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ABSTRACT

In this thesis we discuss two topics: domination parameters and inducibility. In the first chap-

ter, we introduce basic concepts, definitions, and a brief history for both types of problems. We

will first inspect domination parameters in graphs, particularly independent domination in regular

graphs and we answer a question of Goddard and Henning [23]. Additionally, we provide some

constructions for regular graphs of small degree to provide lower bounds on the independent dom-

ination ratio of these classes of graphs. In Chapter 3 we expand our exploration of independent

domination into the realm of directed graphs. We will prove several results including providing a

fastest known algorithm for determining existence of an independent dominating set in directed

graphs with minimum in-degree at least one and period not eqeual to one. We also construct a set

of counterexamples to the analogue of Vizing’s Conjecture for this setting. In the fourth chapter,

we pivot from independent domination to split domination in directed graphs, where we introduce

the split domination sequence. We will determine that almost all possible split domination se-

quences are realizable by some graphs, and state several open questions that would be of interest

to continue in this field. In the fifth chapter we will provide a brief introduction to flag algebras,

then determine the unique maximizer of induced net graphs in graphs of order 6k for each k.
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CHAPTER 1. DEFINITIONS AND INTRODUCTION

This thesis will focus largely on two subjects. First, we will explore several domination pa-

rameters of graphs, then we will provide an extremal graph theory result through the use of flag

algebras. This chapter will provide basic definitions and some samples of techniques used to show

results used later in the thesis. We will begin with fundamental graph theory definitions. A graph

is an ordered pair (V,E), where V is a set of objects called vertices, and E is a set of pairs of V

called edges.

Graphs are well suited to help study the relationships between possible states in a discrete

system. Often, graphs are introduced by imagining that vertices may be people and a pair of people

is included in the edge set if they are friends. In this way, we could use model a social network as

a large graph and ask questions about its structure. For example, one might be interested in the

expected number of pages you might have to click through on your favorite social network until

you end up at Adam Blumenthal’s page. Another problem that can be modeled with graph theory

is known as the 8 Queen’s Problem, posed by de Jaenisch in 1862 [11]:

Question 1. Can you place 8 queens on a chessboard such that no two queens can attack each

other?

More generally we can ask instead how many queens can we place on a chessboard such that

no two queens can attack each other? The answer is that one can place 8 such queens. It is

also easy to see that one can certainly place one queen and satisfy the non-attacking condition.

This condition is a well studied graph parameter (if we model the chessboard in a particular way)

called independence. We say a set of vertices S in a graph G = (V,E) is independent if for all

{u, v} ∈ S ×S {u, v} /∈ E. That is, an independent set is a set of vertices which contains no edges.

Finding the maximum size of an independent set in a graph, called the independence number of the

graph, is one of the most heavily studied graph parameters due to its applications and relationships
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to many other parameters. Much of this thesis will be based on this idea of optimizing such a graph

parameter. We now turn our attention to domination of graphs.

In a graph G = (V,E), a dominating set of G is a set of vertices S ⊆ V such that for each

v ∈ V \ S there exists some u ∈ S such that {u, v} ∈ E. Intuitively, this means that a set of

vertices is dominating if it has an edge to every vertex outside of the set. We note now that

like independence, there is a trivial way to guarantee the existence of such a set. Namely, we may

choose S = V , so there do not exist vertices outside of the set chosen and the condition is vacuously

satisfied. Therefore, the interesting question to ask about domination in a graph is to determine

the size of a smallest dominating set, called the domination number of G denoted γ(G).

It is easy to see that for de Jaenisch’s question, finding a set of 8 non-attacking queens would

be a maximum independent set, since each queen attacks every other square in its column. Slightly

weaker, we notice that this property makes such a set a maximal independent set. That is, an

independent set S such that for any vertex v /∈ S, v ∪ S is not independent. From this definition,

we can see that every maximal independent set is a dominating set. We note now that not all

dominating sets are independent. We define an independent dominating set as a set of vertices that

is both independent and dominating, and observe that an independent dominating set is a maximal

independent set.

Observation 1. Let S ⊆ V (G) for some graph G. Then S is an independent dominating set if

and only if S is a maximal independent set.

Proof. Let S ⊆ V (G). S is independent dominating if and only if S is independent and for every

v ∈ V (G) \ S, there exists some u ∈ S such that {u, v} ∈ E(G) if and only if S is independent and

for every v ∈ V (G) \S, v ∪S is not independent if and only if S is a maximal independent set.

We now slightly modify de Jaenisch’s question for an interesting graph theoretic optimization

problem which allows us to ask for either a maximum or a minimum set size. For a graph G, we

now provide several definitions to make the optimization version of these questions easier to discuss.

The independent domination number of a graph, denoted i(G) is the size of a smallest independent
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dominating set. The independence number, α(G) is the size of a largest independent set, and the

domination number, γ(G) is the size of a smallest dominating set.

Question 2. Can we determine the independent domination number of a graph?

This question is the minimization version of de Jaenisch’s question, and is what we will focus

on in Chapters 2 and 3. Chapter 2 will focus on the case of regular graphs with large degree and

Chapter 3 focuses on independent domination number in directed graphs. In Chapter 4 we will

move to discuss a different variation of domination, called split domination in directed graphs. A

set of vertices S ⊆ V (G) is a split dominating set if it is both dominating and its removal leaves

the graph disconnected. We will take this notion into the setting of directed graphs and build the

notion of a split domination sequence of a directed graph.

Finally, in Chapter 5 we will employ the method of flag algebras to answer a question on the

inducibility of a graph. To introduce this question, we need several more definitions, but technical

definitions and description of the method will be discussed in that chapter. We say that a graph G

is a subgraph of a graph H if there exists an injective function f : V (G)→ V (H) such that for every

edge {u, v} ∈ E(G), {f(u), f(v)} ∈ E(H). We say that a subgraph is induced if there exists an

injective function f : V (G)→ V (H) such that for every edge {u, v} ∈ E(G), {f(u), f(v)} ∈ E(H)

and for each non-edge {x, y} /∈ E(G), {f(x), f(y)} /∈ E(H). For a host graph H and potential

subgraph G, we may be interested in finding the number of mappings which testify that it is a

subgraph or induced subgraph. As the host graphs grow in size, the simple number of mappings

becomes less clearly informative so we focus instead on the density with which the mapping satisfies

the conditions. In particular, way say that the density of G in H is the number of distinct mappings

which testify that G is a subgraph (or an induced subgraph) divided by the total number of injective

mappings. We will denote the density of G in a graph H as dH(G), and when context is clear we will

drop the subscript corresponding to the host graph. Often we think about this as a probabilistic

approach: “if I were to pick |V (G)| vertices at random, how likely is it that those vertices are

isomorphic to G?” We may now state the one of the driving questions behind extremal graph

theory in a general form.
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Question 3. For a given graph G, which graphs with n vertices maximize the density of induced

copies of G?

One of the most famous results is due to Turán, which is one of the first theorems which began

the field of extremal graph theory. Turán determined the graphs that maximized the number of

edges while also forbidding induced complete graphs (or clique). We say a graph G is a complete

graph (or clique) if for all u, v ∈ G, {u, v} ∈ E(G). A complete graph on n vertices will be denoted

Kn.

Theorem 1 (Turán’s Theorem). Let G be a graph on n vertices that contains no Kr+1 as a

subgraph. Then G contains at most r−1
r

n2

2 edges.

This theorem can be viewed as an answer to the following optimization question: What is the

maximum number of edges in a graph on n vertices which has dH(Kr+1) = 0? Several general-

izations of this theorem exist, the most famous being a result of Erdős and Stone which uses the

chromatic number to determine the maximum number of edges a graph can contain before any

graph G must appear as a subgraph. The theorem of Erdős and Stone still has its limitations,

namely that for bipartite graphs the bound is not terribly meaningful. Advances toward under-

standing the extremal nature of bipartite graphs continue to be of significant interest in the field.

One property that one might be interested to find is which graphs are maximized simply by bigger

versions of themselves? To formalize this question, we define the iterated blow-up of a graph G

as follows: For each v ∈ V (G), replace V with several vertices {v1, v2, . . . , v|V (G)|} all adjacent to

the same vertices as v, and such that {v1, v2, . . . , v|V (G)|} is isomorphic to G. Call this new graph

G1 and we can repeat this process, replacing each vertex with a copy of G as many times as we

like to create graphs G2, G3, . . . , Gn. Each of these graphs is what is called an iterated blow up of

G. We will say that a graph G that has its density maximized only the iterated blow ups of G

are called fractalizers. This turns out to be the natural formalization of our question due to the

surprising theorem of Fox, Huang, and Lee [19] which states that almost all graphs are fractalizers.

The peculiarity of this result is that it uses random graphs, which means that the only known

fractalizers are the empty graphs (graph with no edges) and complete graphs. In Chapter 5 in joint
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Figure 1.1 The Net Graph and a Blow Up of the Net

work with Michael Philips, we sought to find another fractalizer (see Figure 1.1). We will instead

show that the net is not a fractalizer, but for certain graph sizes, the iterated blow up is the only

maximizer for the density of the net.
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CHAPTER 2. INDEPENDENT DOMINATION IN REGULAR GRAPHS

2.1 Introduction

In this chapter, we explore independent domination in regular graphs, proving that there exist

finite graphs G with independent domination number arbitrarily close to |V (G)|/2 which are not

complete bipartite graphs. The study of independent domination in regular graphs began with a

result of Rosenfeld [37] which showed that in any regular graph, the largest independent dominating

set is of size at most |V (G)|/2. Indeed this bound is achieved by the complete bipartite graph Kn
2
,n
2
,

but if we exclude complete bipartite graphs, the question becomes more interesting. Let cr denote

the supremum of i(G)/n taken over all connected r-regular graphs G of order n except Kr,r. Note

that cr ≤ 1/2 for all r by the theorem of Rosenfeld. It has been proven that c3 = 2/5 [30, 12]

and it can be shown the c2 = 3
7 . Further problems have been considered with different classes

of forbidden graphs beyond just the complete bipartite graph. This problem is motivated by a

question of Goddard and Henning from 2013 [22].

Question 4 ([22]). Is it true that cr tends to 1
2 as r goes to ∞?

2.2 cr as r Approaches Infinity

In this section we expand on the results of P.C.B. Lam et al. (On independent domination

number of regular graphs) [30] in which they prove that for all ε > 0, there exists some r > 0 such

that cr ≥ 1
2+ε .

We notice first that there are some simple results that suggest that Question 4 should be

answered affirmatively. It is known that cr is, in some very weak way, non-decreasing.

Theorem 2 ([22]). For all positive integers r and s, crs ≥ cr.
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Figure 2.1 The Graph K4
5,5

Theorem 3.

lim
r→∞

(cr) = 1/2.

We will prove the theorem by producing a family of graphs F such that for every ε ≥ 0, there

exists G ∈ F such that i(G)/n ≥ 1
2 − ε. The construction of F hinges on the following seemingly

odd lemma. For all r > k, let Kk
r,r be the graph Kr,r with the edges of a star with k − 1 leaves

removed.

Lemma 1. Any independent set of Kk
r,r with S being the star removed which dominates all vertices

of degree r is a subset S containing the center or has order ≥ r − k − 1.

Proof. Notice also that any subset of S containing the center is such a set. Let D ⊂ S not containing

the center. We notice that D is not a dominating set of all vertices of degree R since r > k.

Let R be the vertices in Kk
r,r having degree r.

Let the bipartition of Kr,r be {X,Y } and without loss of generality, let the center of the star

removed be in X. Suppose x ∈ X \ v is in an independent dominating set. Since x is adjacent

to all vertices in Y , we must select all vertices of X to dominate X, so any such independent set

dominating R has size r−1. Suppose instead that y ∈ Y \(S∩Y ) is in the independent dominating

set. Similarly y is adjacent to all vertices in X so all of Y \ (S ∩ Y ) must be chosen, so any such

independent set dominating R has size r − k − 1.

To see the second part of the lemma, we note that by this proof if any vertex not from the star

is chosen, the independent set dominating R must be of size at least r − k − 1.
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Figure 2.2 The Graph G5,4.

We now construct the family F as follows. Let r > k ≥ 2 with k even. We begin with Kk and

let M be a perfect matching of Kk. For each vertex v ∈ Kk we add 2r − 1 additional vertices,

inducing a copy of Kk
r,r where v is the center of the star removed. In each Kk

r,r we see that all

vertices have degree r except those which are not adjacent to the center of the star removed. Using

the matching M , we now add a matching between the vertices missing one degree to those in the

corresponding Kk
r,r from the matching. The constructed graph Gr,k is now r-regular.

Proposition 1. Gr,k is an r-regular connected graph of order 2rk.

Proof. Easy to see order. Looking at Kk
r,r subgraphs, we see most vertices are r regular, those

involved in stars as the center gain k − 1 degree from the complete graph. Vertices involved as

pendants of the star are paired off using the matching to regain the one deficient degree.

To see that the graph is connected, we note that since r > k there exists a vertex in each Kk
r,r

adjacent to the complete graph, and Kk
r,r is connected, hence the entire graph is connected.

Lemma 2. For r >> k, i(Gr,k) ≥ k + (r − k − 1)(k − 1).

Proof. We observe first that by construction, at most one induced copy of Kk
r,r can achieve an

independent dominating set of size k. By Lemma 1, any set of size ≤ r− k− 1 that is independent

and dominates the vertices not involved in the removed star contains the center of the star. Hence,

to maintain independence, at most one induced copy of Kk
r,r has a dominating set of size k. Notice
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also that for each of the remaining induced Kk
r,r, we must dominate the vertices of degree R which

are adjacent only to vertices in the induced Kk
r,r. By Lemma 1, such an independent dominating

set must have size at least r − k − 1.

Therefore i(Gr,k) ≥ k + (r − k − 1)(k − 1), as desired.

Theorem 4. cr tends to 1
2 as r →∞.

Proof. Let ε > 0. We seek to find a regular graph G such that i(G) > 1
2 − ε. Let k ≥ 1

ε , r ≥ k2.

Then

cr ≥
i(Gr,k)

2rk

≥ k + (r − k − 1)(k − 1)

2rk

≥ rk + 2k − r − k2 − k + 1

2rk

=
1

2
+

1

r
− 1

2k
− k

2r
− 1

2r
+

1

2kr

≥ 1

2
+ ε2 − ε

2
− ε

2
− ε2

2
+
ε3

2

>
1

2
− ε.

We note that with this, the question of Goddard and Henning [22] is resolved. We see though,

that as a limit argument, this answers the question of independent domination ratio in large graphs.

It remains to get a better understanding of independent domination in the context of graphs with

fixed regularity r for specific small values of r.

2.3 Graphs with Fixed Regularity

We continue this chapter with a brief discussion of the construction technique which was used

above roughly based on the ideas of the construction above. That is, given a regular graph G, we

can construct a graph of higher regularity by replacing each vertex with a copy of a graph close to

a complete bipartite graph.
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Figure 2.3 The Graph G3.

We will construct a connected r-regular graph Gr for each r > 2. First let G be some k

regular graph for k < r. For each v ∈ V (G), replace v with 2(k − r) + 2 vertices labeled

{v0, v1, . . . , v2(k−r)+2}. Add edges between vi, vj ∈ {v1, v2, . . . , v2(k−r)+2} if and only if i 6≡ j

mod 2. and make v0 adjacent to all vertices v was adjacent to as well as all odd labeled vertices

in {v2(k−r)+2, . . . , v2k+2, v2k+1}. We notice that all vertices in {v1, v3, v5, . . . , v2k−1} are one degree

short. Repeat this process for all vertices in G. To fix this, we note that there must be an even

number of total vertices missing degree 1, therefore we can find a matching between them (such

that no two vertices in the same vertex image are paired). Note that this construction is how the

previous section was proven, using the base graph as Kk+1. Below we provide an argument with a

more simple construction which gives a lower bound general r for small r.

