbidden from taking an endpoint of missing edge, so by above lemma,

each requires at least 7 — 1 vertices to be chosen. O

Corollary 1. For all T, ¢, > %

Proof. By the lemmas above i(G,) > n/3 and is r-regular. O

2.4 Conclusion

Theorem 4 provides a lower bound for ¢, for large r, but it remains to be seen what the best
possible bound is for a fixed r. In fact, a significant portion of the study of ¢, has been dedicated
entirely to fixing a single r value and trying to find the exact value. As such, it would be interesting

to determine an upper bound for ¢, which matches some construction.

Question 5. Does there exist an integer ng such that for any connected graph G on n > ng vertices

other than complete bipartite graphs, i(G) < 2n?

I suspect that this is not the optimal construction for any r, though it does have the same limit
as the known best upper bound. There is only one known three regular graph witnessing the bound
of 2/5 and upon forbidding this graph (like the complete bipartite graphs) what better bounds can
be found. The current state of the art is that cg3 = 2/5, and there is a standing question for a
modified version of ¢3 by Goddard and Henning where instead of forbidding only the complete

bipartite graph, also C5[K> is forbidden.
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Conjecture 1 ([22]). If G is a connected cubic graph on n vertices other than K33 and Cs0K>
then i(G) < 3n/8.

Goddard and Henning made this conjecture upon finding an infinite family of 3-regular graphs
with i(G) = 3n/8. In particular, it would be interesting to find an infinite family of graphs which
all have the same ratio, and a matching upper bound for graphs forbidding some finite number of
anamolous graphs (like C40K53). The first step which would need to be answered is if such a goal

can even be achieved. That is, does there exist an infinite family of 3-regular graphs {G;}°; such

that i > Jel ang JOO > ¢ > 2 for all k.

A remaining open question for further research in this field is to determine ¢, for small 7.
Namely, the value of ¢4 is still unknown, and cs has largely been untouched. The best known
conjecture for ¢4 is 3/7 which was found by an exhaustive search of all graphs up to around twenty
five vertices [22]. It would also be interesting to find an analogous construction to that of Goddard

and Henning’s 3-regular construction of an infinite family to provide a lower bound on ¢4 which

cannot be lowered by forbidding a finite number of graphs.
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CHAPTER 3. INDEPENDENT DOMINATION IN DIRECTED GRAPHS

After this research was conducted, it was determined that independent domination had been
studied under a different name (kernels of directed graphs) and has a long history. We will keep
our discussion as some of the methods of proof are short and unique, and a discussion of what has
been contributed to the field is included in the conclusion, as well as what results in this chapter
are known to have been proven before.

Both the dominating set problem and independent set problem have been studied extensively
in graphs. Independence has been widely studied for its relation to chromatic number, while
domination has a deep relationship with communication in networks. The study of sets that are
both independent and dominating (or independent dominating sets) has history dating back to
1862, when de Jaenisch [11] asked for the minimum number of non-attacking queens which can
be placed on a chessboard such that every other square is threatened. We note also that both
independence and domination are classic examples of N P-complete problems, as is finding the
smallest independent dominating set [21]. It has been proven that determining the minimum size
of an independent dominating set is N P-complete even in restricted families including bipartite
graphs or line graphs [31, 42, 10]. The minimum size of a dominating set is used as a measure
of efficiency of backbones for communications networks, and independent domination can be used
for communication networks in which interference or fading can occur. Further results include
Nordhaus-Gaddum type results [22, 24], and results for claw-free graphs [1], as well as random
graphs [12]. For a thorough survey of the history and results in independent domination theory,
we direct the reader to the paper [23].

In directed graphs independence is no different from the question in undirected graphs. On
the other hand dominating sets are drastically affected by direction. There is a long history of

dominating set problems in directed graphs, but frequently they are restricted to certain families
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of graphs. In particular, domination in tournaments has been studied for decades, including ques-
tions of Erdds [14] and Gyérfas [32]. More recently, Caro and Henning [6] continued the study of
dominating set theory in directed graphs, providing some general bounds as well as relating the
directed domination number to the independence number in bipartite graphs.

In 2019, Cary, Cary, and Prabhu [7] introduced independent domination in directed graphs. This
problem has relations to finding communication points for information transmission, particularly
when information can only be sent in one direction at a time in a network. As such, they explore

the parameter with respect to oriented graphs since they correlate to ad-hoc networks [13].

3.1 Introduction

We define a directed graph D = (V, A) to be an ordered pair, where V' is a set called vertices
(V(G)) and A is a set of pairs of vertices called the edge set or arc set (A(G)). A set of vertices S
to be independent in a directed graph D if there does not exist u,v € S such that (u,v) is an arc
in D. A set of vertices S to be dominating in a directed graph D if for every v € V(G) \ S there
exists some v € S such that (u,v) € A(D). A set of vertices S to be independent dominating in a
directed graph D if S is both independent and dominating.

Cary, Cary, and Prabhu [7] provide results on certain families of graphs including orientations
of bipartite graphs and cycles as well as directed acyclic graphs. In this paper, we extend the
study of independent domination into directed graphs which allow antiparallel edges, noting that
parallel edges do not affect independent domination in directed graphs. All directed graphs will
be assumed to be finite. We will provide a result which generalizes several of the results of the
previous paper, namely determining the number of pairwise disjoint independent dominating sets,
called idomatic number, for directed graphs with certain periods. We additionally provide some
alternative, algorithmically focused, proofs of similar results to Cary, Cary, and Prabhu. We also
begin the study of time complexity of independent dominating sets, showing that determining the
smallest size of an independent dominating set in a directed graph in is N P-complete and providing

an algorithm which answers this question in O(1.26™) time when the period of the graph is not
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Figure 3.1 An Example of a IDS-Free Digraph.

one. Cary, Cary, and Prabhu also introduce the concept of idomatic number of a graph G, and
explore the parameter in some families of graphs. In the conclusion, we suggest possible avenues

for furthering the theory of independent domination in directed graphs.

3.2 A Greedy Heuristic

In this section we will provide a simple heuristic for finding an independent dominating set,
which gives some short alternative proofs to those given in [7]. Our goal throughout this section
is to provide a tool for determining the existence of an independent dominating set in a directed
graph, with the goal of classifying graphs which contain no independent dominating set which we
call independent dominating set-free (IDS-free).

Note that in undirected graphs, there always exists an independent dominating set which can
be made by greedily adding vertices until we reach a maximal independent set. In directed graphs,
this is not the case. Notice that, for example, a directed 3-cycle has no independent dominating
set.  We seek to provide conditions for when a digraph D has an independent dominating set.

In a directed graph D we call a vertex v a source if it has d™ (v) = 0. We define the source-greedy
algorithm (SGA) as follows: for D, while there exists a source in the graph, choose one to be placed

in the IDS, then remove it and all of its out neighbors. This returns a graph with no sources.
Claim 1. The vertices chosen by the source-greedy algorithm are independent.

Proof. We consider the step at which the vertex v is chosen by the SGA. Since v is chosen, it
remains in the graph, so there are no edges from previously chosen sources to v. Also v cannot

have had an edge to any previously chosen vertex, else it would not have been a source. O
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Note that with the source-greedy algorithm guaranteeing an independent set, we can now refine

our search to source-free graphs.

Claim 2. All oriented bipartite graphs have an IDS.

Proof. First we run SGA. What remains after SGA is a source-free graph. Now we may simply
take one side of the bipartition in the independent dominating set. Note that since there are no
sources and the graph is now isolate free, each vertex has at least one in-neighbor on the other side,

so by taking an entire side, either the vertex is chosen or its in-neighbor is chosen. O

Observation 2. A graph is IDS-free if and only if every execution of the SGA leaves a source-free

graph with no IDS. In particular, every vertex minimal IDS-free graph is source-free.