Begin with three disjoint copies of Kr,r − e, call them Hi for i ∈ {1, 2, 3}. Pick one vertex in

H1 with degree 2, and add an edge to a vertex of degree 2 in H2, then do the same for H2 and H3

and the same for H3 and H1. Notice that there will always be a vertex of degree 2 to pick in this

process since we pick exactly 2 vertices of degree 2 from each Hi.

Lemma 3. For each subgraph H = Kr,r−e in G, any independent set dominating vertices of degree

r contains either 2 or ≥ r− 1 vertices of H. Furthermore, the only such set of size 2 is the vertices

incident to the removed edge.

Proof. Let xe and ye be the vertices incident to e in part X and Y respectively. If x ∈ X − xe is

chosen, it is adjacent to all of Y , hence no vertices of Y can be chosen and be independent of x,
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so at least r − 1 vertices must have been chosen to cover X − xe, so at least r − 1 vertices must

be chosen. Similarly if a vertex of y ∈ Y − ye is chosen, at least r − 1 vertices must be chosen.

Otherwise xe, ye are chosen as the dominating set.

Lemma 4. If in a subgraph H = Kr,r − e, an independent dominating set of order 2 is chosen,

each remaining subgraph must have at least 2(r − 1) vertices chosen.

Proof. Suppose 2 vertices are chosen in H. We look at the two adjacent copies of Kr,r−e subgraphs.

By construction, each is forbidden from taking an endpoint of missing edge, so by above lemma,

each requires at least r − 1 vertices to be chosen.

Corollary 1. For all r, cr ≥ 1
3 .

Proof. By the lemmas above i(Gr) ≥ n/3 and is r-regular.

2.4 Conclusion

Theorem 4 provides a lower bound for cr for large r, but it remains to be seen what the best

possible bound is for a fixed r. In fact, a significant portion of the study of cr has been dedicated

entirely to fixing a single r value and trying to find the exact value. As such, it would be interesting

to determine an upper bound for cr which matches some construction.

Question 5. Does there exist an integer n0 such that for any connected graph G on n > n0 vertices

other than complete bipartite graphs, i(G) < 2n?

I suspect that this is not the optimal construction for any r, though it does have the same limit

as the known best upper bound. There is only one known three regular graph witnessing the bound

of 2/5 and upon forbidding this graph (like the complete bipartite graphs) what better bounds can

be found. The current state of the art is that c3 = 2/5, and there is a standing question for a

modified version of c3 by Goddard and Henning where instead of forbidding only the complete

bipartite graph, also C5�K2 is forbidden.
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Conjecture 1 ([22]). If G is a connected cubic graph on n vertices other than K3,3 and C5�K2

then i(G) ≤ 3n/8.

Goddard and Henning made this conjecture upon finding an infinite family of 3-regular graphs

with i(G) = 3n/8. In particular, it would be interesting to find an infinite family of graphs which

all have the same ratio, and a matching upper bound for graphs forbidding some finite number of

anamolous graphs (like C4�K2). The first step which would need to be answered is if such a goal

can even be achieved. That is, does there exist an infinite family of 3-regular graphs {Gi}∞i=1 such

that i(Gk)
|V (Gk)| >

i(Gk+1)
|V (Gk+1)| and i(Gk)

|V (Gk)| > c > 3
8 for all k.

A remaining open question for further research in this field is to determine cr for small r.

Namely, the value of c4 is still unknown, and c5 has largely been untouched. The best known

conjecture for c4 is 3/7 which was found by an exhaustive search of all graphs up to around twenty

five vertices [22]. It would also be interesting to find an analogous construction to that of Goddard

and Henning’s 3-regular construction of an infinite family to provide a lower bound on c4 which

cannot be lowered by forbidding a finite number of graphs.
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CHAPTER 3. INDEPENDENT DOMINATION IN DIRECTED GRAPHS

After this research was conducted, it was determined that independent domination had been

studied under a different name (kernels of directed graphs) and has a long history. We will keep

our discussion as some of the methods of proof are short and unique, and a discussion of what has

been contributed to the field is included in the conclusion, as well as what results in this chapter

are known to have been proven before.

Both the dominating set problem and independent set problem have been studied extensively

in graphs. Independence has been widely studied for its relation to chromatic number, while

domination has a deep relationship with communication in networks. The study of sets that are

both independent and dominating (or independent dominating sets) has history dating back to

1862, when de Jaenisch [11] asked for the minimum number of non-attacking queens which can

be placed on a chessboard such that every other square is threatened. We note also that both

independence and domination are classic examples of NP -complete problems, as is finding the

smallest independent dominating set [21]. It has been proven that determining the minimum size

of an independent dominating set is NP -complete even in restricted families including bipartite

graphs or line graphs [31, 42, 10]. The minimum size of a dominating set is used as a measure

of efficiency of backbones for communications networks, and independent domination can be used

for communication networks in which interference or fading can occur. Further results include

Nordhaus-Gaddum type results [22, 24], and results for claw-free graphs [1], as well as random

graphs [12]. For a thorough survey of the history and results in independent domination theory,

we direct the reader to the paper [23].

In directed graphs independence is no different from the question in undirected graphs. On

the other hand dominating sets are drastically affected by direction. There is a long history of

dominating set problems in directed graphs, but frequently they are restricted to certain families
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of graphs. In particular, domination in tournaments has been studied for decades, including ques-

tions of Erdős [14] and Gyárfás [32]. More recently, Caro and Henning [6] continued the study of

dominating set theory in directed graphs, providing some general bounds as well as relating the

directed domination number to the independence number in bipartite graphs.

In 2019, Cary, Cary, and Prabhu [7] introduced independent domination in directed graphs. This

problem has relations to finding communication points for information transmission, particularly

when information can only be sent in one direction at a time in a network. As such, they explore

the parameter with respect to oriented graphs since they correlate to ad-hoc networks [13].

3.1 Introduction

We define a directed graph D = (V,A) to be an ordered pair, where V is a set called vertices

(V (G)) and A is a set of pairs of vertices called the edge set or arc set (A(G)). A set of vertices S

to be independent in a directed graph D if there does not exist u, v ∈ S such that (u, v) is an arc

in D. A set of vertices S to be dominating in a directed graph D if for every v ∈ V (G) \ S there

exists some v ∈ S such that (u, v) ∈ A(D). A set of vertices S to be independent dominating in a

directed graph D if S is both independent and dominating.

Cary, Cary, and Prabhu [7] provide results on certain families of graphs including orientations

of bipartite graphs and cycles as well as directed acyclic graphs. In this paper, we extend the

study of independent domination into directed graphs which allow antiparallel edges, noting that

parallel edges do not affect independent domination in directed graphs. All directed graphs will

be assumed to be finite. We will provide a result which generalizes several of the results of the

previous paper, namely determining the number of pairwise disjoint independent dominating sets,

called idomatic number, for directed graphs with certain periods. We additionally provide some

alternative, algorithmically focused, proofs of similar results to Cary, Cary, and Prabhu. We also

begin the study of time complexity of independent dominating sets, showing that determining the

smallest size of an independent dominating set in a directed graph in is NP -complete and providing

an algorithm which answers this question in O(1.26n) time when the period of the graph is not
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Figure 3.1 An Example of a IDS-Free Digraph.

one. Cary, Cary, and Prabhu also introduce the concept of idomatic number of a graph G, and

explore the parameter in some families of graphs. In the conclusion, we suggest possible avenues

for furthering the theory of independent domination in directed graphs.

3.2 A Greedy Heuristic

In this section we will provide a simple heuristic for finding an independent dominating set,

which gives some short alternative proofs to those given in [7]. Our goal throughout this section

is to provide a tool for determining the existence of an independent dominating set in a directed

graph, with the goal of classifying graphs which contain no independent dominating set which we

call independent dominating set-free (IDS-free).

Note that in undirected graphs, there always exists an independent dominating set which can

be made by greedily adding vertices until we reach a maximal independent set. In directed graphs,

this is not the case. Notice that, for example, a directed 3-cycle has no independent dominating

set. We seek to provide conditions for when a digraph D has an independent dominating set.

In a directed graph D we call a vertex v a source if it has d−(v) = 0. We define the source-greedy

algorithm (SGA) as follows: for D, while there exists a source in the graph, choose one to be placed

in the IDS, then remove it and all of its out neighbors. This returns a graph with no sources.

Claim 1. The vertices chosen by the source-greedy algorithm are independent.

Proof. We consider the step at which the vertex v is chosen by the SGA. Since v is chosen, it

remains in the graph, so there are no edges from previously chosen sources to v. Also v cannot

have had an edge to any previously chosen vertex, else it would not have been a source.
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Note that with the source-greedy algorithm guaranteeing an independent set, we can now refine

our search to source-free graphs.

Claim 2. All oriented bipartite graphs have an IDS.

Proof. First we run SGA. What remains after SGA is a source-free graph. Now we may simply

take one side of the bipartition in the independent dominating set. Note that since there are no

sources and the graph is now isolate free, each vertex has at least one in-neighbor on the other side,

so by taking an entire side, either the vertex is chosen or its in-neighbor is chosen.

Observation 2. A graph is IDS-free if and only if every execution of the SGA leaves a source-free

graph with no IDS. In particular, every vertex minimal IDS-free graph is source-free.

Proof. By contraposition, if there exists an execution which leaves a source-free graph with an IDS,

we run that execution and add the remaining IDS.

Suppose the graph has an IDS. Notice that each source must be taken in the independent

dominating set, reducing the problem to a subgraph. Repeat.

A digraph is said to be acyclic if it does not contain any subgraphs isomorphic to a directed

cycle.

Theorem 5. Every Directed acyclic graph contains an independent dominating set.

Proof. Consider a topological ordering of the vertices. The source greedy algorithm will provide an

independent dominating set, since at each stage that a vertex set is removed, no cycles are created

and we have reduced the problem to another directed acyclic graph. Since every directed acyclic

graph contains a source, this process will only terminate when no vertices remain, namely every

vertex was either chosen, or was deleted by a chosen vertex which dominates it.

Corollary 2. Every oriented tree contains an independent dominating set.

We now build to the main theorem, expanding the source-greedy algorithm to strongly connected

components of a graph. Call a graph G vertex minimal IDS-free if D has no IDS and for every
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subset S ⊆ V (D), D \N+[S] has an IDS I such that I ∩ (N−(S)) = ∅. We define vertex minimal

in this way as a generalization of the source-greedy algorithm, where S is acting as a source which

can be removed.

Theorem 6. Any vertex minimal IDS-free digraph is strongly connected.

Proof. Let D be a vertex minimal IDS-free digraph. Consider the strongly connected components

of G. The reduced graph generated by contracting the strongly connected components is acyclic,

hence there exists a source vertex. The strongly connected component corresponding to this source

vertex, C, can be dominated only by other vertices in C. If C has an IDS, then G− C ∪ (N+[C])

has no IDS, else G has an independent dominating set. Otherwise, C has no IDS, a contradiction

with minimality of D unless D = C.

Claim 3. Every vertex in a strongly connected digraph has at least one in edge and at least one

out edge.

Proof. Clear, since if a vertex has d+(v) = 0 there does not exist a path from v to any other vertex,

and if d−(v) there does not exist a path from any other vertex to v.

Since odd cycles are a problem for independent domination, we explore the digraphs with specific

periods. We define the period of a digraph D to be the greatest common divisor among all lengths

of directed cycles which appear as subgraphs in D. As convention, we will say that the period of a

directed acyclic graph is 0.

We now introduce some tools of linear algebra, which will come in handy for the next proof.

For a directed graph D on n vertices, we define the adjacency matrix of D, AD (or just A if context

is clear) to be the n× n matrix with (i, j) entry 1 if (i, j) ∈ A(D) and 0 otherwise. We say that a

square matrix is irreducible if it is not similar via a permutation matrix to a block upper triangluar

matrix. The following well known theorem is a fundamental result of spectral graph theory, relating

linear algebra and directed graphs:

Theorem 7 ([25]). A directed graph G is strongly connected if and only if AG is irreducible.
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Perron-Frobenius theory provides a deeper relationship between graph and digraph properties

and their respective adjacency matrices. For more information about this relationship, we direct

the reader to the textbook [25]. In particular, the period of a strongly connected digraph creates

rich structure in the adjacency matrix, as evidenced by the following theorem.

Theorem 8 ([20]). If G is a digraph with period h > 1, there exists some permutation matrix P

such that PAP−1 is a block matrix

PAP−1 =



0 A1 0 0

A2
. . .

...
. . .

. . . 0

0 Ah−1

Ah 0 · · · 0


where each diagonal block is square zero matrix.

We notice that this provides a way to partition our digraph D into h independent sets, which we

will call S0, . . . Sh−1 corresponding to the vertices of the diagonal zero blocks. With this structure

theorem, we may now prove the main theorem of the paper.

Theorem 9. Every strongly connected directed graph with even period has an independent domi-

nating set.

Proof. If D has period h, as above the graph can be partitioned into h independent sets S0, . . . , Sh−1

such that there exists an edge from u to v only if u ∈ Si and v ∈ Si+1 for some i ∈ [h] with addition

modulo h. Therefore, we can create an independent dominating set by taking all Si such that i is

even (or odd).

To see that this set is indeed an IDS, since we take only independent sets of the same parity,

and h is even there are no parts which are taken that share any adjacencies. Furthermore, since

every vertex has at least one in degree, we observe one vertex v. Either v is included in the set, or

it is in Si which is not included and has at least one in degree from Si−1, say from u. But if Si is

not included in our set, Si−1 is included in our set, hence u is in the set and dominates v.
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Corollary 3. If G is vertex minimal IDS-free, G has odd period.

Corollary 4. Every oriented bipartite graph has an independent dominating set.

Cary, Cary, and Prabhu [7] define the maximum number of vertex disjoint independent dom-

inating sets in a digraph G as the Idomatic Number, written id(G). We note that Corollary 4

was proven in this paper as they worked towards determining graphs with id(G) = 1. Our proof

provides a bound for the idomatic number of digraphs with even period.

Corollary 5. Every strongly connected digraph D with even period has id(D) ≥ 2.

3.3 Vizing’s Conjecture

In this section, we show that the analogous statement to the famous Vizing’s conjecture does

not hold with independent dominating sets. Vizing’s conjecture is about the relationship between

domination number (the smallest size of a dominating set of a graph G, γ(G)) of graphs with their

Cartesian product.

We define the Cartesian product of directed graphs with vertex set V (G) × V (H) with edges

defined by :

A(G�H) = {(x, u)(y, v)|xy ∈ A(G) and u = v or uv ∈ A(H) and x = y}

Conjecture 2 (Vizing [40]). For any undirected graphs G and H, γ(G�H) ≥ γ(G)γ(H).

This also has an analogous conjecture in independent domination, asked by Goddard and Hen-

ning, which would imply Vizing’s conjecture. For the independent domination number, the small-

est size of a dominating set of a graph G, denoted i(G). Vizing’s Conjecture is altered in the

case of independent domination since it has been proven that there exist graphs G,H such that

i(G�H) < i(G)i(H) [4].

Conjecture 3 ([4]). For any undirected graphs G and H,

i(G�H) ≥ min{i(G)γ(H), γ(G)i(H)}.
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Figure 3.2 The Graphs W ′3 and P ′.

We will show that the possibility of a directed graph containing no independent dominating

set will provide examples that ensure that no such inequality holds in directed graphs. One may

wonder how to define the independent domination number for directed graphs without independent

dominating sets. Some natural candidates for G IDS-free would be i(G) = 0, i(G) = n + 1, or

i(G) =∞. The following corollary shows that the direct translation of the conjecture of Goddard

and Henning into directed graphs cannot hold regardless of which convention is chosen. In the case

that i(G) = 0 is chosen, Claim 4 provides a family of counterexamples, and in the other two cases

Claim 5 provides a family of counterexamples.

To provide a family of directed graphs which contain independent dominating sets whose Carte-

sian product does not contain an independent dominating set we define the following graphs. Define

W ′n to be a directed wheel on n+1 vertices in which the center vertex is dominating and the outside

cycle is directed. We define P ′, as an oriented paw with directed edges as in Figure 3.3.

Claim 4. W ′n�P
′ is IDS-free for all n odd.

Proof. Let n ∈ Z be odd. We notice that both W ′n and P ′ have unique independent dominating

sets by following the source greedy algorithm. Let the dominating vertex of W ′n be vd Also, in

W ′n�P
′, the copy of P ′ that appears in place of the dominating vertex of W ′n must be dominated

only by vertices of the form (vd, u) for some u ∈ P ′. Hence the unique dominating set of P ′ must

be chosen for this copy of P ′. Therefore, all copies of the dominating set of P ′ around the cycle

cannot be included in an independent dominating set.

We now look at the strongly connected components of the graph induced by the vertices which

have yet to be dominated. There are two strongly connected components, both of which are cycles
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on n vertices. One of these vertices acts as a source in the directed acyclic graph created by

contracting strongly connected components, hence it must be dominated only by vertices in its own

strongly connected component. This is impossible, since it is an odd cycle which is known to have

no independent dominating set.

Claim 5. Cn�Cn where n is odd contains an independent dominating set.

Proof. Let n be odd. It has been observed that each directed odd cycle does not have an independent

dominating set. It remains to provide an independent dominating set for Cn�Cn. Label the vertices

of one V (Cn) = {v0, . . . , vn−1} such that (vi, vi+1) ∈ A(G) with addition modulo n, and for the

other copy of Cn, V (Cn) = {u0, . . . , un−1} similarly. We construct an independent dominating set of

Cn�Cn as D = {(vi, ui+2j)|0 ≤ i ≤ n− 1 mod n, 0 ≤ j ≤ bn2 c}. To see that the set is dominating,

we notice that for any 0 ≤ i ≤ 4, (vi, ui) and (vi, ui+2) dominate all (vi, uk) for i ≤ k ≤ i+ n− 2c

mod n, leaving only (vi, ui−1) not dominated. But we have that (vi−1, ui−1) ∈ D which dominates

(vi, ui−1). Therefore D is dominating. For i fixed, we have {(vi, ui+2j)|0 ≤ j ≤ bn2 c} is independent

since edges occur if and only if (uk, u`) ∈ E(Cn), but we have only taken vertices of the same parity,

without taking a full trip around the vertex set. That is, in each vi we take only vertices (vi, uj)

where i = j mod 2. Hence, vertices (vi, uj) and (vi+1, uk) we have no edges, since j 6= k. Therefore

D is independent, thus an independent dominating set.

Theorem 10. There exist infinitely many pairs of graphs (G,H) such that

i(G�H) > min{i(G)γ(H), γ(G)i(H)}

and infinitely many pairs of graphs (G′, H ′) such that

i(G′�H ′) < min{i(G′)γ(H ′), γ(G′)i(H ′)}.

Proof. This is a direct consequence of Claims 4 and 5.
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3.4 Time Complexity

We note that finding the size of an independent dominating set in undirected graphs is a well

known NP -complete problem, for example it is proven in the textbook of Garey and Johnson [21].

Theorem 11 (Garey and Johnson [21]). Given a graph G and constant k, determining existence

of an independent dominating set S such that |S| ≤ k is NP -complete.

Corollary 6. Given a directed graph D and constant k, determining existence of an independent

dominating set S such that |S| ≤ k is NP -complete.

Proof. Suppose that we have some oracle f for directed independent dominating sets. For G, an

undirected graph, we may create a corresponding directed graph by replacing every edge with a

pair of antiparallel edges, creating a graph G′. We run f on G′. By returning whichever result

comes from running f on G′, we have answered the problem for the undirected graph G. We see

this, since S is an independent set in G if and only if S is an independent set in G′ by construction.

Also S is an dominating set in G if and only if S is an dominating set in G′ by construction.

We notice that the existence of an independent dominating set in a graph G of order n is

equivalent to determining if there exists an independent dominating set of order at most n. In

particular, this problem is trivial for undirected graphs since all graphs contain an independent

dominating set. We seek to determine if for directed graphs determining the existence of an

independent dominating set S such that |S| ≤ n is NP -complete.

Claim 6. Given a directed acyclic graph D, determining the existence of an independent is in P .

Proof. By the proof of Theorem 5, we provide an algorithm that is polynomial in time.

Theorem 12. Given a directed graph D with even period h, determining the existence of an

independent dominating set is in P .

Proof. Since we know the period of D is h, we can construct h independent sets using breadth first

search by creating layers modulo h (that is, the hth layer is the same as the first vertex chosen in

O(n2) time. Then we select all vertices in even layers as our independent set.
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We note that the period of a digraph can be determined in polynomial time, as proven by Jarvis

and Sheir [27].

Theorem 13. There exists an O(2
n
h ) algorithm for determining the existence of an independent

dominating set in a graph D of period h.

Proof. Similar to the above proof, we may partition the vertices of D into h independent sets

S0, . . . , Sh−1 such that edges follow cyclically. We note now that if h is even, we have an independent

dominating set, so we may assume that h is odd.

Let Sk be the smallest independent set in our partition of the vertices, then |Sk| ≤ n
h . We notice

now that the selection of vertices in one part forces the structure of the rest of the independent

dominating set. That is, let D be an independent dominating set of G, then D is the union of

Si ∩D, Si+1−N+(Si ∩D), Si+2−N+(Si+1−N+(Si ∩D)), dots. Note that this observation gives

us that Si−1 − (Si−1 ∩ D) ⊆ N−(Si ∩ D). In particular, we may search among only the smallest

independent set for the independent set giving the desired bound. Since there are h parts, there

exists at least one part of size at most n/h, and a brute force search among each of the subsets of

these vertices will be O(2
n
h ) time.

Corollary 7. For any digraph D with period h 6= 1, there exists an O(1.26n) algorithm to determine

existence of an independent dominating set.

Proof. The algorithm provided in the proof above for odd degree is h = 3, yielding an O(2
n
3 ) ≤

O(1.26n) algorithm, since directed acyclic graphs and graphs with even period are in P .

3.5 Additional Constructions

One may wonder if all graphs with odd period have no independent dominating set. We now

provide examples for each odd period of infinite families of graphs which have independent dominat-

ing sets and which do not have independent dominating sets. We start with a few lemmas to work

toward constructions of infinite families of graphs with specific period that contain independent

dominating sets, and that do not contain independent dominating sets.
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Lemma 5. Let D be a digraph with odd period h and vertex partition S1, . . . , Sh such that for

every edge (u, v) ∈ A(D), u ∈ Si and v ∈ Si+1 for some i ∈ [h] with addition modulo h. Every

independent dominating set I has Si ∩ I 6= ∅ and Si ∩ I 6= Si for all i ∈ [h].

Proof. Let D a digraph with odd period h and Si be as in the statement of the theorem for

1 ≤ i ≤ h. If h = 1, the statement is clear.

Suppose h > 1 and assume for contradiction that there exists some Si such that Si ∩ I = ∅.

We notice that the only vertices which can dominate the vertices of Si+1 are in Si or the vertices

themselves. Therefore, Si+1 ∩ I = Si+1. Since the digraph is strongly connected, every vertex in

Si+2 has a neighbor in Si+1, hence Si+2 ∩ I = ∅. By a similar argument, we see that Si+2l ∩ I = ∅

for all l, with addition modulo h. Since h is odd, for each 1 ≤ j ≤ h there exists some k such that

Sj = Si+2k. Therefore Si ∩ I = ∅ for all 1 ≤ i ≤ h, a contradiction with I being an independent

dominating set. The argument that Si ∩ I 6= Si is similar.

This lemma gives us a simple way to create infinite families of graphs which do not contain

independent dominating sets for each period. Namely, any strongly connected digraph with odd

period h in which the decomposition into h independent sets has at least one set of size 1 cannot

have an independent dominating set. We seek to find a family more rich in structure which has no

independent dominating set, which will lead to a very similar family that does contain independent

dominating sets.

Lemma 6. For each odd integer h > 1, there exists an infinite family of graphs F with period h

such that for all D ∈ F , D is independent dominating set-free.

Proof. We will construct a graph Dh,k with period h for any 2 ≤ k which has no independent

dominating set. We will use the fact that since D has period h, it can be partitioned into h

independent sets S0, . . . , Sh−1 such that for all edges (u, v), u ∈ Si and v ∈ Si+1 for some 0 ≤ i ≤

h− 1 with addition modulo h. We will create S0, . . . , Sh−1 as such a partition. Let k ≥ 2.

We create a special graph for the case h = 3. Let the vertices of S0 be k vertices labelled 1 to

k, the vertices of S1 be all subsets of [k], and the vertices of S2 be a copy of the vertices of S1. We
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draw edges between u ∈ S0 and X ∈ S1 if and only if u ∈ X, between X ∈ S1 and Y ∈ S2 if and

only if X = Y , and between Y ∈ S2 and v ∈ S0 if and only if v ∈ Y .

Let h > 3. Let S0 be k vertices, labelled 1 to k. Define S1 to be all nonempty and not full

subsets of [k]. With edges from u ∈ S0 to X ∈ S1 if and only if u ∈ X. Then S2 is a copy of S1 with

edges from X ∈ S1 to Y ∈ S2 if and only if X = Y . S3 will have k vertices, again labelled from 1

to k, with edges (Y, v) from S2 to S3 if and only if v /∈ Y . For each j ≤ h − 3 odd, the vertex set

of Sj is k vertices labelled 1 to k, and Sj+1 will have vertices corresponding to subsets of [k] with

edges from ` ∈ Sj to Z ∈ Sj+1 if and only if ` /∈ Z and edges Z ∈ Sj+1 to m ∈ Sj+2 if and only if

m /∈ Z. For the final independent sets, we follow that Sh−2 is a set of size k labeled from 1 to k,

create Sh−1 as all subsets of [k], with have edges from u ∈ Sh−2 to X ∈ Sh−1 if and only if u ∈ X,

and finally from Y ∈ Sh−1 to v ∈ S0 if and only if v /∈ Y . See Figure 3.5 for an example of D5,3.

For any independent dominating set I, we claim that |S0 ∩ I| = 1. Suppose for contradiction

that |S0 ∩ I| ≥ 2 without loss of generality we may assume that S0 ∩ I ⊇ {1, 2}. Then S1 ∩ I

is contains all sets which contain neither 1 nor 2. Then we have that S3 ∩ D is all sets which

contain either 1 or 2, in particular, both the set 1 and 2 are in the dominating set, and in S4 1,

and 2 dominate S5 since 1 does not contain 2 and 2 does not contain 1. Therefore S5 ∩D = ∅. A

contradiction with Lemma 5. Indeed, |S0 ∩D| = 1.

Since all vertices of S0 are the same up to isomorphism, and every independent set must have

nonempty intersection with the dominating set, we may assume that S0 ∩ I = 1. Therefore in S1,

only vertices not containing 1 can be in the dominating set. Hence in every vertex in S3∩I contains

a 1. Therefore S4 ∩D must contain 1, and S5 ∩D must contain only vertices which have a 1. So

S4 ∩D = S4+2j ∩D = 1 and S3 ∩D = S3+2j ∩D is all subsets which contain 1 for all j such that

3 + 2j ≤ h − 2. At Sh−2 we have edges from a k set to subsets by inclusion, hence Sh−1 ∩ D is

all subsets not containing 1. But these subsets all point to 1 which is assumed to be in the set, a

contradiction with D being independent. Therefore no independent dominating set exists.
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Figure 3.3 The Digraph D5,3.

By altering this construction slightly, we instead get a nontrivial family of graphs with odd

period which contain independent dominating sets. This shows that only knowing the period of a

graph is not sufficient for determining existence of an independent dominating set.

Lemma 7. In a directed graph D with odd period h and decomposition into independent sets

S0, . . . , Sh−1 such that vertices in Si are adjacent only to vertices in Si+1 with addition modulo h,

an independent dominating set I is defined entirely by Si ∩ I for any 0 ≤ i ≤ h− 1.

Proof. Suppose that we have a digraph D with period h decomposed as in the statement, and we

have Si ∩ I = X for some X ⊆ V (D). Notice that the only vertices which can dominate Si+1

are vertices of Si or vertices of Si+1. Therefore, any vertex in Si+1 \ N+(X) ∈ I. Hence we have

determined Si+1 ∩ I = Si+1 \N+(X). By the same argument we can now construct Si+2 ∩ I, and

taking one step at a time Si+k for any 1 ≤ k.

Theorem 14. For each h, there exists an infinite family of graphs G with period h such that for

all G ∈ G, G has an independent dominating set.

Proof. We follow the construction in Theorem 6, but instead draw edges by from u ∈ Sh−2 to Sh−1

if and only if u /∈ S. We note then that the independent dominating set defined by S0 ∩ D = 1
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is an independent dominating set. In particular, we see that from S3 onward, we alternate Si ∩D

between the set 1, and the set of all subsets not including one based on parity.

3.6 Conclusion

In this chapter, we expanded on independent domination theory in directed graphs by providing

a generalization of several of Cary, Cary, and Prabhu’s original results, by showing that directed

graphs with even period have independent dominating sets and allowing anti-parallel edges. We

prove that for certain classes of graphs, the existence of independent dominating sets is in P , and

provide an exponential time algorithm for the class of graphs with odd period greater than 1. We

finally provided constructions of graphs that show that the directed analogue of Vizing’s Conjecture

for independent dominating sets does not hold.

We determined after this research that independent domination in directed graphs has been

of interest in the field of computer science and has a long history. As such, we direct the reader

to a survey by Boros and Gurvich [3]. With this discovery, we have found that the existence of

independent sets in graphs with even period was proven by Richardson [36]. Additionally, Chvátal

proved that determining the existence of an independent dominating set is NP -complete [8] in

general but special classes of graphs have been a rich area of study since this result. We note that

some results of this research are still best known, including the time complexity result for finding

an independent dominating set in graphs with period greater than 1. Additionally, it appears

that since kernels were not introduced with respect to independent domination, the discussion of

Vizing’s Conjecture maintains relevancy, and provides an important avenue for continued research.

There are many significant questions which arise from this research. An important direction of

study for the independent domination in directed graphs is the idomatic number. We wonder also

under what restrictions an analogue of Vizing’s Conjecture that might hold, for example forcing

that all graphs and their Cartesian products contain independent dominating sets. Finding classes

of graphs which do not satisfy Vizing’s Conjecture despite the existence of independent dominating
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sets would be a very important result, or determining other additional conditions on the structure

of directed graphs under which we can prove Vizing’s Conjecture is a rich area for study.

As Cary, Cary, and Prabhu suggest, studying how the reversal or addition of a single edge can

alter the idomatic number, which is of interest because of the application of independent domination

in ad-hoc networks.
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CHAPTER 4. SPLIT DOMINATION IN DIRECTED GRAPHS

4.1 Introduction

A set S will be called a split dominating set of G if S is dominating and V \ S is disconnected.