Proof. By contraposition, if there exists an execution which leaves a source-free graph with an IDS,
we run that execution and add the remaining IDS.
Suppose the graph has an IDS. Notice that each source must be taken in the independent

dominating set, reducing the problem to a subgraph. Repeat. O

A digraph is said to be acyclic if it does not contain any subgraphs isomorphic to a directed

cycle.
Theorem 5. Fvery Directed acyclic graph contains an independent dominating set.

Proof. Consider a topological ordering of the vertices. The source greedy algorithm will provide an
independent dominating set, since at each stage that a vertex set is removed, no cycles are created
and we have reduced the problem to another directed acyclic graph. Since every directed acyclic
graph contains a source, this process will only terminate when no vertices remain, namely every

vertex was either chosen, or was deleted by a chosen vertex which dominates it. O

Corollary 2. Fvery oriented tree contains an independent dominating set.

We now build to the main theorem, expanding the source-greedy algorithm to strongly connected

components of a graph. Call a graph G vertex minimal IDS-free if D has no IDS and for every
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subset S C V(D), D\ NT[S] has an IDS I such that I N (N~(S5)) = 0. We define vertex minimal
in this way as a generalization of the source-greedy algorithm, where S is acting as a source which

can be removed.
Theorem 6. Any vertexr minimal IDS-free digraph is strongly connected.

Proof. Let D be a vertex minimal IDS-free digraph. Consider the strongly connected components
of G. The reduced graph generated by contracting the strongly connected components is acyclic,
hence there exists a source vertex. The strongly connected component corresponding to this source
vertex, C, can be dominated only by other vertices in C. If C has an IDS, then G — C U (NT[C])
has no IDS, else G has an independent dominating set. Otherwise, C' has no IDS, a contradiction

with minimality of D unless D = C. O

Claim 3. Fvery vertex in a strongly connected digraph has at least one in edge and at least one

out edge.

Proof. Clear, since if a vertex has d™ (v) = 0 there does not exist a path from v to any other vertex,

and if d~(v) there does not exist a path from any other vertex to v. O

Since odd cycles are a problem for independent domination, we explore the digraphs with specific
periods. We define the period of a digraph D to be the greatest common divisor among all lengths
of directed cycles which appear as subgraphs in D. As convention, we will say that the period of a
directed acyclic graph is 0.

We now introduce some tools of linear algebra, which will come in handy for the next proof.
For a directed graph D on n vertices, we define the adjacency matriz of D, Ap (or just A if context
is clear) to be the n x n matrix with (7, j) entry 1 if (¢, j) € A(D) and 0 otherwise. We say that a
square matrix is irreducible if it is not similar via a permutation matrix to a block upper triangluar
matrix. The following well known theorem is a fundamental result of spectral graph theory, relating

linear algebra and directed graphs:

Theorem 7 ([25]). A directed graph G is strongly connected if and only if Ag is irreducible.
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Perron-Frobenius theory provides a deeper relationship between graph and digraph properties
and their respective adjacency matrices. For more information about this relationship, we direct
the reader to the textbook [25]. In particular, the period of a strongly connected digraph creates

rich structure in the adjacency matrix, as evidenced by the following theorem.

Theorem 8 ([20]). If G is a digraph with period h > 1, there exists some permutation matriz P

such that PAP~1 is a block matriz

0 A O 0
Ao
PAP 1= | : 0
0 Ap—q
A, 0 . 0

where each diagonal block is square zero matriz.

We notice that this provides a way to partition our digraph D into h independent sets, which we
will call Sy, ...Sp_1 corresponding to the vertices of the diagonal zero blocks. With this structure

theorem, we may now prove the main theorem of the paper.

Theorem 9. FEvery strongly connected directed graph with even period has an independent domi-

nating set.

Proof. If D has period h, as above the graph can be partitioned into h independent sets Sy, ..., Sp_1
such that there exists an edge from u to v only if u € S; and v € S; 41 for some i € [h] with addition
modulo h. Therefore, we can create an independent dominating set by taking all S; such that i is
even (or odd).

To see that this set is indeed an IDS, since we take only independent sets of the same parity,
and h is even there are no parts which are taken that share any adjacencies. Furthermore, since
every vertex has at least one in degree, we observe one vertex v. Either v is included in the set, or
it is in S; which is not included and has at least one in degree from S;_1, say from u. But if S; is

not included in our set, S;_1 is included in our set, hence w is in the set and dominates v. O
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Corollary 3. If G is vertex minimal IDS-free, G has odd period.
Corollary 4. FEvery oriented bipartite graph has an independent dominating set.

Cary, Cary, and Prabhu [7] define the maximum number of vertex disjoint independent dom-
inating sets in a digraph G as the Idomatic Number, written id(G). We note that Corollary 4
was proven in this paper as they worked towards determining graphs with ¢d(G) = 1. Our proof

provides a bound for the idomatic number of digraphs with even period.

Corollary 5. FEvery strongly connected digraph D with even period has id(D) > 2.

3.3 Vizing’s Conjecture

In this section, we show that the analogous statement to the famous Vizing’s conjecture does
not hold with independent dominating sets. Vizing’s conjecture is about the relationship between
domination number (the smallest size of a dominating set of a graph G, v(G)) of graphs with their
Cartesian product.

We define the Cartesian product of directed graphs with vertex set V(G) x V(H) with edges

defined by :

A(GOH) = {(z,u)(y,v)|zy € A(G) and u = v or uv € A(H) and = = y}
Conjecture 2 (Vizing [40]). For any undirected graphs G and H, v(GOH) > ~(G)y(H).

This also has an analogous conjecture in independent domination, asked by Goddard and Hen-
ning, which would imply Vizing’s conjecture. For the independent domination number, the small-
est size of a dominating set of a graph G, denoted i(G). Vizing’s Conjecture is altered in the
case of independent domination since it has been proven that there exist graphs G, H such that

i(GOH) < i(G)i(H) [4].
Conjecture 3 ([4]). For any undirected graphs G and H,

i(GOH) > min{i(G)y(H),y(G)i(H)}.
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Figure 3.2 The Graphs W3 and P'.

We will show that the possibility of a directed graph containing no independent dominating
set will provide examples that ensure that no such inequality holds in directed graphs. One may
wonder how to define the independent domination number for directed graphs without independent
dominating sets. Some natural candidates for G IDS-free would be i(G) = 0, i(G) = n + 1, or
i(G) = oo. The following corollary shows that the direct translation of the conjecture of Goddard
and Henning into directed graphs cannot hold regardless of which convention is chosen. In the case
that i(G) = 0 is chosen, Claim 4 provides a family of counterexamples, and in the other two cases
Claim 5 provides a family of counterexamples.

To provide a family of directed graphs which contain independent dominating sets whose Carte-
sian product does not contain an independent dominating set we define the following graphs. Define
W/ to be a directed wheel on n+1 vertices in which the center vertex is dominating and the outside

cycle is directed. We define P’, as an oriented paw with directed edges as in Figure 3.3.
Claim 4. W/OP’ is IDS-free for all n odd.

Proof. Let n € Z be odd. We notice that both W) and P’ have unique independent dominating
sets by following the source greedy algorithm. Let the dominating vertex of W, be vy Also, in
W/P', the copy of P’ that appears in place of the dominating vertex of W, must be dominated
only by vertices of the form (v4,u) for some v € P’. Hence the unique dominating set of P’ must
be chosen for this copy of P’. Therefore, all copies of the dominating set of P’ around the cycle
cannot be included in an independent dominating set.

We now look at the strongly connected components of the graph induced by the vertices which

have yet to be dominated. There are two strongly connected components, both of which are cycles
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on n vertices. One of these vertices acts as a source in the directed acyclic graph created by
contracting strongly connected components, hence it must be dominated only by vertices in its own
strongly connected component. This is impossible, since it is an odd cycle which is known to have

no independent dominating set. O
Claim 5. C,,00C,, where n is odd contains an independent dominating set.