This was defined in 1997 by Kulli and Janakiram [29]. Continuing in the style of Chapter 3, we

will be taking this well studied domination parameter and considering it in the context of directed

graphs. First, we must translate the question into digraph terminology. As defined in Chapter 3,

for a digraph D = (V,A), S ⊆ V is said to be dominating if for every u ∈ V , either u ∈ D or there

exists some v ∈ D such that (v, x) ∈ D. The hurdle in translating split domination into directed

graphs is determining the meaning of disconnected. Fortunately this ambiguity in connectivity of

directed graphs is well studied, and we provide several definitions below to understand different

concepts of connectedness.

As defined in Chapter 3, a directed graph is said to be strongly connected if between any two

vertices u, v ∈ V (G) there exists both a directed path from u to v and a directed path from v to u.

A directed graph is said to be unilaterally connected if between any two vertices u, v ∈ V (G) there

exists either a directed path from u to v or a directed path from v to u. A digraph is called strictly

unilaterally connected if it is unilaterally connected but not strongly connected. A directed graph

is said to be weakly connected if the underlying graph is connected. A digraph is called strictly

weakly connected if it is weakly connected but not unilaterally connected.

Due to these three distinct notions of connectivity, we see that there is some ambiguity in

defining the split domination number of a digraph. We will now instead consider split domination

sequences SDS(G) = (s1, s2, s3) where s1 is the size of a smallest dominating set whose removal

makes G unilaterally connected, s2 the size of a smallest dominating set whose removal makes G

weakly connected, and s3 the size of a smallest dominating set whose removal makes G disconnected.

We define the strict split domination sequences SSDS(G) = (s1, s2, s3) analogously, where instead
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require strictly unilaterally connected and strictly weakly connected graphs after vertex removal.

For each of these parameters, we seek to determine which sequences are possible split domination

sequences and iterated split domination sequences.

As an aside, we recall that sequences in this vein have been studied in the past. Namely the

domination sequence (γ(G), i(G), ir(G), α(G)) was studied by Cockayne and Mynhardt [9] where

γ(G) is the domination number, i(G) is the independent domination number, ir(G) is the irredun-

dance number, and α(G) is the independence number. One of the premier theorems involving this

sequence is from Cockayne and Myndhart which states that barring a few pathological examples,

all weakly increasing positive integer sequences are domination sequences. In this chapter, we seek

the same type of result.

4.2 Strict Split Domination Sequences

In this section we seek to answer the following question:

Question 6. For what positive integer sequences s = (s1, s2, s3) is s a strict split domination

sequence?

We will first a quick observation which rules out a pathological case.

Observation 3. No strongly connected oriented graph contains a dominating vertex.

We notice that by the above observation, there do not exist any strict split domination sequences

which have s1 = 1.

To approach this problem, we provide a construction of a directed graph which takes care of

many of the possible strict split domination sequences. Consider the following construction, Dr,s,t.

We begin with a bowtie graph and turn the triangles into directed triangles. We blow up the central

vertex into a tournament on t vertices. In one of the four remaining vertices, we blow up into a

tournament on s vertices, and we blow up the adjacent vertex into an empty graph on r vertices.

Blow up the remaining two vertices of the bowtie into complete graphs on rst vertices. See Figure

4.1 for the bowtie structure and Dr,s,t.
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Kt

Ks

Ir Krst

Krst

Figure 4.1 The Bowtie and Dr,s,t

Claim 7. If S ⊆ Dr,s,t has V \S is not strongly connected, then at least one full blow up is a subset

of S.

Proof. By construction, if there exists a vertex from each blow up, we may follow the bowtie

structure through the blow ups to reach any other vertex.

Claim 8. The size of a minimum dominating set whose removal leaves Dr,s,t disconnected is t+ 2.

Proof. By construction, notice that if the center Kt is removed, the graph is disconnected, and this

set dominates Ir and one Krst. It remains to take only two more vertices one in Ir and one in Krst.

So there exists a set S whose removal leaves the graph disconnected of size t+ 2.

It remains to show that any disconnecting set is of size at least t+2. Clearly if Krst is removed,

then we have removed more than t + 2 vertices, so either Ks or Ir are removed. In either case,

the graph is still not disconnected, and we must remove another blob. Say the other of the two is

removed, and the graph is still not disconnected. Must remove a full extra blob since inside the

blobs are complete graphs, so add at least t vertices to the set, so it is too big.

Claim 9. The size of a minimum dominating set whose removal leaves Dr,s,t strictly weakly con-

nected is s+ 2.

Proof. We first show that there exists such a set of size s+3. By removing the blob Ks, we note that

any two vertices in Ir have no directed path between them, so as long as r ≥ 2, indeed the graph is
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weakly connected. To dominate we may take one vertex in Kt and one in the Krst dominated by

Kt. This is a dominating set such a set as long as t ≥ 2.

We now seek to show that this is indeed the minimum size of such a set. Note that all of Kt

cannot be removed, lest the graph be disconnected, and removing an entire Krst is too large. To

break strong connectivity we must remove Ir, which is r vertices. Now by the bowtie structure

between any two vertices in different blobs there exists a directed path between them. Between any

two vertices in the same blob, since each reamining blob is an oriented Km for some m, there is

an edge between the vertices, so more vertices must be removed to leave weak connectivity. Notice

that to break either of the above arguments, we must remove an entire blob, that is at least s more

vertices must be removed (since Kt cannot be removed without leaving disconnected unless we also

remove s). So at least s+ 2 vertices must be removed.

Claim 10. The size of a minimum dominating set whose removal leaves Dr,s,t strictly unilaterally

connected is r + 3.

Proof. Similar to other cases, removing Ir, a vertex from each of Kt and both Krst is dominating.

Also the graph is unilaterally connected since each remaining blob is a complete graph, and the

remaining directed paw is unilaterally connected.

Note once again we cannot remove Kt, and Krst is too big, so we consider removing Ks. We

see that the graph is not unilaterally connected since each pair of vertices in Ir does not have a

directed path between them. Therefore all but one vertex must be removed from Ir, but then we

have removed r − 1 + s vertices. Note that s ≥ 2, so we have removed at least r + 1 vertices, but

this set is not dominating, so we must remove at least two more vertices from Kt ∪ 2Krst to be

dominating, removing at least r + 3 vertices, as desired.

Theorem 15. All integer sequences {(s1, s2, s3)|s1 ≥ 5 and s2, s3 ≥ 4} are strict split dominating

sequences.

Proof. By the claims above, Dr,s,t is a graph which has strict split domination sequence {r, s, t} for

all r ≥ 5, s ≥ 4, and t ≥ 4.
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4.3 Conclusion

In this chapter we build on the study of split domination in directed graphs which has largely

been studied in the context of special families of graphs in works similar to that of Factor, Langley,

and Merz [5, 17]. We introduced the strict split dominating sequence and we provided a partial

answer to the following question:

Question 7. What integer sequences (s1, s2, s3) are strict split dominating sequences?

A confirmation or refutation of the following conjecture would require only a few special cases

to be handled, namely constructions for r < 4, s < 3, or t < 3 with the other two parameters

left arbitrary. This is the most natural conclusion to the question above, and would be interesting

to pursue. Hopefully there exists some more efficient construction which takes care of all cases

(including those answered by this chapter) but multiple different constructions may be necessary.

Conjecture 4. All integer sequences {(s1, s2, s3)|s1, s2, s3 > 1} are strict split domination se-

quences.

We also note that the definition of strict split domination sequence is not the only one that would

make sense depending on our applications in a communication network. We may, for example be

interested only in reducing the level of connectivity below a certain threshold, rather than precisely

maintain a certain connectivity. Namely, we define the weak split domination sequence of a strongly

connected directed graph G as the sequence {s1, s2, s3} where s1 is the minimum number of vertices

that must be removed to make D not strongly connected, s2 the minimum number of vertices that

must be removed to make D not unilaterally connected, s3 the minimum number of vertices that

must be removed to make D not weakly connected. There is a quick observation to be made about

weak split domination sequences.

Observation 4. All weak split domination sequences are weakly increasing.

Another potentially valuable variation of this concept would be an iterated version of the same

procedure. We may view the iteration a few ways. One perspective is that the vertex removal occurs
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in stages, beginning with removing a smallest vertex set to make the graph unilaterally connected,

then from the remaining graph removing a vertex set to leave a weakly connected graph, then finally

removing vertices to create a disconnected graph. The other view of this is to create a sequence of

vertex sets S1, S2, S3 such that S1 ⊆ S2 ⊆ S3 and D \S1 is unilaterally connected, D \S2 is weakly

connected, and D \ S3 is disconnected. With this second view, we may be interested in finding the

smallest set at each step, or we may be interested in finding the smallest sum |S1|+ |S2|+ |S3|.
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CHAPTER 5. FLAG ALGEBRAS AND INDUCIBILITY OF NETS

This chapter will serve as a light introduction to the Flag Algebra method, and in doing so we

will prove the following theorem:

Theorem 16. For graphs on 6k vertices, the unique maximizer of the density of nets is the iterated

blow up of a net.

Recall that this research began as an attempt to find a fractalizer. We will begin the discussion

with a short observation that the net is not a fractalizer, then continue to prove Theorem 16 to show

that intuitively the net is “close to” a fractalizer. The techniques used in this paper are similar to

those used in papers by Balogh, Hu, Lidický, and Pfender [2] in which they confirmed a conjecture

of Pippenger and Golumbic [33] on which graphs maximize the density of C5. There has been

other recent interest in determining the density maximizers for various small graphs, particularly

on graphs on less than or equal to five vertices [16, 26]. Some of the constraints of determining

maximizers are largely due to the limits of flag algebras. In the next section we will discuss the

method of flag algebras, and some of the limitations, as well as provide an outline of how the proof

of Theorem 16 will proceed.

5.1 Introduction

Recall that a fractalizer is a graph G such that the unique maximizer of density of G on graphs

of order n is a balanced iterated blow up of G for all n. Fox, Huang, and Lee [19] proved that almost

all graphs are fractalizers using random graphs, but the only known constructions of fractalizers are

the empty graphs and complete graphs, both trivial cases. It has been shown that no other graphs

on at most five vertices are fractalizers. For this reason, we begin the search among graphs on 6

vertices with the net graph. Our first observation will unfortunately end the hopes that the net is
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a fractalizer, but we will continue to prove that in some way, the net does behave like a fractalizer

once n is sufficiently large.

For the remainder of this chapter, we will focus on the net, and will refer to the vertices in the

triangle as either inner vertices or triangle vertices. We will refer to the vertices of degree one as

either outer vertices or pendant vertices.

Observation 5. The net is not a fractalizer.

Proof. We construct a graph G starting with K4 and for each v ∈ V (K4) we add one vertex pv

that is only adjacent to v. We claim that G has the same number of induced nets as a balanced

blow up of the net.

First we count the number of induced nets in G. To construct the inner triangle of the net, we

must choose three vertices from the induced K4, giving
(
4
3

)
options. Then each pendant vertex of

the net is entirely determined by the vertices chosen from K4. This gives 4 induced nets.

We now seek to compare this number to one of the balanced iterated blow ups of the net on

8 vertices. This means that we may choose exactly two vertices two vertices to duplicate, and for

ease of counting, we will choose to duplicate two distinct pendant vertices, to create the graph G′

see Figure 5.1. We note that there is only one triangle in G′, so it must be chosen to induce a net.

One pendant vertex is forced by the triangle vertex with only one remaining unchosen vertex, and

the remaining two triangle vertices must get a pendant and each has two choices giving 4 unique

nets. Therefore G and G′ have the same number of induced nets.

It remains to see that G is not a balanced iterated blow up of the net. We note that when

duplicating vertices from the net, the K4 can only be created by duplicating a triangle vertex, but

we see that none of the vertices outside of the K4 have two neighbors in the K4. Hence G is not a

balanced iterated blow up of the net, and we have shown that the net is not a fractalizer.

We will now begin our discussion of the Flag Algebra method to better understand why the

standard applications of the method would not be able to determine that the net is not a fractalizer.

The Flag Algebra method was developed by Razborov [34] in 2007. It has since been used for
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G’ =G =

Figure 5.1 The Graphs G and G′

many applications including (but not limited to), discrete geometry, graph colorings, permutations,

hypergraphs, and Ramsey theory [39, 28, 35]. At its heart, the Flag Algebra machinery is a tool for

helping to solve extremal combinatorics problems. To see some of these results applications and a

survey of the method, we refer the reader to a paper of Razborov [35]. The aforementioned results

of Balogh, Hu, Lidický, and Pfender are also based on the method of flag algebras. Our primary

goal now is to define the algebras Aσ for which flag algebra gets its name. Much of the following

discussion follows the descriptions of flag algebra due to Razborov [34] and Volec [41].

First we build to define an algebra A which allows us to define addition and multiplication

functions on graphs so that we can calculate linear combinations of graphs. Let F` be the set of all

distinct graphs on ` vertices, and F to be the set of all distinct graphs. We will treat F` as though

it has been given some ordering, but the ordering is arbitrary. To formalize the intuition that

densities of subgraphs H in a graph G can be found by randomly selecting |V (H)| vertices from

G and checking if they induce a graph isomorphic to H we introduce a few more definitions. Let

p(H,G) be the probability that |V (H)| randomly chosen vertices of G induce a graph isomorphic to

G. We note that in a graph G on n vertices, if we choose a graph H on k ≤ n vertices we see that the

probability of randomly selecting k vertices gives a graph isomorphic to H can be calculated in two

ways. Either the value p(H,G) could be calculated or we could calculate
∑
H′∈Fk

p(H,H ′)p(H ′, G) for

some |V (H)| ≤ k ≤ |V (G)|. One interpretation of this second calculation is first we pick a graph

of an intermediate size, and then sample from the smaller graph to find a copy of H. To capture

this intuitive notion of finding the same value, we introduce the subspace K of RF as the subspace
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generated by all linear combinations of the form

H −
∑

H′∈F|V (H)|

p(H,H ′) ·H ′

for all H,H ′ in F . Notice that this expression only looks at graphs on one more vertex than our

H, but using linear combinations we may fill in any gaps for larger graphs. With this definition,

we can factor out K in RF to sensibly define equivalence, calling this class corresponding to the

zero of RF . This equivalence formalizes the intuition above, that we can find the probability of

sampling a graph through taking intermediary samples. Let this factored space be called A.

We seek now to create an algebra out of A by defining addition, multiplication by a real number,

and multiplication of two elements of A. Our multiplication by a real number is naturally defined

by distributing it to all terms of any linear combination, and addition similarly as addition modulo

K. It remains to define a product of two elements of A. The intuition behind the product is

relatively natural, that is the product of two graphs H1×H2 can be calculated in a graph G as the

probability of selecting |V (H1)| vertices which are isomorphic to H1 and simultaneously selecting

|V (H2)| vertices which are isomorphic to H2 such that the vertex sets are disjoint which we will

write as p(H1, H2;G). To write this multiplication formally, we define

H1 ×H2 =
∑

H∈F|V (H1)|+|V (H2)|

p(H1, H2;H)H.

This captures our intuition if we think of H in the equation as the probability of selecting H

from some large graph G. We are now equipped with notions of all of the necessary additions and

multiplications, and as proven by Razborov [34] these definitions extend uniquely to operations on

the algebra A.

We now seek to define the desired algebra Aσ. A labelled graph is a graph with its vertices

assigned unique integers. We will refer to these labelled graphs as types, often denoted σ. The

idea behind types is to fix certain vertices that must appear in the sampled set when sampling

vertices for subgraphs and force all other vertices to be chosen from the non-labelled vertices.