Proof. Let n be odd. It has been observed that each directed odd cycle does not have an independent
dominating set. It remains to provide an independent dominating set for C,,[JC,,. Label the vertices
of one V(C,) = {vg,...,vn—1} such that (v;,v;+1) € A(G) with addition modulo n, and for the
other copy of Cy,, V(C,) = {uo, . .., un—1} similarly. We construct an independent dominating set of
CnOCy, as D = {(vi, ui125)|0 <i<n—1 modn,0<j < [5]}. Tosee that the set is dominating,
we notice that for any 0 < i <4, (v;,u;) and (v, uj+2) dominate all (v;,uy) for i <k <i+n—2]
mod n, leaving only (v, u;—1) not dominated. But we have that (v;_1,u;—1) € D which dominates
(vi,ui—1). Therefore D is dominating. For i fixed, we have {(v;, u;42;)[0 < j < [ 5]} is independent
since edges occur if and only if (ug, ue) € E(C,,), but we have only taken vertices of the same parity,
without taking a full trip around the vertex set. That is, in each v; we take only vertices (v;, u;)
where i = j mod 2. Hence, vertices (v;, u;) and (vi41, ur) we have no edges, since j # k. Therefore

D is independent, thus an independent dominating set. O

Theorem 10. There exist infinitely many pairs of graphs (G, H) such that
I(GUH) > min{i(G)y(H),v(G)i(H)}
and infinitely many pairs of graphs (G', H') such that
i(G'OH') < min{i(G')y(H'),v(G")i(H')}.

Proof. This is a direct consequence of Claims 4 and 5. O
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3.4 Time Complexity

We note that finding the size of an independent dominating set in undirected graphs is a well

known N P-complete problem, for example it is proven in the textbook of Garey and Johnson [21].

Theorem 11 (Garey and Johnson [21]). Given a graph G and constant k, determining existence

of an independent dominating set S such that |S| < k is N P-complete.

Corollary 6. Given a directed graph D and constant k, determining existence of an independent

dominating set S such that |S| < k is N P-complete.

Proof. Suppose that we have some oracle f for directed independent dominating sets. For G, an
undirected graph, we may create a corresponding directed graph by replacing every edge with a
pair of antiparallel edges, creating a graph G’. We run f on G’. By returning whichever result
comes from running f on G’, we have answered the problem for the undirected graph G. We see
this, since S is an independent set in G if and only if S is an independent set in G’ by construction.

Also S is an dominating set in G if and only if S is an dominating set in G’ by construction.  [J

We notice that the existence of an independent dominating set in a graph G of order n is
equivalent to determining if there exists an independent dominating set of order at most n. In
particular, this problem is trivial for undirected graphs since all graphs contain an independent
dominating set. We seek to determine if for directed graphs determining the existence of an

independent dominating set S such that |S| < n is N P-complete.
Claim 6. Given a directed acyclic graph D, determining the existence of an independent is in P.

Proof. By the proof of Theorem 5, we provide an algorithm that is polynomial in time. O

Theorem 12. Given a directed graph D with even period h, determining the existence of an

independent dominating set is in P.

Proof. Since we know the period of D is h, we can construct h independent sets using breadth first
search by creating layers modulo A (that is, the h'" layer is the same as the first vertex chosen in

O(n?) time. Then we select all vertices in even layers as our independent set. O
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We note that the period of a digraph can be determined in polynomial time, as proven by Jarvis

and Sheir [27].

Theorem 13. There exists an 0(2%) algorithm for determining the existence of an independent

dominating set in a graph D of period h.

Proof. Similar to the above proof, we may partition the vertices of D into h independent sets
S0, - - -, 9p—1 such that edges follow cyclically. We note now that if A is even, we have an independent
dominating set, so we may assume that h is odd.

Let S be the smallest independent set in our partition of the vertices, then |Si| < 7. We notice
now that the selection of vertices in one part forces the structure of the rest of the independent
dominating set. That is, let D be an independent dominating set of G, then D is the union of
S;ND, Siy1—NT(S;ND), Sixo— NT(S;11 — NT(S;N D)), dots. Note that this observation gives
us that S;_; — (S;—1 N D) € N~ (S; N D). In particular, we may search among only the smallest
independent set for the independent set giving the desired bound. Since there are h parts, there
exists at least one part of size at most n/h, and a brute force search among each of the subsets of

these vertices will be O(27%) time. O

Corollary 7. For any digraph D with period h # 1, there exists an O(1.26™) algorithm to determine

existence of an independent dominating set.

Proof. The algorithm provided in the proof above for odd degree is h = 3, yielding an O(2§) <

0O(1.26™) algorithm, since directed acyclic graphs and graphs with even period are in P. O

3.5 Additional Constructions

One may wonder if all graphs with odd period have no independent dominating set. We now
provide examples for each odd period of infinite families of graphs which have independent dominat-
ing sets and which do not have independent dominating sets. We start with a few lemmas to work
toward constructions of infinite families of graphs with specific period that contain independent

dominating sets, and that do not contain independent dominating sets.
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Lemma 5. Let D be a digraph with odd period h and vertex partition Si,...,Sy such that for
every edge (u,v) € A(D), u € S; and v € Si11 for some i € [h] with addition modulo h. Every

independent dominating set I has S; NI # 0 and S; NI # S; for alli € [h].

Proof. Let D a digraph with odd period h and S; be as in the statement of the theorem for
1 <i<h. If h=1, the statement is clear.

Suppose h > 1 and assume for contradiction that there exists some S; such that S; N T = (.
We notice that the only vertices which can dominate the vertices of S;11 are in S; or the vertices
themselves. Therefore, S;;1 N1 = S;11. Since the digraph is strongly connected, every vertex in
Si+2 has a neighbor in S;;1, hence S;12 NI = (). By a similar argument, we see that S;, o NI =10
for all [, with addition modulo h. Since h is odd, for each 1 < j < h there exists some k such that
S; = Sitor. Therefore S; NI = () for all 1 < i < h, a contradiction with I being an independent

dominating set. The argument that S; NI # S; is similar. O

This lemma gives us a simple way to create infinite families of graphs which do not contain
independent dominating sets for each period. Namely, any strongly connected digraph with odd
period A in which the decomposition into h independent sets has at least one set of size 1 cannot
have an independent dominating set. We seek to find a family more rich in structure which has no
independent dominating set, which will lead to a very similar family that does contain independent

dominating sets.

Lemma 6. For each odd integer h > 1, there exists an infinite family of graphs F with period h

such that for all D € F, D is independent dominating set-free.

Proof. We will construct a graph Dy, with period h for any 2 < k which has no independent
dominating set. We will use the fact that since D has period h, it can be partitioned into h
independent sets S, ..., S,—1 such that for all edges (u,v), u € S; and v € S;11 for some 0 < i <
h — 1 with addition modulo h. We will create Sy, ..., S,_1 as such a partition. Let k > 2.

We create a special graph for the case h = 3. Let the vertices of Sy be k vertices labelled 1 to

k, the vertices of S7 be all subsets of [k], and the vertices of Sy be a copy of the vertices of S;. We
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draw edges between u € Sy and X € S if and only if v € X, between X € §; and Y € 55 if and
only if X =Y, and between Y € Sy and v € Sy if and only if v € Y.

Let h > 3. Let Sy be k vertices, labelled 1 to k. Define S; to be all nonempty and not full
subsets of [k]. With edges from u € Sy to X € S; if and only if u € X. Then Sy is a copy of S; with
edges from X € S; toY € Sy if and only if X =Y. S3 will have k vertices, again labelled from 1
to k, with edges (Y,v) from Sy to Ss if and only if v ¢ Y. For each j < h — 3 odd, the vertex set
of S; is k vertices labelled 1 to k, and Sj;1 will have vertices corresponding to subsets of [k] with
edges from ¢ € Sj to Z € Sj1; if and only if ¢ ¢ Z and edges Z € Sj;1 to m € Sj1o if and only if
m ¢ Z. For the final independent sets, we follow that Sj_s is a set of size k labeled from 1 to k,
create Sp_1 as all subsets of [k], with have edges from u € Sj_9 to X € Sj,_; if and only if u € X,
and finally from Y € S,_; to v € Sp if and only if v ¢ Y. See Figure 3.5 for an example of Ds 3.

For any independent dominating set I, we claim that |So N I| = 1. Suppose for contradiction
that |So N I| > 2 without loss of generality we may assume that Sy NI D {1,2}. Then S1 NI
is contains all sets which contain neither 1 nor 2. Then we have that S3 N D is all sets which
contain either 1 or 2, in particular, both the set 1 and 2 are in the dominating set, and in Sy 1,
and 2 dominate Sy since 1 does not contain 2 and 2 does not contain 1. Therefore Ss N D = 0. A
contradiction with Lemma 5. Indeed, |Sop N D| = 1.

Since all vertices of Sy are the same up to isomorphism, and every independent set must have
nonempty intersection with the dominating set, we may assume that Sy NI = 1. Therefore in Sy,
only vertices not containing 1 can be in the dominating set. Hence in every vertex in S3NJI contains
a 1. Therefore Sy N D must contain 1, and S5 N D must contain only vertices which have a 1. So
S4ND = 8442;ND =1and S3ND = S3;9; N D is all subsets which contain 1 for all j such that
34+2j < h—2. At S;_5 we have edges from a k set to subsets by inclusion, hence S;_1 N D is
all subsets not containing 1. But these subsets all point to 1 which is assumed to be in the set, a

contradiction with D being independent. Therefore no independent dominating set exists. O
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Figure 3.3 The Digraph Ds 3.

By altering this construction slightly, we instead get a nontrivial family of graphs with odd
period which contain independent dominating sets. This shows that only knowing the period of a

graph is not sufficient for determining existence of an independent dominating set.

Lemma 7. In a directed graph D with odd period h and decomposition into independent sets
S0y, Sp—1 such that vertices in S; are adjacent only to vertices in S;11 with addition modulo h,

an independent dominating set I is defined entirely by S; NI for any 0 <i¢ < h —1.

Proof. Suppose that we have a digraph D with period h decomposed as in the statement, and we
have S; NI = X for some X C V(D). Notice that the only vertices which can dominate S;i;
are vertices of S; or vertices of S;y1. Therefore, any vertex in S;y1 \ NT(X) € I. Hence we have
determined S;11 NI = S;41 \ NT(X). By the same argument we can now construct S;12 NI, and

taking one step at a time S;; for any 1 < &. 0

Theorem 14. For each h, there exists an infinite family of graphs G with period h such that for

all G € G, G has an independent dominating set.

Proof. We follow the construction in Theorem 6, but instead draw edges by from u € S,_o to Sp_1

if and only if u ¢ S. We note then that the independent dominating set defined by So N D = 1
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is an independent dominating set. In particular, we see that from S3 onward, we alternate S; N D

between the set 1, and the set of all subsets not including one based on parity. O

3.6 Conclusion

In this chapter, we expanded on independent domination theory in directed graphs by providing
a generalization of several of Cary, Cary, and Prabhu’s original results, by showing that directed
graphs with even period have independent dominating sets and allowing anti-parallel edges. We
prove that for certain classes of graphs, the existence of independent dominating sets is in P, and
provide an exponential time algorithm for the class of graphs with odd period greater than 1. We
finally provided constructions of graphs that show that the directed analogue of Vizing’s Conjecture
for independent dominating sets does not hold.

We determined after this research that independent domination in directed graphs has been
of interest in the field of computer science and has a long history. As such, we direct the reader
to a survey by Boros and Gurvich [3]. With this discovery, we have found that the existence of
independent sets in graphs with even period was proven by Richardson [36]. Additionally, Chvétal
proved that determining the existence of an independent dominating set is N P-complete [8] in
general but special classes of graphs have been a rich area of study since this result. We note that
some results of this research are still best known, including the time complexity result for finding
an independent dominating set in graphs with period greater than 1. Additionally, it appears
that since kernels were not introduced with respect to independent domination, the discussion of
Vizing’s Conjecture maintains relevancy, and provides an important avenue for continued research.

There are many significant questions which arise from this research. An important direction of
study for the independent domination in directed graphs is the idomatic number. We wonder also
under what restrictions an analogue of Vizing’s Conjecture that might hold, for example forcing
that all graphs and their Cartesian products contain independent dominating sets. Finding classes

of graphs which do not satisfy Vizing’s Conjecture despite the existence of independent dominating
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sets would be a very important result, or determining other additional conditions on the structure
of directed graphs under which we can prove Vizing’s Conjecture is a rich area for study.

As Cary, Cary, and Prabhu suggest, studying how the reversal or addition of a single edge can
alter the idomatic number, which is of interest because of the application of independent domination

in ad-hoc networks.
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CHAPTER 4. SPLIT DOMINATION IN DIRECTED GRAPHS

4.1 Introduction

A set S will be called a split dominating set of G if S is dominating and V' \ S is disconnected.
This was defined in 1997 by Kulli and Janakiram [29]. Continuing in the style of Chapter 3, we
will be taking this well studied domination parameter and considering it in the context of directed
graphs. First, we must translate the question into digraph terminology. As defined in Chapter 3,
for a digraph D = (V, A), S C V is said to be dominating if for every u € V', either u € D or there
exists some v € D such that (v,z) € D. The hurdle in translating split domination into directed
graphs is determining the meaning of disconnected. Fortunately this ambiguity in connectivity of
directed graphs is well studied, and we provide several definitions below to understand different
concepts of connectedness.

As defined in Chapter 3, a directed graph is said to be strongly connected if between any two
vertices u,v € V(G) there exists both a directed path from u to v and a directed path from v to w.
A directed graph is said to be unilaterally connected if between any two vertices u,v € V(G) there
exists either a directed path from u to v or a directed path from v to u. A digraph is called strictly
unilaterally connected if it is unilaterally connected but not strongly connected. A directed graph
is said to be weakly connected if the underlying graph is connected. A digraph is called strictly
weakly connected if it is weakly connected but not unilaterally connected.

Due to these three distinct notions of connectivity, we see that there is some ambiguity in
defining the split domination number of a digraph. We will now instead consider split domination
sequences SDS(G) = (s1, s2,s3) where s is the size of a smallest dominating set whose removal
makes G unilaterally connected, so the size of a smallest dominating set whose removal makes G
weakly connected, and s3 the size of a smallest dominating set whose removal makes G disconnected.

We define the strict split domination sequences SSDS(G) = (s1, s2, s3) analogously, where instead
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require strictly unilaterally connected and strictly weakly connected graphs after vertex removal.
For each of these parameters, we seek to determine which sequences are possible split domination
sequences and iterated split domination sequences.

As an aside, we recall that sequences in this vein have been studied in the past. Namely the
domination sequence (y(G),i(G),ir(G),a(G)) was studied by Cockayne and Mynhardt [9] where
v(G) is the domination number, i(G) is the independent domination number, ir(G) is the irredun-
dance number, and «(G) is the independence number. One of the premier theorems involving this
sequence is from Cockayne and Myndhart which states that barring a few pathological examples,
all weakly increasing positive integer sequences are domination sequences. In this chapter, we seek

the same type of result.

4.2 Strict Split Domination Sequences

In this section we seek to answer the following question:

Question 6. For what positive integer sequences s = (81,82,83) is s a strict split domination

sequence?
We will first a quick observation which rules out a pathological case.
Observation 3. No strongly connected oriented graph contains a dominating vertex.

We notice that by the above observation, there do not exist any strict split domination sequences
which have s1 = 1.