When drawing labelled vertices in types, we will denote them with �. For example, we may now

count the degree of a vertex in a graph by using these types. We now define analogously to how A
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Figure 5.3 A Multiplication of Two Types

was constructed the set of graphs Fσ, linear combinations of graphs Kσ, and algebra Aσ and with

the similar operations. The one peculiarity that arises is how multiplication of two graphs in Aσ.

In Figure 5.3, we see how the multiplication of two edges with one labelled vertex is calculated.

Intuitively we can consider this multiplication as first ensuring that the labeled vertices are placed

in a way that induces the type, and then finding the probability of sampling the two graphs as

before.

Our goal with constructing these labelled graphs was to create inequalities regarding nonlabelled

graph densities. We now mention how to convert back from a labelled graph to an unlabelled

through a process called averaging or unlabelling. We can unlabel graphs by taking advantage of

the following idea. On one hand we may count the total number of subgraphs isomorphic to a

given graph by using A. On the other hand we may calculate it by using Aσ by first fixing σ in a

host graph, then summing across all possible vertices that could have been chosen for σ. With this

observation, we can set up equalities between elements of Aσ and A, as demonstrated in Figure

5.3.

Finally, we will be using the positive semidefinite method in each of our proofs. This is a method

for creating inequalities which must be true in extremal examples given some conditions. The flag

algebra method can be used with the open source software Flagmatic [18]. The construction of
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Figure 5.4 The Once Iterated Blow Up of the net N1×

inequalities using the positive semidefinite method has been largely automated, and an in depth

discussion on the method can be found in the Ph.D thesis of Volec [41].

5.2 Nets

The following chapter is joint work with Michael Phillips. Recall that a fractalizer is a graph

whose induced density is maximized only be iterated blow ups of itself, but in Chapter 1 we proved

that the net is not an example of such a graph. In this section we will prove that in some sense,

the net is close to a fractalizer. We will prove the following theorem:

Theorem 17. For k ≥ 1, among all graphs of size 6k the unique maximizer of density of nets is

the balanced blow up of the net.

Our theorem largely follows the method of proof introduced by Balogh, Hu, Lidický, and Pfender

[2], with some alterations that will be noted as we arrive at them. The basic idea of the proof is

as follows. We first use Flagmatic and the positive semidefinite method to determine an upper

bound on the possible density of nets in any graph. Since the conjectured extremal construction

is iterated, Flagmatic will give us an imperfect bound (that is, the bound will be slightly larger

than our construction). To lower this bound, we can instead check linear inequalities in A utilizing

larger graphs which contain the net. Using bound from these larger graphs, we can employ stability

arguments involving discrete optimization methods to determine that certain structures must (or

must not) exist in any extremal graph. This will allow us to narrow down (for large graphs) the
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potential extremal examples to the desired construction. In particular, we will use information on

the density of two classes of graphs, N3 and N22. N3 is the class of all graphs in which a vertex of

the net has been duplicated twice, which is to say that two new vertices are added to a net with the

same adjacencies as a vertex already in the net. This class includes all possibilities of edges between

these three vertices, and all possible vertices that can be duplicated (up to isomorphism). N22 is

defined similarly, but with two distinct vertices being duplicated. Using an inequality involving

these two classes, we can show that the top level structure of the graph must be close to a net. We

then continue with several arguments to show with stability arguments that if an extremal graph

has such a structure close to a net, the structure must agree with a blow up of a net exactly on the

top level. From there, we use discrete optimization to show that each of these top level pieces must

be balanced. From there we note that any extremal example which which matches the iterated

blow up of the net on the top level must indeed be the iterated blow up.

5.3 Proof of Theorem 16

As discussed above, we begin with the basic flag algebra method to obtain the following result.

From now on, we will refer to the density of the net as N and the density of the classes N3 and

N22 as N3 and N22 respectively.

Claim 11. There exists n0 such that every extremal graph on at least n0 vertices satisfies that

N ≥ 24
1555 and

4N3 − 14.97N22 > .00071788399. (5.1)

Proof. This claim is a consequence of the plain flag algebra method. We ran Flagmatic on 8 vertices

which verified N ≥ 24
1555 with certificate.

For the second inequality we minimize the difference 4N3 − 15.96N22 subject to the constraint

that N > dN ′(N) where N ′ is the limit of an infinitely iterated blow up of the net. We add

this constraint since we know that any extremal example must have at least as many nets as our

conjectured graph. In particular for large enough graphs, the iterated blow up has a vanishing
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proportion of nets in its innermost layers, so we anticipate that the limit would give a reasonable

bound for flag algebras to use.

To know what we are shooting for, it might be nice just to calculate the density of nets in the

iterated blow up. We will count the number of nets. To find a net, one must either select one

vertex from each part, or select all vertices from the same part. We have that

d(N)

(
n

6

)
=
(n

6

)6
+ 6d(N)

(n
6

6

)
n→∞−−−→ d(N) =

6!

66 − 6
. (5.2)

To compare with the second inequality, we would like to look at N3 and N22 in the iterated

blow up. To do so, we use the following calculation

N22

(
n

8

)
=

(
6

2

)(n
6

2

)2 (n
6

)4
+ 6N22

(n
6

8

)
n→∞−−−→ N22 =

8! ∗ 15

4(68 − 6)
(5.3)

d(N3)

(
n

8

)
= 6

(n
6

3

)(n
6

)5
+ 6d(N3)

(n
6

8

)
n→∞−−−→ N3 =

8!

(68 − 6)
(5.4)

In particular, we have that in our desired limit object, 4N22 − 15N3 = 0 and

4N22 − 14.97N3 ≈ .00084019254. (5.5)

We now introduce some notation to work toward our stability results. In an extremal example

G, let N be the set of induced nets in G. For any induced net H in G we will define N22(H) and

N3(H) to be the number of copies of N22 containing H and N3 containing H respectively. We will

now find the “base” of our structure, by picking a net to be the backbone of the structure that we

will show is like an iterated blow up. That is, among all nets in N we pick one net H such that for

all H ′ ∈ N \H, N22(H)− 4.99N3(H) ≥ N22(H)− 4.99N3(H). This will allow us to take advantage

of Claim 11. To push to our iterated construction we start to create sets of vertices which match,

to some extent, the structure of H. Label the triangle in H as i1i2i3o1o2o3 where i1i2i3 induces a

triangle and ijoj ∈ E(G). Call {i1, i2, i3, o1, o2, o3} skeleton vertices. We now define sets of vertices,

called blobs I1, I2, I3, O1, O2, and O3, which act like the vertices of H in the sense that
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I1 = {v ∈ v(G)|(H ∪ v) \ i1 ∼= H}.

We define the remaining sets similarly, and note that we may think about this as creating sets

of all vertices which are isomorphic to the vertices in H with respect to H. We say that a pair of

vertices w1w2 which intersects two distinct blobs is funky if the skeleton vertices are adjacent but

w1w2 is a non-edge or vice versa. Formally, this means that (H \ {v1, v2}) ∪ {w1, w2} 6∼= H where

v1, v2 are the skeleton vertices corresponding to the blobs that w1 and w2 are in respectively. We

will think about this as each funky pair destroying a potential copy of N22 in the subgraph induced

by vertices in blobs.

Claim 12. In any graph maximizing the induced density of nets, the following inequalities are

satisfied:

0.16579160 < Ii, Oi < 0.16754174, 1 ≤ i ≤ 3, (5.6)

x0 < 0.00165262197319, (5.7)

f < .00000276. (5.8)

Proof. We use Lagrange multipliers and some symmetry arguments to simplify the search space.

We may now take advantage of Claim 11 to set up several quadratic programs, in which we will

solve the following problems:

• Maximize the proportion of the trash vertices, x0 (those that do not match the skeleton net)

• Maximize the number of funky pairs f

• Maximize the proportion of vertices in a skeleton blob i1, i2, i3, o1, o2, o3

• Minimize the proportion of vertices in a skeleton blob i1, i2, i3, o1, o2, o3.
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The constraints for each of the programs are that
3∑
i=1

(ii + oi) = 1 and the equation from Claim

11. We will demonstrate how to show the lower bound on the proportion of vertices in a skeleton

blob. As such, we will be solving the following quadratic program

P =



minimize i1

subject to
∑3

i=1(ii + oi) + x0 = 1

2
∑

k,j⊆[3](ikoj + okij)− 2f − 4.98
∑

1≤`≤3(i
2
` + o2` ) > .00071788399

ik, ok, f ≥ 0 for all k ∈ 1, 2, 3

To simplify this computationally, we notice that in our constraints, there is no distinction

between outer and inner blobs. From now on, we will use only one variable x1 to denote the blob

that we are interested in and we can limit our search to find a solution to the program instead

where all other blobs are given equal weighting, namely 1
5(1− x1− x0). It is clear to see that since

f appears only in the second constraint with a negative coefficient, if there exists a feasible solution

with f > 0, we may find another feasible solution by setting f = 0 since this will increase the left

hand side of the constraint. By factoring out x1 from all terms in the left hand side, we will see

also that we have a sum of differences of blob sizes squared, which is minimized when the blobs

are equally sized. These two factors allow us to make these simplifications and solve the simpler

quadratic program that follows:

P ′ =



minimize x1

subject to x1 + 5y + x0 = 1

5x1y + 10y2 − 2.0 ∗ f − 4.99x21 − 4.99 · 5y2 > .00071788399

x1, x0, y, f ≥ 0

This was solved using Sage [38] and we provide the code required in Appendix A.

From this we can derive an upper bound on the funky degree of a vertex in ∪3i=1(Ii ∪ Oi).

In particular, we have that the funky degree of a vertex in a skeleton blob is bounded above by

1− (1− 4.99)xmin where xmin is the lower bound on skeleton blobs found above.
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In the following claim, we are now forced to slightly deviate from the strategies of Balogh,

Hu, Lidický, and Pfender. Where they can take advantage of symmetry and C5 being self-

complementary, the net has fewer advantageous properties. To deal with this, we instead give

an iterated argument that certain types of funky pairs cannot exist, and use that information to

lower the complexity of work for the remaining possible funky pairs. While this is a little longer, it

allows us to overcome the fact that some funky pairs do seem to be in a “large” number of nets, but

that each pair of this type relied on funky pairs which must be uncommon. Let us identify skeleton

blobs as the following six sets of vertices I1, I2, I3, O1, O2, O3 where I1, I2, I3 are the skeleton

blobs corresponding to the triangle vertices of the chosen net and O1, O2, O3 corresponding to the

pendant vertices such that O1 is the skeleton blob corresponding to the pendant of the skeleton

net vertex in I1, and O2 and O3 defined similarly as the pendants of the skeleton net vertices in

I2 and I3 respectively. That is, the skeleton net has edges between all vertices starting with I and

edges between Oj and Ik vertices if and only if i = k.

Claim 13. There are no funky pairs in ∪3i=1(Ii ∪Oi).

Proof. Let uv = {u, v} be a funky pair in G. We will compare the number of nets in G to the

number of nets in G′ where G′ is a copy of G with the only difference being that {u, v} is not funky.

We see that in G′ any set S of 4 vertices in the blobs not containing u and v induces a net containing

u and v unless there is funky pair other than uv in S ∪ uv. Since we have not yet chosen which

blobs u and v are in, to preserve generality we will denote the blobs containing the remaining four

vertices as Xi, Xj , Xk, and X`, with the proportions of these blobs in G′ being denoted xi, xj , xk, x`

respectively. Therefore with appropriate choice of i, j, k, and `, we have at least

xixjxkx`n
4 − (df (u) + df (v))xixjxkn

4 − fxixjn4 = ((x` − ((df (u) + df (v))))xk − f)xixjn
4 (5.9)

≥ ((xmin − 2df )xmin − f)x2minn
4 (5.10)

≥ 0.00069n4 (5.11)

nets containing uv in G′.
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We now seek to count the maximum possible number of nets containing {u, v} in G. We first

see that there are at most (x0/6)n4 nets containing uv and a vertex from the trash blob. There

are at most (f/2)n4 nets containing uv and another funky pair which does not intersect with uv.

Additionally, there are at most (df (u) + df (v))/2n4 nets containing uv and two vertices which are

in a funky pair with at least one of u or v. We now count the nets in which uv is the only funky

pair.

First we note a small structure claim that will help simplify the arguments. Let N be a net

containing uv such that uv is the only funky pair in G. There exists a path on four vertices in

N with no funky pairs. (Recall, if this path was in four different blobs, it would be called blob-

induced). Indeed, regardless of which two vertices are chosen from the net, there exists a path of

length four containing at most one of those vertices.

We claim that either the P4 is blob-induced, or contained in exactly one blob. Suppose that

the P4 is not blob induced. Then, there exists a blob which contains at least two vertices of the P4.

We note that this pair has the same neighborhood in the P4 except in the same blob, but every

neighborhood must be unique so all vertices are in the same blob.

Suppose that the P4 is blob-induced with vertices in O1, I1, I2, and O2. We seek to place the

final pendant vertex, p. Note that p must have degree 0 to the P4 and can be in at most one funky

pair, so p cannot be placed in an inner blob since each inner blob is expected to be adjacent to

at least two of the P4 blobs. Similarly we note that if the triangle vertex, t, corresponding to p is

placed in I3, p cannot be placed in O1 or O2, but also p cannot be placed in O3, else there would

be no funky pairs. Therefore V (N) ∩ I3 = ∅ and p ∈ O1 ∪O2. In either case, we see that p is in a

funky pair with one inner vertex. We see that no matter where we place t, to induce a net, t must

be in a funky pair, a contradiction with N having at most one funky pair. Hence, there exist no

funky nets containing uv and a blob-induced P4 which intersects four blobs.

Since the P4 is not blob induced and at least one of the pendants in the P4 is in no funky pairs

in N , so no remaining vertices are blob distance 1 from the P4. Similarly, there is a triangle vertex

with no funky pairs in N , so the final triangle vertex must be within blob distance 1, and therefore
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in the same blob. Finally, it remains to place the last pendant to have exactly one funky degree.

There are at most (xmaxn)4/12 ways to place vertices in this way.

Finally, it remains only to count the nets in which there exists exactly one vertex w which is in

a funky pair with u, v, or both.

We first count nets involving a funky pair between two inner blobs in order to show that there

are no funky pairs in I1 ∪ I2 ∪ I3.

Claim 14. There exist no funky pairs in I1 ∪ I2 ∪ I3.

Proof. We will assume that u ∈ I1 and v ∈ I2 and note that since we replace all of our counts

with xmax and xmin which are independent of which blobs we started with, we will have counted

the nets for any pair of inner blobs.

Suppose first that w is in a funky pair with both u and v. We now try to place w.

Let w ∈ O1∪O2. Suppose, without loss of generality that u is in the inner blob corresponding

to w. Then in any net, w and u have a mutual non-neighbor x which must lie in O3 Since there

is a path from x to u, there exists a vertex in y in I3. But y has degree 3 and its neighbor set

contains no edges, so we are unable to create a net. So there are no nets with w ∈ O1 ∪O2.

Let w ∈ O3. We see that w must be a triangle vertex, and exactly one of u and v is a triangle

vertex. The only mutual neighbors of this pair of triangle vertices are in I3. But any vertex in I3

would create a C4, which is not a subgraph of the net. Hence there are no such nets.

Let w ∈ I3. Since {u, v, w} is independent, we know that at most one of these vertices is a

triangle vertex. Then each remaining triangle vertex must be blob distance at most one from the

remaining vertices, so they must be in inner blobs. Also, they must be in different blobs, else we

create a C4 a subgraph. There are three ways to place these triangle vertices, and then the final

vertex must be a pendant of the triangle vertex in {u,w, v} so it’s location is forced to be the outer

blob corresponding to it. This creates at most 3dfx
3
maxn

4 nets.