To approach this problem, we provide a construction of a directed graph which takes care of
many of the possible strict split domination sequences. Consider the following construction, D, ;.
We begin with a bowtie graph and turn the triangles into directed triangles. We blow up the central
vertex into a tournament on ¢ vertices. In one of the four remaining vertices, we blow up into a
tournament on s vertices, and we blow up the adjacent vertex into an empty graph on r vertices.
Blow up the remaining two vertices of the bowtie into complete graphs on rst vertices. See Figure

4.1 for the bowtie structure and D, ;.
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Figure 4.1 The Bowtie and D,

Claim 7. If S C D, s, has V'\ 'S is not strongly connected, then at least one full blow up is a subset
of S.

Proof. By construction, if there exists a vertex from each blow up, we may follow the bowtie

structure through the blow ups to reach any other vertex. O
Claim 8. The size of a minimum dominating set whose removal leaves D, s disconnected is t + 2.

Proof. By construction, notice that if the center K; is removed, the graph is disconnected, and this
set dominates I, and one K,4. It remains to take only two more vertices one in I, and one in K.
So there exists a set S whose removal leaves the graph disconnected of size t 4 2.

It remains to show that any disconnecting set is of size at least t + 2. Clearly if K,z is removed,
then we have removed more than ¢ + 2 vertices, so either K or I, are removed. In either case,
the graph is still not disconnected, and we must remove another blob. Say the other of the two is
removed, and the graph is still not disconnected. Must remove a full extra blob since inside the

blobs are complete graphs, so add at least ¢ vertices to the set, so it is too big. ]

Claim 9. The size of a minimum dominating set whose removal leaves D, s, strictly weakly con-

nected is s + 2.

Proof. We first show that there exists such a set of size s+3. By removing the blob K, we note that

any two vertices in I, have no directed path between them, so as long as r > 2, indeed the graph is
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weakly connected. To dominate we may take one vertex in K; and one in the K, s dominated by
K. This is a dominating set such a set as long as t > 2.

We now seek to show that this is indeed the minimum size of such a set. Note that all of K;
cannot be removed, lest the graph be disconnected, and removing an entire K, is too large. To
break strong connectivity we must remove I, which is r vertices. Now by the bowtie structure
between any two vertices in different blobs there exists a directed path between them. Between any
two vertices in the same blob, since each reamining blob is an oriented K, for some m, there is
an edge between the vertices, so more vertices must be removed to leave weak connectivity. Notice
that to break either of the above arguments, we must remove an entire blob, that is at least s more
vertices must be removed (since K; cannot be removed without leaving disconnected unless we also

remove s). So at least s+ 2 vertices must be removed. O

Claim 10. The size of a minimum dominating set whose removal leaves D, s strictly unilaterally

connected is r + 3.

Proof. Similar to other cases, removing I,., a vertex from each of K; and both K, is dominating.
Also the graph is unilaterally connected since each remaining blob is a complete graph, and the
remaining directed paw is unilaterally connected.

Note once again we cannot remove Ky, and K, is too big, so we consider removing K. We
see that the graph is not unilaterally connected since each pair of vertices in I, does not have a
directed path between them. Therefore all but one vertex must be removed from I,., but then we
have removed r — 1 4+ s vertices. Note that s > 2, so we have removed at least r + 1 vertices, but
this set is not dominating, so we must remove at least two more vertices from K; U 2K, to be

dominating, removing at least r + 3 vertices, as desired. O

Theorem 15. All integer sequences {(s1, 2, $3)|s1 > 5 and sq,s3 > 4} are strict split dominating

Sequences.

Proof. By the claims above, D, s, is a graph which has strict split domination sequence {r, s, ¢} for

allr>5,s>4,and t > 4. O
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4.3 Conclusion

In this chapter we build on the study of split domination in directed graphs which has largely
been studied in the context of special families of graphs in works similar to that of Factor, Langley,
and Merz [5, 17]. We introduced the strict split dominating sequence and we provided a partial

answer to the following question:
Question 7. What integer sequences (s1, S2,83) are strict split dominating sequences?

A confirmation or refutation of the following conjecture would require only a few special cases
to be handled, namely constructions for r < 4, s < 3, or t < 3 with the other two parameters
left arbitrary. This is the most natural conclusion to the question above, and would be interesting
to pursue. Hopefully there exists some more efficient construction which takes care of all cases

(including those answered by this chapter) but multiple different constructions may be necessary.

Conjecture 4. All integer sequences {(s1,s2,s3)|s1,s2,83 > 1} are strict split domination se-

quences.

We also note that the definition of strict split domination sequence is not the only one that would
make sense depending on our applications in a communication network. We may, for example be
interested only in reducing the level of connectivity below a certain threshold, rather than precisely
maintain a certain connectivity. Namely, we define the weak split domination sequence of a strongly
connected directed graph G as the sequence {s1, $2, $3} where s; is the minimum number of vertices
that must be removed to make D not strongly connected, so the minimum number of vertices that
must be removed to make D not unilaterally connected, s3 the minimum number of vertices that
must be removed to make D not weakly connected. There is a quick observation to be made about

weak split domination sequences.
Observation 4. All weak split domination sequences are weakly increasing.

Another potentially valuable variation of this concept would be an iterated version of the same

procedure. We may view the iteration a few ways. One perspective is that the vertex removal occurs
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in stages, beginning with removing a smallest vertex set to make the graph unilaterally connected,
then from the remaining graph removing a vertex set to leave a weakly connected graph, then finally
removing vertices to create a disconnected graph. The other view of this is to create a sequence of
vertex sets S1, 2,53 such that S; C Sy C S3 and D \ S; is unilaterally connected, D \ Sy is weakly
connected, and D \ S3 is disconnected. With this second view, we may be interested in finding the

smallest set at each step, or we may be interested in finding the smallest sum |S;| + |S2| + |S3].
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CHAPTER 5. FLAG ALGEBRAS AND INDUCIBILITY OF NETS

This chapter will serve as a light introduction to the Flag Algebra method, and in doing so we

will prove the following theorem:

Theorem 16. For graphs on 6% vertices, the unique mazimizer of the density of nets is the iterated

blow up of a net.

Recall that this research began as an attempt to find a fractalizer. We will begin the discussion
with a short observation that the net is not a fractalizer, then continue to prove Theorem 16 to show
that intuitively the net is “close to” a fractalizer. The techniques used in this paper are similar to
those used in papers by Balogh, Hu, Lidicky, and Pfender [2] in which they confirmed a conjecture
of Pippenger and Golumbic [33] on which graphs maximize the density of C5. There has been
other recent interest in determining the density maximizers for various small graphs, particularly
on graphs on less than or equal to five vertices [16, 26]. Some of the constraints of determining
maximizers are largely due to the limits of flag algebras. In the next section we will discuss the
method of flag algebras, and some of the limitations, as well as provide an outline of how the proof

of Theorem 16 will proceed.

5.1 Introduction

Recall that a fractalizer is a graph G such that the unique maximizer of density of G on graphs
of order n is a balanced iterated blow up of G for all n. Fox, Huang, and Lee [19] proved that almost
all graphs are fractalizers using random graphs, but the only known constructions of fractalizers are
the empty graphs and complete graphs, both trivial cases. It has been shown that no other graphs
on at most five vertices are fractalizers. For this reason, we begin the search among graphs on 6

vertices with the net graph. Our first observation will unfortunately end the hopes that the net is
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a fractalizer, but we will continue to prove that in some way, the net does behave like a fractalizer
once n is sufficiently large.

For the remainder of this chapter, we will focus on the net, and will refer to the vertices in the
triangle as either inner vertices or triangle vertices. We will refer to the vertices of degree one as

either outer vertices or pendant vertices.
Observation 5. The net is not a fractalizer.

Proof. We construct a graph G starting with K and for each v € V(K,) we add one vertex p,
that is only adjacent to v. We claim that G has the same number of induced nets as a balanced
blow up of the net.

First we count the number of induced nets in G. To construct the inner triangle of the net, we
must choose three vertices from the induced Ky, giving (3) options. Then each pendant vertex of
the net is entirely determined by the vertices chosen from Ky. This gives 4 induced nets.

We now seek to compare this number to one of the balanced iterated blow ups of the net on
8 vertices. This means that we may choose exactly two vertices two vertices to duplicate, and for
ease of counting, we will choose to duplicate two distinct pendant vertices, to create the graph G’
see Figure 5.1. We note that there is only one triangle in G’, so it must be chosen to induce a net.
One pendant vertex is forced by the triangle vertex with only one remaining unchosen vertex, and
the remaining two triangle vertices must get a pendant and each has two choices giving 4 unique
nets. Therefore G and G’ have the same number of induced nets.

It remains to see that GG is not a balanced iterated blow up of the net. We note that when
duplicating vertices from the net, the K4 can only be created by duplicating a triangle vertex, but
we see that none of the vertices outside of the K4 have two neighbors in the K4. Hence G is not a

balanced iterated blow up of the net, and we have shown that the net is not a fractalizer. ]

We will now begin our discussion of the Flag Algebra method to better understand why the
standard applications of the method would not be able to determine that the net is not a fractalizer.

The Flag Algebra method was developed by Razborov [34] in 2007. It has since been used for
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Figure 5.1 The Graphs G and G’

many applications including (but not limited to), discrete geometry, graph colorings, permutations,
hypergraphs, and Ramsey theory [39, 28, 35]. At its heart, the Flag Algebra machinery is a tool for
helping to solve extremal combinatorics problems. To see some of these results applications and a
survey of the method, we refer the reader to a paper of Razborov [35]. The aforementioned results
of Balogh, Hu, Lidicky, and Pfender are also based on the method of flag algebras. Our primary
goal now is to define the algebras A% for which flag algebra gets its name. Much of the following
discussion follows the descriptions of flag algebra due to Razborov [34] and Volec [41].

First we build to define an algebra A which allows us to define addition and multiplication
functions on graphs so that we can calculate linear combinations of graphs. Let F; be the set of all
distinct graphs on £ vertices, and F to be the set of all distinct graphs. We will treat F; as though
it has been given some ordering, but the ordering is arbitrary. To formalize the intuition that
densities of subgraphs H in a graph G can be found by randomly selecting |V (H)| vertices from
G and checking if they induce a graph isomorphic to H we introduce a few more definitions. Let
p(H, G) be the probability that |V (H )| randomly chosen vertices of G induce a graph isomorphic to
(. We note that in a graph G on n vertices, if we choose a graph H on k < n vertices we see that the
probability of randomly selecting k vertices gives a graph isomorphic to H can be calculated in two

ways. Either the value p(H, G) could be calculated or we could calculate Z p(H,Hp(H', G) for
H’EFk
some |V(H)| < k < |V(G)|. One interpretation of this second calculation is first we pick a graph

of an intermediate size, and then sample from the smaller graph to find a copy of H. To capture

this intuitive notion of finding the same value, we introduce the subspace K of RF as the subspace
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generated by all linear combinations of the form
H- > pHH) H
H'eF v m)

for all H, H' in F. Notice that this expression only looks at graphs on one more vertex than our
H, but using linear combinations we may fill in any gaps for larger graphs. With this definition,
we can factor out K in RF to sensibly define equivalence, calling this class corresponding to the
zero of RF. This equivalence formalizes the intuition above, that we can find the probability of
sampling a graph through taking intermediary samples. Let this factored space be called A.

We seek now to create an algebra out of A by defining addition, multiplication by a real number,
and multiplication of two elements of A. Our multiplication by a real number is naturally defined
by distributing it to all terms of any linear combination, and addition similarly as addition modulo
K. It remains to define a product of two elements of A. The intuition behind the product is
relatively natural, that is the product of two graphs H; x Hy can be calculated in a graph G as the
probability of selecting |V (Hj)| vertices which are isomorphic to H; and simultaneously selecting
|V (H2)| vertices which are isomorphic to Ha such that the vertex sets are disjoint which we will
write as p(Hy, Ho; G). To write this multiplication formally, we define

Hy x Hy = > p(Hy, Ho; H)H.

HEF (1) 1+ |v (Hy)|

This captures our intuition if we think of H in the equation as the probability of selecting H
from some large graph GG. We are now equipped with notions of all of the necessary additions and
multiplications, and as proven by Razborov [34] these definitions extend uniquely to operations on
the algebra A.

We now seek to define the desired algebra A. A labelled graph is a graph with its vertices
assigned unique integers. We will refer to these labelled graphs as types, often denoted o. The
idea behind types is to fix certain vertices that must appear in the sampled set when sampling
vertices for subgraphs and force all other vertices to be chosen from the non-labelled vertices.
When drawing labelled vertices in types, we will denote them with B. For example, we may now

count the degree of a vertex in a graph by using these types. We now define analogously to how A
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Figure 5.2 An Example of a Type and Unlabeling

R ERVARY
1 1 1 1
Figure 5.3 A Multiplication of Two Types

was constructed the set of graphs F?, linear combinations of graphs K7, and algebra A% and with
the similar operations. The one peculiarity that arises is how multiplication of two graphs in A°.
In Figure 5.3, we see how the multiplication of two edges with one labelled vertex is calculated.
Intuitively we can consider this multiplication as first ensuring that the labeled vertices are placed
in a way that induces the type, and then finding the probability of sampling the two graphs as
before.

Our goal with constructing these labelled graphs was to create inequalities regarding nonlabelled
graph densities. We now mention how to convert back from a labelled graph to an unlabelled
through a process called averaging or unlabelling. We can unlabel graphs by taking advantage of
the following idea. On one hand we may count the total number of subgraphs isomorphic to a
given graph by using A. On the other hand we may calculate it by using A% by first fixing ¢ in a
host graph, then summing across all possible vertices that could have been chosen for o. With this
observation, we can set up equalities between elements of A% and A, as demonstrated in Figure
5.3.

Finally, we will be using the positive semidefinite method in each of our proofs. This is a method
for creating inequalities which must be true in extremal examples given some conditions. The flag

algebra method can be used with the open source software Flagmatic [18]. The construction of



Figure 5.4 The Once Iterated Blow Up of the net N1

inequalities using the positive semidefinite method has been largely automated, and an in depth

discussion on the method can be found in the Ph.D thesis of Volec [41].

5.2 Nets

The following chapter is joint work with Michael Phillips. Recall that a fractalizer is a graph
whose induced density is maximized only be iterated blow ups of itself, but in Chapter 1 we proved
that the net is not an example of such a graph. In this section we will prove that in some sense,

the net is close to a fractalizer. We will prove the following theorem:

Theorem 17. For k > 1, among all graphs of size 6* the unique mazimizer of density of nets is

the balanced blow up of the net.

Our theorem largely follows the method of proof introduced by Balogh, Hu, Lidicky, and Pfender
[2], with some alterations that will be noted as we arrive at them. The basic idea of the proof is
as follows. We first use Flagmatic and the positive semidefinite method to determine an upper
bound on the possible density of nets in any graph. Since the conjectured extremal construction
is iterated, Flagmatic will give us an imperfect bound (that is, the bound will be slightly larger
than our construction). To lower this bound, we can instead check linear inequalities in A utilizing
larger graphs which contain the net. Using bound from these larger graphs, we can employ stability
arguments involving discrete optimization methods to determine that certain structures must (or

must not) exist in any extremal graph. This will allow us to narrow down (for large graphs) the
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potential extremal examples to the desired construction. In particular, we will use information on
the density of two classes of graphs, N3 and Nay. N3 is the class of all graphs in which a vertex of
the net has been duplicated twice, which is to say that two new vertices are added to a net with the
same adjacencies as a vertex already in the net. This class includes all possibilities of edges between
these three vertices, and all possible vertices that can be duplicated (up to isomorphism). N is
defined similarly, but with two distinct vertices being duplicated. Using an inequality involving
these two classes, we can show that the top level structure of the graph must be close to a net. We
then continue with several arguments to show with stability arguments that if an extremal graph
has such a structure close to a net, the structure must agree with a blow up of a net exactly on the
top level. From there, we use discrete optimization to show that each of these top level pieces must
be balanced. From there we note that any extremal example which which matches the iterated

blow up of the net on the top level must indeed be the iterated blow up.