We now count the nets in which w is in only one funky pair. We will assume that w is in a

funky pair with u, and by symmetry we will also obtain a count for w in a funky pair with v. Since
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uv /∈ E(G), v must be in a P4 containing no funky pairs. Either the P4 is entirely in the blob with

v or it is blob-induced.

If the P4 is in one blob, then u is a triangle vertex and v and w are pendant vertices. The final

vertex must be the pendant of u and can be either in the outer blob corresponding to u’s blob, or

in I2. This gives at most (16 + 1
2)dfx

3
maxn

4 nets with the P4 in one blob.

If the P4 is blob-induced, v is a triangle vertex, and u is a pendant. We note that the pendant

of v must be in O2, and the second internal vertex (hence triangle vertex, t2) in the P4 is either in

I1 or I3. In the latter case, we have that w ∈ I3, triangle vertex for u ∈ I1, and the final pendant

in O3. Otherwise, we have w ∈ O1, the triangle vertex of w in I1 and the triangle vertex for u in

I3. Each of these independently adds at most (4/3)dfx
3
maxn

4 nets, so accounting for both cases as

well as switching the roles of u and v, we have a total of at most (16/3)dfxmaxn
4 nets.

We have now counted the total number of nets that a funky pair in inner blobs can be in as

bounded above by (3 + 16/3)dfx
3
maxn

4 nets. So by Claim 12 uv is in at most

x4max/12 + (3 + 16/3)dfx
3
maxn

4 + x0/6x
3
max + d2fx

3
max + f/2x2max < .00069n4

nets, a contradiction with Equation 5.11.

We now inspect the next type of funky pair that could appear, in hopes to use the information

we have gained from Claim 14. We will turn to pairs of vertices in corresponding inner and outer

blobs.

Claim 15. There exist no funky pairs in Oj ∪ Ij for each j ∈ 1, 2, 3.

Proof. We will assume similarly to the previous argument without loss of generality that u ∈ O1

and v ∈ I1.

We begin once again by assuming first that the vertex w is in a funky pair with both u and

v. By the Claim 14, we know that w /∈ I2 ∪ I3, hence w ∈ O2 ∪ O3. In these positions, u and

w have no mutual neighbors (which are not funky pairs) so so u must be the pendant vertex of

w since w has degree at least 2. Also v is a triangle vertex, which forces the location of the final
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triangle vertex to be the inner blob corresponding to the outer blob containing w. Therefore the

final pendant vertex must be placed in the same blob as w. This yields at most 2dfx
3
maxn

4 nets.

We now count the number of nets containing {w, u, v} where w is in a funky pair only with v.

Again, since no funky pairs exist in the inner blobs, w ∈ O2∪O3. There must exist a P4 containing

no funky pairs that includes u but not v. If this P4 is entirely contained in O1, w is in O1, else

v has degree 4. Also, u and w are pendants, and v is a triangle vertex missing its pendant still.

This final pendant may be placed in any of O1, I2 or I3. These constructions yield a maximum

of (16 + 2 · 12)dfx
3
maxn

4 nets. If the P4 is blob induced, u is the pendant of a vertex other than v

in I1, and it intersects exactly one of I2 and I3. Therefore v is adjacent to this second triangle

vertex, and must itself be a triangle vertex, with w being its pendant. Therefore w must be in the

outer blob corresponding to the inner blob with no vertex. These constructions yield a maximum

of dfx
3
maxn

4 nets. Therefore, in the case that w is only in a funky pair with v, we have at most

19
6 dfx

3
maxn

4 nets.

We now count the nets containing {w, u, v} such that w is in a funky pair only with u. Notice

that any such net will contain a P4 which has no funky pairs and contains v. If the P4 is in I1, we

see that both v and w are pendants in the P4, and u must be a triangle vertex without a pendant

placed so far. We see that u’s pendant can be placed only in I1, giving at most 1
6dfx

3
maxn

4 nets

of this form. If the P4 is blob-induced, then v is a triangle vertex, and its pendant must be in O1.

Also u must be a pendant with triangle vertex being w and the triangle must be blob induced, so

there are at most 2dfx
3
maxn

4 of this type. In total if w is in a funky pair only with u, there are at

most 13
6 dfx

3
maxn

4 nets containing {u, v, w}.

In total, we have at most (196 + 13
6 +2)dfx

3
maxn

4 nets containing uv. Via that same contradiction

as before, we find that by Claim 12 uv is in less than .00069n4 nets, a contradiction with Equation

5.11.

The next case that we will deal with is to show there are no funky pairs between a pair of one

outer and one inner blob which are not corresponding.

Claim 16. There exist no funky pairs in Oi ∪ Ij where i, j ∈ {1, 2, 3} and i 6= j.
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Proof. We will proceed in the same manner of the last two claims. Without loss of generality,

assume u ∈ O1 and v ∈ I2.

We once again begin by counting the nets in which w is in a funky pair with both u and v.

By Claims 14 and 15, w ∈ O3. Hence, the triangle of any net containing these vertices is exactly

{w, u, v} and the pendants of u and w must be in O1 and O3 respectively. Finally, the pendant of

v can be in either O2 or I2, giving a maximum of 2dfx
3
maxn

4 nets.

We now count the nets where w is in a funky pair only with u. By Claim 15 we have that

w /∈ I1. Using the previous claims, one can find that there are no nets where w ∈ O2, and at

most dfx
3
maxn

4 when w ∈ I3. If w ∈ I2, the third neighbor of u must be in O1, since a vertex in

I1 would force w to be a triangle vertex whose pendant cannot be placed. Therefore v and w are

triangle vertices, and their pendants must also be placed in I2. There are at most 1
2dfx

3
maxn

4 nets

of this type. If w ∈ O3, we note that I3 must be empty else we create a C4. Therefore w is the

pendant vertex of u and there is a triangle vertex in I1. The pendant for v must be in O2, and the

final pendant must be placed in O1 giving at most dfx
3
maxn

4. Therefore, in the case that w is in a

funky pair only with u, there are at most 5
2dfx

3
maxn

4 nets.

To finish the count, we now determine the maximum number of nets where w is in a funky pair

only with v. By Claims 14 and 15, w ∈ O1 ∪ O3. Suppose first that w ∈ O1. We note that there

are no vertices in I1, else we find a C4 subgraph. Therefore, the P4 which does not contain v and

contains no funky pairs is contained entirely in O1. Then v’s pendant can be placed anywhere in

O2 ∪ I2 ∪ I3 giving a maximum of 3
2dfx

3
maxn

4 nets. We now see that if w ∈ O3, either u or w

is in the triangle, but not both and in either case the pendant of the triangle vertex must share

the same blob as the triangle vertex, and a third triangle vertex cannot be placed to create a net.

Therefore there are at most 3
2dfx

3
maxn

4 nets of this kind.

Similarly to the above contradictions, we have that uv is in less than .00069n4 nets, a contra-

diction with Equation 5.11.

Finally, we can move to the last case of funky pairs, between two outer blobs.

Claim 17. There are no funky pairs in O1 ∪O2 ∪O3.
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Proof. We will follow the same pattern as the previous claims. Suppose without loss of generality

that u ∈ O1 and v ∈ O2.

If w is in funky pairs with both u and v, by the previous claims it must lie in O3, creating the

triangle {w, u, v} and there is at most one vertex in an inner blob. There are at most 4dfx
3
maxn

4

nets of this type.

Suppose w is in a funky pair only with u. We see that the third vertex adjacent to u must be

in O1 or I1, so w must be a neighbor of v. Therefore, w ∈ O2 as well as the pendants of v and w.

This gives a maximum number of 2dfx
3
maxn

4 nets. To account for w in a funky pair only with v,

by symmetry we may simply double this number, yielding a total of at most 4dfx
3
maxn

4 of these

types.

Once again, by Claim 12, uv is in less than .00069n4 nets, a contradiction with Equation

5.11.

Combining Claims 14, 15, 16, and 17, we have demonstrated that no funky pairs exist between

any pair of blobs, as desired.

We now seek to show that X0 = ∅. We begin this process by determining a lower bound for

the funky degree of a vertex in X0 using the extremality of our graph G, by counting the number

of nets it must be in versus how many nets it would be in if it were placed in one of our assigned

blobs.

Claim 18. For each x ∈ X0 if x is added to a skeleton blob, df (x) ≥ .024467627389.

Proof. We may assume now that all funky pairs contain a specific vertex, x. Let xw be a funky

pair. We note that there are six possible ways to place xw. For each case, we get a trivial bound

on the number of nets containing both x and another vertex in the trash as x0/6. We will take

advantage of the fact that x is in all funky pairs. In particular, each induced net that does not

involve an additional trash vertex contains a path on 4 vertices with no funky pairs which we will

call a blob-induced path. The arguments are similar to the previous claim, so we provide one
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sample argument here (and the rest in an appendix) to find the lower bound for the funky degree

of x.

We suppose that both x and w are in distinct outer blobs. If x is acting as a pendant in

a net containing xw, then w is adjacent to two vertices and non-adjacent to two vertices in the

blob-induced path, hence the path must be placed in the same blob as w since blob-induced P4

must follow the skeleton’s edges as proven in the previous claim. This yields an upper bound

of
(
xmax

4

)
nets containing xw in a net where x is a pendant. We now seek to count the number

of nets where x is a triangle vertex. Suppose that w is a pendant. Then we must place the

blob-induced path such that no vertices are adjacent to w. There is only one way to place the

vertices in different blobs to achieve this, giving df (x)x3max total nets. Placing all vertices in a

single blob which can be non-adjacent to w gives 4
(df (x)

2

)(
xmax

2

)
+
(
xmax

4

)
nets. Finally we are left

to deal with the case the both x and w are triangle vertices, so we suppose that w is a triangle

vertex. Since the blob-induced path containing w and the final triangle vertex follows expected

blob structure or is in one blob, the blob-induced path is in the same blob with v. This produces

2df (x)xmax
(
xmax

2

)
+
(df (x)

2

)(
xmax

2

)
+ df (x)

(
xmax

3

)
potential nets.

In total we have that at most x0/6 + 1
12x

4
max + 7

6df (x)x3max + 3
2d

2x2max + dx3max nets containing

xw in G.

We now consider the number of nets that the pair xw would be in if it followed blob structure,

and we call this altered graph G′. We may assume without loss of generality that x ∈ O1 and w ∈ O2

since all of our bounds will be replacing every blob size with either maximum (or minimum) blob

sizes in our counts for bounds. Therefore, xw is in at least x4min − df (x)x3max nets in G′.

Since G is extremal, the number of nets in G is greater than or equal to the number of nets in

G′. Hence

x3min(xmin − df (x)) ≤ 1

6
x0 +

1

12
x4max +

13

6
df (x)x3max +

3

2
df (x)2x2max

and we have that df (x) ≥ 0.0261504452636.

Following similar argumentation and counting, we arrive at Table 5.3 for our six possibilities.

Therefore, we have that df (x) ≥ .024467627389.
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Table 5.1 Minimum Funky Degrees

x w Upper Bound for Nets df (x)

O1 O2
1
6x0 + 1

12x
4
max + 13

6 df (x)x3max + 3
2df (x)2x2max 0.0261504452636

O1 I1
1
6x0 + 1

4df (x)x3max + 2df (x)2x2max + 1
6df (x)3xmax 0.0338086457944

I1 O1
1
6x0 + 19

6 df (x)x3max + 1
4df (x)2x2max + 1

6df (x)3xmax 0.0244676473884

O1 I2
1
6x0 + 1

12x
4
max + 2df (x)x3max + 1

4df (x)2x2max 0.0288442703582

I2 O1
1
6x0 + 1

24x
4
max + 5

2df (x)x3max + 3
2df (x)2x2max 0.0257091074498

I1 I2
1
6x0 + 5

2df (x)x3max + 1
4df (x)2x2max 0.0290639784666

Claim 19. Every vertex in the extremal graph G is contained in at least (24/1555 + o(1))
(
n
5

)
≈

.00012861736n5 nets.

Proof. Let Nu be the number of nets containing a vertex u of G. Since G is extremal, it must

contain at least as many nets as the iterated blow up, namely (24/1555 + o(1))
(
n
6

)
nets. From this,

we have that the average number of nets that a vertex is contained in in G is

N̄ =

∑
v∈V (G)N

v

|V (G)|
≥ 6

n
(24/1555 + o(1))

(
n

6

)
≥ (24/1555 + o(1))

(
n

5

)
.

Let u, v ∈ V (G) and Nuv be the number of nets in G containing both u and v. We note that

Nuv ≤
(
n−2
4

)
= O(n4). Consider the graph G′ constructed by removing v and duplicating u. Since

G was extremal, we have that

0 ≥ N(G′)−N(G) ≥ Nu −Nv −Nuv ≥ Nu −Nv −O(n4). (5.12)

Since there exists some vertex x ∈ V (G) in at least (24/1555 + o(1))
(
n
5

)
, we consider replacing

a vertex in the least number of nets in G with a duplicate of x. In particular from the Equation

5.12, we see that that unless y was in (24/1555 + o(1))
(
n
5

)
nets, we obtain a contradiction, hence

all vertices must be in at least (24/1555 + o(1))
(
n
5

)
nets as desired.

Claim 20. The set X0 is empty.
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Proof. The primary technique used in this proof is brute force. In particular, we create a mesh the

possible sizes of X0 as a proportion of the entire graph, bound the derivative of the number of nets

that the graph can contain, and run some code to determine that there do not exist vertices in any

extremal example with sufficiently high funky degree to be in X0. See the code in Appendix B.

Suppose that there exists some vertex x ∈ X0 such that df (x) > 0 for each blob that x could

be placed in. Let X1 = I1, X2 = I2, X3 = I3, X4 = O1, X5 = O2, and X6 = O3. Let ain be

the number of neighbors of x in Xi and bin be the number of non-neighbors of x in Xi for each

i ∈ {1, 2, 3, 4, 5, 6}. Normalizing by n5 we will let A be the number of nets containing x and vertices

in 5 distinct other blobs, B be the number of nets containing x and 5 vertices in the same blob,

and C be the number of nets containing x and any other non-trash vertices not already counted.

Finally, let D be the (normalized) number of nets containing x and any trash vertices.

We have that:

A ≤ b2b3a4b5b6 + b1b3b4a5b6 + b1b2b4b5a6 + a1b2b3a5a6 + b1a2b3a4a6 + b1b2a3a4a5,

B ≤
6∑
i=1

(
a3i b

2
i

3!2!
+
aib

4
i

1!4!

)
, and

C ≤ 1

2!2!

3∑
i=1

a2i b
2
i

−ai − ai+3 +
∑

1≤j≤6
aj

+
1

2!2!

6∑
i=4

a2i b
2
i (a1 + a2 + a3 − ai−3).

We seek to show the following program is bounded above by

(24/1555)/5! = 1/7775 ≈ 0.000128617363:
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(P )



maximize A+B + C +D

subject to
∑6

i=0(ai + bi) = 1

(xmin) ≤ ai + bi ≤ (xmax) for i ∈ [6],

a0 + b0 ≤ x0,

a2 + a3 + b4 + a5 + a6 ≥ 0.0433316,

a1 + a3 + a4 + b5 + a5 ≥ 0.0433316,

a1 + a2 + a4 + a5 + b6 ≥ 0.0433316,

b1 + a2 + a3 + b5 + b6 ≥ 0.0322447,

a1 + b2 + a3 + b4 + b6 ≥ 0.0322447,

a1 + a2 + b3 + b4 + b5 ≥ 0.0322447,

ai, bi ≥ 0 for i ∈ {0, 1, . . . , 6}.

.

However, we do not have a form for D. To alleviate this problem, we will “place” trash vertices

into every blob simultaneously pretending that x is both adjacent and non-adjacent to every vertex
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in X0. So we relax the above problem the following:

(P ′)



maximize f = A+B + C

subject to
∑6

i=1(ai + bi) = 1

(xmin) ≤ ai + bi ≤ (xmax + x0) for i ∈ [6],

a2 + a3 + b4 + a5 + a6 ≥ 0.0433316,

a1 + a3 + a4 + b5 + a5 ≥ 0.0433316,

a1 + a2 + a4 + a5 + b6 ≥ 0.0433316,

b1 + a2 + a3 + b5 + b6 ≥ 0.0322447,

a1 + b2 + a3 + b4 + b6 ≥ 0.0322447,

a1 + a2 + b3 + b4 + b5 ≥ 0.0322447,

ai, bi ≥ 0 for i ∈ {0, 1, . . . , 6}.

.

We will discretize the space of possible solutions to (P ′), determine the the value of the objective

function at the center of each cell, and use a bound on the gradient to show that the function is

bounded above by 0.0001275 in each cell. If the global bound on the gradient is not sufficient in

bounding the optimization function, we generate a bound on the gradient within the cell, and if

necessary, refine the discretization within the cell. For every ai and bi, we check s+ 1 = 51 equally

spaced values between 0 and xmax + x0 that include the boundaries. By this, we have a grid of s12

boxes where every feasible solution of (P ′), and hence of (P ), is in one of the boxes.

To determine a global bound on the gradient, we find the partial derivatives of f :

∂f

∂a1
= b2b3a5a6 +

1

24
b41 +

1

4
a21b

2
1 +

1

2
(a1b

2
1)(a2 + a3 + a5 + a6) +

1

4
(a22b

2
2 + a23b

2
3 + a25b

2
5 + a26b

2
6)

∂f

∂a4
= b2b3b5b6 + b1a2b3a6 + b1b2a3a5 +

1

24
b44 +

1

4
a24b

2
4 +

1

4
(a22b

2
2 + a23b

2
3) +

1

2
(a4b

2
4)(a2 + a3)

∂f

∂b1
= b3b4a5b6 + b2b4b5a6 + a2b3a4a6 + b2a3a4a5 +

1

6
a31b1 +

1

6
a1b

3
1 +

1

2
a21b1(a2 + a3 + a5 + a6)

∂f

∂b4
= b1b3a5b6 + b1b2b5a6 +

1

6
a34b4 +

1

6
a4b

3
4 +

1

2
a24b4(a2 + a3).
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We bound each of these partials by 4
3(xmax + x0)

4. Since the portion of the partial contributed

by A can be bounded above by (xmax + x0)
4 in each case, and therefore the rest of the partial can

be bounded by (1/3)(xmax + x0)
3. One should note that the partial taken with respect to b1 is the

closest to meeting our bound, while the others are closer to 7
6(xmax + x0)

3.

As each 12-dimensional cell has side-length 1/s, the objective function can exceed the value at

its center by at most 12 · 1/22 ·
4
3(xmax + x0)

4. The local bounds on the gradient are obtained in our

algorithm are achieved by substituting (ai + (1/t)/2) and (bi + (1/t)/2) into each partial, where

t is the side-length of the current cell which may or may not be refined, and we simply take the

steepest direction of ascent as our bound to replace 4
3(xmax + x0)

4.

Using s = 50, we successfully bounded the objective function below 0.0001275. With this bound,

we have that the maximum number of nets that x can be contained in is less than .00012861736n5,

a contradiction with Claim 19.

As the number of nets containing x is bounded away from the average, we have contradicted

the existence of a trash vertex which cannot be placed in any blob without creating funky pairs.

Therefore, there exists a blob in which x matches the expected edge structure perfectly.

We have proven that every trash vertex can be placed into one of the six blobs without creating

any funky pairs with vertices originally in X1∪· · ·∪X6. Therefore, we simply add each trash vertex

into its corresponding blob. At worst, we may have funky pairs involving trash vertices in different

blobs, but we simply apply Claim 13 noting that our bounds on df (x) and f are even more strict.

We have now established that on the top layer, the blobs are all roughly balanced, and there

are no vertices in X0. Furthermore, we have that there are no funky pairs, so the only nets in any

extremal graph are between vertices of one of the two forms: either all are in the same blob, or all

are in different blobs.

At long last, it remains only to show that the blobs are balanced. This will perfectly establish the

outer layer structure of the graph into looking like the iterated blow up of the net for any extremal

graph that is sufficiently large. We will prove this using a contradiction, assuming that there are
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two blobs with a size difference of two or more vertices. We will use the fact that the density of

nets in a graph is monotone increasing, and denote the maximum density of nets in a graph on

n vertices as N(n). Let f be a bijection from {I1, I2, I3, O1, O2, O3} to {X1, X2, X3, X4, X5, X6}.

Additionally, we introduce notation yi := |f−1(Xi)|.

Claim 21. For large enough n, |Xi| − |Xj | ≤ 1.

Proof. Since our bijection was chosen arbitrarily, it is sufficient to prove the claim for X1 and X2.

Suppose for contradiction that y1 − y2 ≥ 2. Let v ∈ X1 where v is in the least number of nets

contained in X1 among vertices in X1, and w ∈ X2 where w is in the most number of nets contained

in X2 among vertices in X2. Since G is assumed to be extremal, we have that Nv +Nvw −N2 ≥ 0

else we would be able to increase the number of nets by removing v and duplicating w. So we have

by monotonicity of N(n)/
(
n
6

)
that

24

1555
+ o(1) ≥ N(y1)(

y1
6

) ≥ N(y2)(
y2
6

) ≥ 24

1555
− o(1)

Since y1 − y2 ≥ 2,

Nv +Nvw −Nu ≤ N(y1)

y1
+ y2y3y4y5y6 + y3y4y5y6 −

N(y2)

y2
− y1y3y4y5y6

=
y2N(y1)− y1N(y2)

y1y2
+ (y2 + 1− y1)y3y4y5y6

≤ (
24

1555
+ o(1))

y2
(
y1
6

)
− y1

(
y2
6

)
y1y2

+ (y2 + 1− y1)y3y4y5y6

≤ (
24

1555
+ o(1))

1

6!
(y51 − y52) + (y2 + 1− y1)y3y4y5y6

= (
24

1555
+ o(1))

1

6!
(y1 − y2)(y41 + y31y2 + y21y

2
2 + y1y

3
2 + y42)− (y1 − y2)y3y4y5y6 + y3y4y5y6

= (y1 − y2)
(

(
24

1555 · 6!
+ o(1))

6n4

64
− n4

64
+ o(n4)

)
+

1 + o(1)

64
n4

= (y1 − y2)
(

24

1555

6

64
n4 + o(n4)− n4

64
+ o(n4)

)
+

1 + o(1)

64
n4

≤ 2

(
24

1555

6

64
n4 − n4

64
+ o(n4)

)
+

1 + o(1)

64
n4

=
48

1555

6

64
n4 − n4

64
+ o(n4)

< 0
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which is a contradiction with the extremality of G. Therefore, for any Xi, Xj , |Xi| − |Xj | ≤ 1

as desired.

The culmination of all of these claims is the following theorem, which we will use to prove

Theorem 16. To more easily state the theorem, we will call a graph G net partitionable if V (G)

can be partitioned into six parts X1, X2, X3, X4, X5, X6 of sizes x1, x2, x3, x4, x5, x6 such that there

exists a function f from {X1, X2, X3, X4, X5, X6} to {O1, O2, O3, I1, I2, I3} such that for each u ∈

Xi and v ∈ Xj , uv ∈ E(G) if and only if f(Xi) and f(Xj) have the same second index, or

f(Xi), f(Xj) ∈ {I1, I2, I3}.

Theorem 18. There exist n0 such that for all n ≥ n0

N(n) = x1x2x3x4x5x6 +N(x1) +N(x2) +N(x3) +N(x4) +N(x5) +N(x6)

where

6∑
i=1

xi = 1 and all xi − xj ≤ 1 for all i, j ∈ {1, 2, 3, 4, 5, 6}. Moreover, if G has N(n) induced

nets, then G is net partitionable.

We will now complete the proof of Theorem 16 by use of a minimal counterexample and a

contradiction argument.

Proof of Theorem 16. Clearly on 6 vertices, the unique maximizer of the net is the net, so the case

k = 1 is proven. Suppose that there exists a graph G on 6k vertices with N(G) = N(6k) not

isomorphic to the (k− 1) iterated blow up of the net, where k ≥ 2 is the smallest such integer. Let

n0 be from the statement of Theorem 18.

Suppose G is net paritionable. Since G has 6k vertices, each set in the net partition must have

6k−1 vertices. By the minimality of k, we have that each of these sets maximizes the number nets

by being isomorphic to the (k − 2)-iterated blow up of the net. In particular, G is isomorphic to

the (k − 1)-iterated blow up of the net, a contradiction, so G is not net partitionable.

LetH be an extremal graph on 6` > n0 vertices. We create the graphG1 by replacing each vertex

of the (k−1)-iterated blow up, Nk× of the net with a copy of H, where each copy shares adjacencies

with other copies according to the adjacency of their corresponding vertices in the iterated blow up.
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By applying Theorem 18 ` times, we see that this is indeed an extremal graph on 6k+` vertices with

N(G1) = 6kN(H)+(6`)6N(Nk×) nets. By running the same process as above, starting with G and

replacing each vertex with a copy of H, we get a graph with N(G2) = 6kN(H)+(6`)6N(G) ≥ N(G1)

nets. Therefore G2 is also extremal. Since |V (G2)| = 6k+` > n0, G2 is net partitionable by Theorem

18. Note that two vertices of H are placed in the same set in the net partition if and only if their

adjacency patterns match on at least 2
6 of the remaining vertices. Hence, for any copy of H, H ′ ,two

vertices in H ′ must be in the same set in the net partition. In particular, using the net partition

of G2, we have constructed a net partition of G, a contradiction. Therefore, there is no k ≥ 2

such that there exists a G on 6k vertices not isomorphic to an iterated blow up of the net that is

extremal.

5.4 Conclusion

This chapter provides a brief introduction to flag algebra, as well as an application of this

method to an extremal problem in graph theory. flag algebra are relatively new but are widely

used and for a more in depth study, we refer the reader to Razborov [34]. You can find another nice

introductory explanation as well as a more in depth discussion of the positive semidefinite method,

in the thesis of Jan Volec [41].

While we hoped originally that the net might be a fractalizer, we prove that this was not the

case. To build on this, we proved that in some way, the net is close to a fractalizer with Theorem

16. We employed and altered techniques of Balogh, Hu, Lidický, and Pfender [2] by modifying the

stability arguments to allow for more precise bounds on the number of edges which do not follow

iterated blow up structures. This method can be applied in many cases where there are not as

many symmetries as in the case of the cycle on five vertices that they proved. This idea of treating

particularly poorly suited examples can be extended to any part of the stability argument. For

example if one wants to show that there are no trash vertices, one could prove that none with

a certain range of funky degrees cannot exist, and remove them in stages. One nice potential

improvement to the methods of this proof would be to avoid the brute force search used in Claim
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20. While it has been reasonably effective for small graphs, larger graphs would be significantly

hampered by a search like this. Improvements here would be aesthetically pleasing, but are unlikely

to widely expand the range of graphs which can be analyzed using these methods, as the positive

semidefinite method with flag algebras limit the size of graphs which can be inspected as well.

This idea may be valuable as we continue the search for a fractalizer among small graphs. In

particular, an interesting set of graphs to explore to find a fractalizer would be identity graphs

which are graphs that have a trivial automorphism group. Note that the only known fractalizers

have maximum sized automorphism groups. It may be the case that with very few automorphisms,

we are left with fewer possible maximizers on a small number of vertices like 8. Furthermore,

through random graphs Erdős and Reyni prove that almost all graphs have trivial automorphism

group [15]. Perhaps, this is an important property underlying the use of random graphs in the

proof of Fox, Huang, and Lee [19]. There are 8 such graphs on six vertices and interestingly on 7

vertices there is exactly one self-dual identity graph which might allow for some simplification in

the adaptation of the arguments used in this chapter.

The most obvious remaining question to follow up on this research is to find a nontrivial fractal-

izer. This would be the most interesting path to pursue, but there are other questions that follow.

Our result holds only for large graphs, but it is possible to prove for all graph sizes. That is, we

may hope to prove that there are only two maximizers for the net. Namely, if G is a graph which

maximizes the number of induced nets, either G iterated blow ups or G is a K4 with each vertex

having a pendant edge. There has been work in this direction by Lidický et al. on C5 and they

have been kind enough to share their manuscript. This may illuminate more general methods to

prove these types of results even in graphs which are not as symmetric as C5.

If one were to try to find a fractalizer, it is known that no graph such graph exists on at most 5

vertices. One could continue to search among graphs of size 6 up to potentially 8 using flag algebra

methods as the ones above, but small graphs may contain too many symmetries to avoid sporadic

maximizers. It may be easier to construct a large graph which has some nice properties like the

random graph which can be demonstrated to be a fractalizer.
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[15] P. Erdős and A. Rényi. “Asymmetric graphs”. In: Acta Math. Acad. Sci. Hungar. 14 (1963),
pp. 295–315. issn: 0001-5954. doi: 10.1007/BF01895716. url: https://doi.org/10.1007/
BF01895716.

[16] Chaim Even-Zohar and Nati Linial. “A note on the inducibility of 4-vertex graphs”. In: Graphs
Combin. 31.5 (2015), pp. 1367–1380. issn: 0911-0119. doi: 10.1007/s00373-014-1475-4.
url: https://doi.org/10.1007/s00373-014-1475-4.

[17] Kim A. S. Factor and Sarah K. Merz. “Split domination in digraphs”. In: Congr. Numer. 229
(2017), pp. 275–283. issn: 0384-9864.

[18] E. R. Vaughan. Flagmatic (Version 2.0). https://flagmatic.org. 2020.

[19] J. Fox, H. Huang, and C. Lee. “A solution to the inducibility problem for almost all graph”.
In: Manuscript ().

[20] Georg Ferdinand Frobenius. Ueber Matrizen aus nicht negativen Elementen. Königliche Akademie
der Wissenschaften, 1912.

[21] Michael R. Garey and David S. Johnson. Computers and intractability. Freeman, 1979.

[22] Wayne Goddard and Michael A. Henning. “Nordhaus-Gaddum bounds for independent dom-
ination”. In: Discrete Math. 268.1-3 (2003), pp. 299–302. issn: 0012-365X. doi: 10.1016/
S0012-365X(03)00032-3. url: https://doi.org/10.1016/S0012-365X(03)00032-3.