5.3 Proof of Theorem 16

As discussed above, we begin with the basic flag algebra method to obtain the following result.
From now on, we will refer to the density of the net as IV and the density of the classes N3 and

Nag as N3 and Nog respectively.

Claim 11. There exists ng such that every extremal graph on at least ng vertices satisfies that
24
N > 1555 and

4N3 — 14.97Nog > .00071788399. (5.1)

Proof. This claim is a consequence of the plain flag algebra method. We ran Flagmatic on 8 vertices
which verified N > % with certificate.

For the second inequality we minimize the difference 4/N3 — 15.96 Noo subject to the constraint
that N > dn/(N) where N’ is the limit of an infinitely iterated blow up of the net. We add

this constraint since we know that any extremal example must have at least as many nets as our

conjectured graph. In particular for large enough graphs, the iterated blow up has a vanishing
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proportion of nets in its innermost layers, so we anticipate that the limit would give a reasonable

bound for flag algebras to use. O

To know what we are shooting for, it might be nice just to calculate the density of nets in the
iterated blow up. We will count the number of nets. To find a net, one must either select one

vertex from each part, or select all vertices from the same part. We have that

n n\6 2N oo 6!
d(N :(f> 6d(N)( © d(N) = . 5.2
() = (3) +oa (§) 2= am) = % (5.2
To compare with the second inequality, we would like to look at N3 and Nag in the iterated

blow up. To do so, we use the following calculation

W) OO @ o) ety

d(N3) <g> - 6<§> (%)5 + 6d(N3) (g) 200 Ny = (688_'6) (5.4)

In particular, we have that in our desired limit object, 4 Nos — 15N3 = 0 and

oo o

ANy — 14.97N; ~ .00084019254. (5.5)

We now introduce some notation to work toward our stability results. In an extremal example
G, let N be the set of induced nets in G. For any induced net H in G we will define Noo(H) and
N3(H) to be the number of copies of Nog containing H and N3 containing H respectively. We will
now find the “base” of our structure, by picking a net to be the backbone of the structure that we
will show is like an iterated blow up. That is, among all nets in N we pick one net H such that for
all H € N\ H, Noo(H) —4.99N3(H) > Noo(H) —4.99N3(H). This will allow us to take advantage
of Claim 11. To push to our iterated construction we start to create sets of vertices which match,
to some extent, the structure of H. Label the triangle in H as 11293010203 where i1isi3 induces a
triangle and i;0; € E(G). Call {i1,12,13,01, 02,03} skeleton vertices. We now define sets of vertices,

called blobs I, I, I3, O1, 02, and O3, which act like the vertices of H in the sense that
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I = {1) EU(G)|(HUU)\i1 gH}.

We define the remaining sets similarly, and note that we may think about this as creating sets
of all vertices which are isomorphic to the vertices in H with respect to H. We say that a pair of
vertices wiwe which intersects two distinct blobs is funky if the skeleton vertices are adjacent but
wiws is a non-edge or vice versa. Formally, this means that (H \ {vi,ve}) U {wi,ws} ¥ H where
v1, v2 are the skeleton vertices corresponding to the blobs that w; and ws are in respectively. We
will think about this as each funky pair destroying a potential copy of Nag in the subgraph induced

by vertices in blobs.

Claim 12. In any graph maximizing the induced density of nets, the following inequalities are

satisfied:
0.16579160 < I;, O; < 0.16754174,1 < i < 3, (5.6)
xp < 0.00165262197319, (5.7)
f<.00000276. (5.8)

Proof. We use Lagrange multipliers and some symmetry arguments to simplify the search space.
We may now take advantage of Claim 11 to set up several quadratic programs, in which we will

solve the following problems:
e Maximize the proportion of the trash vertices, zp (those that do not match the skeleton net)
e Maximize the number of funky pairs f
e Maximize the proportion of vertices in a skeleton blob 41,49, i3, 01, 02, 03

e Minimize the proportion of vertices in a skeleton blob i1, i9, i3, 01, 02, 03.



44

3
The constraints for each of the programs are that Z(zZ +0;) = 1 and the equation from Claim
i=1
11. We will demonstrate how to show the lower bound on the proportion of vertices in a skeleton

blob. As such, we will be solving the following quadratic program
minimize 71
subject to 20 (i + 0;) + 0 = 1

23 ke (@0j + oxig) — 2f — 4.98 37, o 43(i] + 0f) > 00071788399

\ik,ok,f >0forall kel,2,3

To simplify this computationally, we notice that in our constraints, there is no distinction
between outer and inner blobs. From now on, we will use only one variable x1 to denote the blob
that we are interested in and we can limit our search to find a solution to the program instead
where all other blobs are given equal weighting, namely %(1 —x1 —xp). It is clear to see that since
f appears only in the second constraint with a negative coefficient, if there exists a feasible solution
with f > 0, we may find another feasible solution by setting f = 0 since this will increase the left
hand side of the constraint. By factoring out z; from all terms in the left hand side, we will see
also that we have a sum of differences of blob sizes squared, which is minimized when the blobs
are equally sized. These two factors allow us to make these simplifications and solve the simpler

quadratic program that follows:

,

minimize x

subject to 1 + 5y + 29 =1

Pl
521y + 10y% — 2.0 % f — 4.9922 — 4.99 - 5y > .00071788399

z1,70,Y, f >0

This was solved using Sage [38] and we provide the code required in Appendix A.
From this we can derive an upper bound on the funky degree of a vertex in UP_;(I; U O;).
In particular, we have that the funky degree of a vertex in a skeleton blob is bounded above by

1 — (1 —4.99)xin where z,,, is the lower bound on skeleton blobs found above. O
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In the following claim, we are now forced to slightly deviate from the strategies of Balogh,
Hu, Lidicky, and Pfender. Where they can take advantage of symmetry and C5 being self-
complementary, the net has fewer advantageous properties. To deal with this, we instead give
an iterated argument that certain types of funky pairs cannot exist, and use that information to
lower the complexity of work for the remaining possible funky pairs. While this is a little longer, it
allows us to overcome the fact that some funky pairs do seem to be in a “large” number of nets, but
that each pair of this type relied on funky pairs which must be uncommon. Let us identify skeleton
blobs as the following six sets of vertices I1,12,13,01,02,03 where 11,12, 13 are the skeleton
blobs corresponding to the triangle vertices of the chosen net and O1, 02, O3 corresponding to the
pendant vertices such that O1 is the skeleton blob corresponding to the pendant of the skeleton
net vertex in I1, and O2 and O3 defined similarly as the pendants of the skeleton net vertices in
12 and I3 respectively. That is, the skeleton net has edges between all vertices starting with I and

edges between Oj and Ik vertices if and only if ¢ = k.
Claim 13. There are no funky pairs in U3_,(I; U O;).

Proof. Let wv = {u,v} be a funky pair in G. We will compare the number of nets in G to the
number of nets in G’ where G’ is a copy of G with the only difference being that {u, v} is not funky.
We see that in G’ any set S of 4 vertices in the blobs not containing u and v induces a net containing
u and v unless there is funky pair other than wv in S U uv. Since we have not yet chosen which
blobs u and v are in, to preserve generality we will denote the blobs containing the remaining four
vertices as X;, X, Xy, and X/, with the proportions of these blobs in G’ being denoted x;, z;, Ty, ¢

respectively. Therefore with appropriate choice of 7, j, k, and ¢, we have at least

wizjegren’ — (dp(u) + dp())zizgon® — fean® = (20— (df(w) + dp(0) g — fzien® (5.9)
> ((@min = 2dg)Tmin — f)Tmn’ (5.10)

> 0.00069n" (5.11)

nets containing wv in G'.
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We now seek to count the maximum possible number of nets containing {u,v} in G. We first
see that there are at most (z9/6)n* nets containing uv and a vertex from the trash blob. There
are at most (f/2)n* nets containing uv and another funky pair which does not intersect with uwv.
Additionally, there are at most (dg(u) + df(v))/2n* nets containing uv and two vertices which are
in a funky pair with at least one of u or v. We now count the nets in which uv is the only funky
pair.