[23] Wayne Goddard and Michael A. Henning. “Independent domination in graphs: a survey
and recent results”. In: Discrete Math. 313.7 (2013), pp. 839–854. issn: 0012-365X. doi:
10.1016/j.disc.2012.11.031. url: https://doi.org/10.1016/j.disc.2012.11.031.

https://doi.org/10.1002/rsa.10047
https://doi.org/10.1002/rsa.10047
https://doi.org/10.1016/j.dam.2005.07.009
https://doi.org/10.1016/j.dam.2005.07.009
https://doi.org/10.1016/j.dam.2005.07.009
https://doi.org/10.2307/3613396
https://doi.org/10.2307/3613396
https://doi.org/10.1007/BF01895716
https://doi.org/10.1007/BF01895716
https://doi.org/10.1007/BF01895716
https://doi.org/10.1007/s00373-014-1475-4
https://doi.org/10.1007/s00373-014-1475-4
https://doi.org/10.1016/S0012-365X(03)00032-3
https://doi.org/10.1016/S0012-365X(03)00032-3
https://doi.org/10.1016/S0012-365X(03)00032-3
https://doi.org/10.1016/j.disc.2012.11.031
https://doi.org/10.1016/j.disc.2012.11.031


64

[24] Wayne Goddard et al. “On the independent domination number of regular graphs”. In: Ann.
Comb. 16.4 (2012), pp. 719–732. issn: 0218-0006. doi: 10.1007/s00026-012-0155-4. url:
https://doi.org/10.1007/s00026-012-0155-4.

[25] Christopher D. Godsil and Gordon F. Royle. Algebraic graph theory. Springer, 2010.

[26] James Hirst. “The inducibility of graphs on four vertices”. In: J. Graph Theory 75.3 (2014),
pp. 231–243. issn: 0364-9024. doi: 10.1002/jgt.21733. url: https://doi.org/10.1002/
jgt.21733.

[27] J. P. Jarvis and D. R. Shier. Graph-Theoretic Analysis of Finite Markov Chains. 1996.
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APPENDIX A. CODE USED FOR CLAIM 12

Find below the code that was used to verify that computations for Claim 12. I would like to

thank Bernard Lidický for providing the base code which was used to prove the results of [2], which

was easily modified to help solve the problem on nets.

Code

import sys

from sage.all import *

# names of variables

vs = var(’x1 x2 x3 x4 x5 x6 x0 f lc ls’) # lc ... lambda constraint

# function to optimize

#objective=(x1)

objective=(f)

#objective=(x0)

# extra constraints

addon=",x2==x3,x2==x4,x2==x5,x2==x6"

notfixedsolution = 0 # number of cases where the solution is not just one point

maxf = 0 # maximum value of f found so far in the process
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maxi = 0 # i for which the maximum is reached

maxsolution = [] # contains the best solution so far

minf = 10000 # minimum value of f found so far in the process

mini = 0 # i for which the minimum is reached

minsolution = [] # contains the best solution so far

# We generate number i = 0...1023 and look at its binary representation

#(transformed to array).

# The array has 10 entries and each of them corresponds to one constraint being equality.

# entry 0 means free and 1 means =. The order in the field is

#

# ID 0 1 2 3 4 5

# lc l1l l1u l2l l2u lfl

#

# Note that we actually do not use l1l l1u l2l l2u lfl -

#they are l1l stands for ’lambda x_1 lower bound’,...

$We rather made a substitution directly.

# APMonitor solution

constrcnt = 9 # number of constraints

programs = pow(2,constrcnt)

binformat = "{0:0"+str(constrcnt)+"b}" # makes something like "{0:012b}"

#avalue = 4.98

#flagbound = 0.0014380452

avalue = 4.99
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flagbound = .00071788399

#avalue = 4.96

#flagbound = .0028783717

for i in range(0,programs):

active = [ int(z) for z in list(binformat.format(i)) ] # creating {0,1} array

# if any of the x_1 == 0, we are doomed anyway

if active[1] == 1 or active[2] == 1 or active[3] == 1 or

active[4] == 1 or active[5] == 1 or active[6] == 1:

continue

# some quick kills.... lower and upper bounds cannot be at the same time

# Building L, where L is the Lagrangian.

#Note that we ALWAYS include all parts of the Lagrangian in L

# and when we actually use it,

#we may disable parts of it by setting say l1 = 0 and not taking

# the partial derivative according to l1 in to the system of equations.

Lstr = "L = ("+str(objective)+" + lc*(2.0*(x1*x2+x1*x3+x1*x4+x1*x5+x1*x6+x2*x3+

x2*x4+x2*x5+x2*x6+x3*x4+x3*x5+x3*x6+x4*x5+x4*x6+x5*x6)

- 2.0*f - avalue*(x1*x1 + x2*x2 + x3*x3 + x4*x4 + x5*x5 + x6*x6) -

flagbound/(0.0154342*28)) + ls*(x1+x2+x3+x4+x5+x6+x0-1))"

# Now we make the system of equations used in \nabla L

# the following are always there

eqs = "[ L.diff(ls)==0"

# for lambdas we decide if we include them in the gradient or not.



69

#The first column

# corresponds to not including (means not equality)

#and the second column means including

if active[0] == 0:

eqs += ",lc == 0";

else:

eqs += ",L.diff(lc) == 0";

if active[1] == 0:

eqs += ",L.diff(x1) == 0"

else:

eqs += ",x1 == 0"

if active[2] == 0:

eqs += ",L.diff(x2) == 0"

else:

eqs += ",x2 == 0"

if active[3] == 0:

eqs += ",L.diff(x3) == 0"

else:

eqs += ",x3 == 0"

if active[4] == 0:

eqs += ",L.diff(x4) == 0"

else:

eqs += ",x4 == 0"

if active[5] == 0:

eqs += ",L.diff(x5) == 0"

else:

eqs += ",x5 == 0"
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if active[6] == 0:

eqs += ",L.diff(x6) == 0"

else:

eqs += ",x6 == 0"

if active[7] == 0:

eqs += ",L.diff(x0) == 0"

else:

eqs += ",x0 == 0"

if active[8] == 0:

eqs += ",L.diff(f) == 0"

else:

eqs += ",f == 0"

eqs += addon+"]"

# Now we have all the equations from gradient in eqs

#so we create a command for solving them

command="solution=solve("+eqs+",(x1,x2,x3,x4,x5,x6,x0,f,lc,ls), solution_dict=True)"

exec Lstr # this should actually be fine do do just once at the beginning

exec command # solving the equations - solution is in variable solution

# Now we check how many solutions we have

if len(solution) == 0:

pass

print i,active,"No solution!!"

#if len(solution) == 1:

#print i,active,len(solution)

for solutionID in range(len(solution)):

# print solutionID

# Now we check if all constraints are satisfied. We verify constraints in the form
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# g(x) <= 0

constraintsg = [

-(x1), -(x2), -(x3), -(x4), -(x5), -(x6), -(f), -(x0), # r2 >= 0 kind

-(2.0*(x1*x2+x1*x3+x1*x4+x1*x5+x1*x6+x2*x3+x2*x4

+x2*x5+x2*x6+x3*x4+x3*x5+x3*x6+x4*x5+x4*x6+x5*x6)

- 2.0*f - avalue*(x1*x1 + x2*x2 + x3*x3 +

x4*x4 + x5*x5 + x6*x6) - flagbound/(0.0154342*28))

]

feasiblesolution = True

for g in constraintsg: # test all constraints

try:

value = g.subs(solution[solutionID]) # substituting to g

float(value) # try if it is a number (and no some free variables)

#print g,float(value)

if value > 0.00001: # constraint g <= 0 violated (epsilon tolerance needed)

print i,active,"Violates constraint ",g,"<= 0 evaluated as",float(value),"<=0"

feasiblesolution = False

break

except TypeError:

print i,active,"Not a point solution for constraint"

print solution

notfixedsolution = notfixedsolution + 2

#feasiblesolution = False

#break

pass

if feasiblesolution == False:

continue # do not process the thing further if constraints violated
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# Finally, we try to evaluate f

value = objective.subs(solution[solutionID]) # substituting to f

try:

#float(value)

#valf = float(value)

# if there were free variables, just evaluate them as zeros...

valf=float(value.subs({value.arguments()[x]:0 for x in range(0,len(value.arguments()))}))

# evaluate it

if maxf < valf: # test if we got a better new solution

maxf = valf

maxsolution=solution[solutionID]

maxi = i

if minf > valf: # test if we got a better new solution

minf = valf

minsolution=solution[solutionID]

mini = i

print i,active,"Got value",valf,"min is",minf,"max is",maxf

#print solution[solutionID]

except TypeError:

# this happens if value is not a float - means not unique solution

notfixedsolution = notfixedsolution + 1

print i,active,"Not a float!! cnt: ", notfixedsolution,len(value.arguments())

# final wrap up

print "Summary:"

print ’Number of not floats is’,notfixedsolution

print ’mainimim is for mini=’,mini,
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’with value minf=’,minf,’and solution maxsolution=’,minsolution

print ’maximum is for maxi=’,maxi,

’with value maxf=’,maxf,’and solution maxsolution=’,maxsolution

print

print ’Minimum solution: ’,minf,’<=’,objective

for myvar in vs:

try:

print myvar,’=’,float(minsolution[myvar])

except TypeError: # this happens if value is not a float

print myvar,’=’, minsolution[myvar]

print

print ’Maximum solution: ’,maxf,’>=’,objective

for myvar in vs:

try:

print myvar,’=’,float(maxsolution[myvar])

except TypeError: # this happens if value is not a float

print myvar,’=’,maxsolution[myvar]
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APPENDIX B. CODE FOR CLAIM 20

Below is the code that was written to create the mesh to prove Claim 20. Many thanks to

Michael Phillips for the production of this code and his many ideas on how best to optimize this

mesh program. The base of this code was once again provided by Bernard Lidický as it was used

for [2], and was modified for the purpose of the net.

Code

/*

This solves the program (P’) from Claim 8.

Usage:

g++ mesh-opt.cpp -Wall -O3 -o mesh-opt && ./mesh-opt

If you have OpenMP, you could use

g++ mesh-opt.cpp -Wall -O3 -o mesh-opt -fopenmp && ./mesh-opt

*/

#include <iostream>

#include <fstream>

#include <sstream>

#include <istream>

#include <vector>



75

#include <utility>

#include <assert.h>

#include <cstring>

#include <algorithm>

#include <cstdarg>

#include <cmath>

#include <limits>

using namespace std;

//const double max21 = 0.21;

const int steps = 100; // Number of steps for each Xi in the recursion

(you may also use 200)

//const double stepsize = max21/steps;

const double max1685 = 0.1685;

const double stepsize = max1685/steps;

// const double Xmax = max21 + 2*stepsize; // Upper bound for Xi

const double Xmax = max1685 + 2*stepsize;

//const double funkyDegree = 0.079;

//const double funkyDegree = 0.0808;
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const double funkyDegreeOut = 0.0402; // Check this number

const double funkyDegreeIn = 0.0177; // Check this number

// const int funkyDegreeInt = (funkyDegree*steps)/Xmax - 4;

// the - 4 is to cover all rounding errors

const int funkyDegreeOutInt = (funkyDegreeOut*steps)/Xmax - 4;

// Not sure if 4 needs to change, probs to 5 maybe?

const int funkyDegreeInInt = (funkyDegreeIn*steps)/Xmax - 4;

// const double extra = 5.0*0.21/2.0*0.001/steps;

const double extra = 3*max1685*max1685*max1685*max1685*max1685/steps;

int ext[7];

int main(int argc, char *argv[]) {

double max_total = 0;

//#pragma omp parallel for ordered schedule(dynamic)

// pick a[1] to be the smallest

for (int a1 = 0; a1 <= steps; a1++) {

double max = 0;

int a[7];

int b[7];

// Assuming smallest part is a pendant blob

//a[1] = a1;

//for (a[2] = a[1]; a[2] <= steps; a[2]++)
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//for (a[3] = a[1]; a[3] <= steps; a[3]++)

//for (a[4] = a[1]; a[4] <= steps; a[4]++)

//for (a[5] = a[1]; a[5] <= steps; a[5]++)

//for (a[6] = a[1]; a[6] <= steps; a[6]++)

// Assuming smallest part is a triangle blob

a[4] = a1;

for (a[2] = a[4]; a[2] <= steps; a[2]++)

for (a[3] = a[4]; a[3] <= steps; a[3]++)

for (a[1] = a[4]; a[1] <= steps; a[1]++)

for (a[5] = a[4]; a[5] <= steps; a[5]++)

for (a[6] = a[4]; a[6] <= steps; a[6]++) {

// for (int i = 1; i <= 5; ++i) b[i] = steps - a[i];

for (int i=1; i <= 6; ++i) b[i] = steps - a[i];

// Kill entires with too few funky edges

if ((a[2]+a[3]+b[4]+a[5]+a[6] < funkyDegreeOutInt) ||

(a[1]+a[3]+a[4]+b[5]+a[6] < funkyDegreeOutInt) ||

(a[1]+a[2]+a[4]+a[5]+b[6] < funkyDegreeOutInt) ||

(b[1]+a[2]+a[3]+b[5]+b[6] < funkyDegreeInInt) ||

(a[1]+b[2]+a[3]+b[4]+b[6] < funkyDegreeInInt) ||

(a[1]+a[2]+b[3]+b[4]+b[5] < funkyDegreeInInt)) continue;

//(b[2]+b[5]+a[3]+a[4] < funkyDegreeInt) ||

//(b[1]+b[3]+a[4]+a[5] < funkyDegreeInt) ||

//(b[2]+b[4]+a[1]+a[5] < funkyDegreeInt) ||

//(b[3]+b[5]+a[1]+a[2] < funkyDegreeInt) ||

//(b[4]+b[1]+a[2]+a[3] < funkyDegreeInt)
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// int valueInt = a[2]*a[5]*b[3]*b[4] + a[1]*a[3]*b[4]*b[5] +

a[2]*a[4]*b[1]*b[5] + a[3]*a[5]*b[1]*b[2] + a[4]*a[1]*b[2]*b[3] +

0.25*(a[1]*a[1]*b[1]*b[1] + a[2]*a[2]*b[2]*b[2] +

a[3]*a[3]*b[3]*b[3]+ a[4]*a[4]*b[4]*b[4] +

a[5]*a[5]*b[5]*b[5]);

// double value = valueInt*Xmax*Xmax*Xmax*Xmax/(double)(steps*steps*steps*steps);

int valueInt = b[2]*b[3]*a[4]*b[5]*b[6] + b[1]*b[3]*b[4]*a[5]*b[6] +

b[1]*b[2]*b[4]*b[5]*a[6] + a[1]*b[2]*b[3]*a[5]*a[6] +

b[1]*a[2]*b[3]*a[4]*a[6] + b[1]*b[2]*a[3]*a[4]*a[5];

// Here, I’m only including the first 6 terms because HOPEFULLY

//that’s all we need to bound using this method

//double value = valueInt*Xmax*Xmax*Xmax*Xmax*Xmax/

(double)(steps*steps*steps*steps*steps);

// Here, I’m assuming that including an extra factor of Xmax/steps is correct

double value = valueInt*(Xmax/(double)steps)*(Xmax/(double)steps)*

(Xmax/(double)steps)*(Xmax/(double)steps)*(Xmax/(double)steps);

if (max < value) {

max = value;

cout << "Max+extra=" << max+extra << " Max=" << max << " " << a[1] << " " << a[2]

<< " " << a[3] << " " << a[4] << " " << a[5] << " " << a[6] << endl;

for (int i=1; i<=6; i++) ext[i] = a[i];

}

}

//#pragma omp ordered {
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// cerr << "Done " << a1 << "/" << steps << endl;

// if (max > max_total) {

// max_total = max;

// cout << "Max(P)+extra=" << max+extra << " Max(P)=" << max <<

" Construction: " << ext << endl;

// }

//}

}

cout << "Discretization of (P’’) is bounded by " << max_total << endl;

cout << "Discretization of (P’’) is bounded by " << max_total + extra << endl;

cout << " Construction: (" << ext[1] <<"," << ext[2] << "," << ext[3] << "," << ext[4]

<< "," << ext[5] << "," << ext[6] << ")" << endl;

return 0;}
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