First we note a small structure claim that will help simplify the arguments. Let N be a net
containing wv such that uv is the only funky pair in G. There exists a path on four vertices in
N with no funky pairs. (Recall, if this path was in four different blobs, it would be called blob-
induced). Indeed, regardless of which two vertices are chosen from the net, there exists a path of
length four containing at most one of those vertices.

We claim that either the P is blob-induced, or contained in exactly one blob. Suppose that
the P, is not blob induced. Then, there exists a blob which contains at least two vertices of the Py.
We note that this pair has the same neighborhood in the P, except in the same blob, but every
neighborhood must be unique so all vertices are in the same blob.

Suppose that the Py is blob-induced with vertices in O1,11,12, and O2. We seek to place the
final pendant vertex, p. Note that p must have degree 0 to the P, and can be in at most one funky
pair, so p cannot be placed in an inner blob since each inner blob is expected to be adjacent to
at least two of the P, blobs. Similarly we note that if the triangle vertex, ¢, corresponding to p is
placed in I3, p cannot be placed in O1 or O2, but also p cannot be placed in O3, else there would
be no funky pairs. Therefore V(N)N I3 =0 and p € O1 U O2. In either case, we see that p is in a
funky pair with one inner vertex. We see that no matter where we place t, to induce a net, ¢t must
be in a funky pair, a contradiction with N having at most one funky pair. Hence, there exist no
funky nets containing wv and a blob-induced P, which intersects four blobs.

Since the Py is not blob induced and at least one of the pendants in the Py is in no funky pairs
in IV, so no remaining vertices are blob distance 1 from the P;. Similarly, there is a triangle vertex

with no funky pairs in NV, so the final triangle vertex must be within blob distance 1, and therefore
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in the same blob. Finally, it remains to place the last pendant to have exactly one funky degree.
There are at most (z,,q,:n)%/12 ways to place vertices in this way.

Finally, it remains only to count the nets in which there exists exactly one vertex w which is in
a funky pair with u, v, or both.

We first count nets involving a funky pair between two inner blobs in order to show that there

are no funky pairs in /11U 2 U I3.

Claim 14. There exist no funky pairs in 11U 12U I3.

Proof. We will assume that v € I1 and v € I2 and note that since we replace all of our counts
with %4 and X, which are independent of which blobs we started with, we will have counted
the nets for any pair of inner blobs.

Suppose first that w is in a funky pair with both u and v. We now try to place w.

Let w € O1 U O2. Suppose, without loss of generality that « is in the inner blob corresponding
to w. Then in any net, w and u have a mutual non-neighbor x which must lie in O3 Since there
is a path from z to u, there exists a vertex in y in 13. But y has degree 3 and its neighbor set
contains no edges, so we are unable to create a net. So there are no nets with w € O1 U O2.

Let w € O3. We see that w must be a triangle vertex, and exactly one of u and v is a triangle
vertex. The only mutual neighbors of this pair of triangle vertices are in 13. But any vertex in 13
would create a Cy, which is not a subgraph of the net. Hence there are no such nets.

Let w € I3. Since {u,v,w} is independent, we know that at most one of these vertices is a
triangle vertex. Then each remaining triangle vertex must be blob distance at most one from the
remaining vertices, so they must be in inner blobs. Also, they must be in different blobs, else we
create a C4 a subgraph. There are three ways to place these triangle vertices, and then the final

vertex must be a pendant of the triangle vertex in {u,w, v} so it’s location is forced to be the outer

3
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blob corresponding to it. This creates at most 3d;x
We now count the nets in which w is in only one funky pair. We will assume that w is in a

funky pair with u, and by symmetry we will also obtain a count for w in a funky pair with v. Since
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wv ¢ E(G), v must be in a Py containing no funky pairs. Either the Py is entirely in the blob with
v or it is blob-induced.

If the Py is in one blob, then u is a triangle vertex and v and w are pendant vertices. The final
vertex must be the pendant of v and can be either in the outer blob corresponding to u’s blob, or
in I2. This gives at most (3 + 3)dja3,,,n* nets with the P4 in one blob.

If the Py is blob-induced, v is a triangle vertex, and u is a pendant. We note that the pendant
of v must be in 02, and the second internal vertex (hence triangle vertex, ¢2) in the Py is either in
11 or 13. In the latter case, we have that w € I3, triangle vertex for w € I'l, and the final pendant
in O3. Otherwise, we have w € O1, the triangle vertex of w in Il and the triangle vertex for u in
I3. Each of these independently adds at most (4/3)dsx3,,,n* nets, so accounting for both cases as
well as switching the roles of u and v, we have a total of at most (16/3)d 2 mqe.n* nets.

We have now counted the total number of nets that a funky pair in inner blobs can be in as

max

bounded above by (3 + 16/3)dfz2,,,n* nets. So by Claim 12 uv is in at most
Tmaz/ 12+ (34 16/3)d sl 0un® + 0/62500 + A2 00 + f/2074, < 000697
nets, a contradiction with Equation 5.11. O

We now inspect the next type of funky pair that could appear, in hopes to use the information
we have gained from Claim 14. We will turn to pairs of vertices in corresponding inner and outer

blobs.

Claim 15. There exist no funky pairs in Oj U Ij for each j € 1,2, 3.

Proof. We will assume similarly to the previous argument without loss of generality that v € O1
and v € I1.

We begin once again by assuming first that the vertex w is in a funky pair with both » and
v. By the Claim 14, we know that w ¢ 12 U I3, hence w € O2 U O3. In these positions, u and
w have no mutual neighbors (which are not funky pairs) so so u must be the pendant vertex of

w since w has degree at least 2. Also v is a triangle vertex, which forces the location of the final
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triangle vertex to be the inner blob corresponding to the outer blob containing w. Therefore the

3
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final pendant vertex must be placed in the same blob as w. This yields at most 2dx

We now count the number of nets containing {w, u, v} where w is in a funky pair only with v.
Again, since no funky pairs exist in the inner blobs, w € O2UO3. There must exist a P4 containing
no funky pairs that includes u but not v. If this Py is entirely contained in O1, w is in O1, else
v has degree 4. Also, u and w are pendants, and v is a triangle vertex missing its pendant still.
This final pendant may be placed in any of O1,12 or I3. These constructions yield a maximum

of (% +2- %)dfx3 n* nets. If the Py is blob induced, u is the pendant of a vertex other than v

max

in 11, and it intersects exactly one of 12 and I3. Therefore v is adjacent to this second triangle
vertex, and must itself be a triangle vertex, with w being its pendant. Therefore w must be in the

outer blob corresponding to the inner blob with no vertex. These constructions yield a maximum

3

3 . nets. Therefore, in the case that w is only in a funky pair with v, we have at most

of dyx

3
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19

s ds
We now count the nets containing {w,u, v} such that w is in a funky pair only with u. Notice

that any such net will contain a P4 which has no funky pairs and contains v. If the Py is in I1, we

see that both v and w are pendants in the P, and v must be a triangle vertex without a pendant

3
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placed so far. We see that u’s pendant can be placed only in I1, giving at most %d T
of this form. If the Py is blob-induced, then v is a triangle vertex, and its pendant must be in O1.

Also u must be a pendant with triangle vertex being w and the triangle must be blob induced, so

3

3 w0} of this type. In total if w is in a funky pair only with u, there are at

there are at most 2d;x

3

most 13d,a3,,.n? nets containing {u, v, w}.

In total, we have at most (%9 + % +2)d faci’mmn‘l nets containing uv. Via that same contradiction

as before, we find that by Claim 12 wv is in less than .00069n* nets, a contradiction with Equa