Sensing Polymer/DNA Polyplex Dissociation Using Quantum Dot Fluorophores

Bingqi Zhang, Yanjie Zhang, Surya K. Mallapragada, and Aaron R. Clapp*
Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011-2230, United States

ABSTRACT We characterized the dissociation of polymer/DNA polyplexes designed for gene delivery using water-soluble quantum dots (QDs). A pH-responsive pentablock copolymer was designed to form stable complexes with plasmid DNA via tertiary amine segments. Dissociation of the polyplex was induced using chloroquine where the efficiency of this process was sensed through changes in QD fluorescence. We found that increasing concentrations of pentablock copolymer and DNA led to quenching of QD fluorescence, while chloroquine alone had no measurable effect. The mechanism of quenching was elucidated by modeling the process as the combination of static and dynamic quenching from the pentablock copolymer and DNA, as well as self-quenching due the bridging of QDs. Tertiary amine homopolymers were also used to study the effect of chain length on quenching. Overall, these QDs were found to be highly effective at monitoring the dissociation of pentablock copolymer/DNA polyplexes in vitro and may have potential for studying the release of DNA within cells.

KEYWORDS: gene delivery · DNA · polyplex · chloroquine · quantum dots · FRET
free DNA in solution or to assess the displacing effect of CLQ. In this work, we utilize cysteine-coated CdSe–ZnS core–shell QDs in place of common DNA intercalating dyes to measure DNA released from dissociation of polyplexes formed with DNA and poly(diethylaminoethylmethacrylate) (PDEAEM)/Pluronic F127 pentablock copolymers in the presence of CLQ.

RESULTS AND DISCUSSION

Polyplex Dissociation Monitored by QD Fluorescence Quenching. CdSe QDs have been reported to bind molecules having tertiary amines with high affinity. Though not previously demonstrated, hydrophilic Cys-capped CdSe–ZnS QDs were considered as viable binding surfaces for the pentablock copolymers (having similar blocks of tertiary amines) used in this work. Interestingly, pentablock copolymers induced significant quenching of QD fluorescence upon mixing. QDs mixed with plasmid DNA led to similar quenching effects, but to a lesser extent. In contrast, the quenching effect was completely absent when QDs were mixed with preformed pentablock copolymer/DNA (penta/DNA) polyplexes, as shown in Figure 1a (black and light blue curves). The dramatic difference in QD fluorescence intensity between bound and unbound states of penta-block copolymer and DNA suggested that polyplex association/dissociation might function as a potential “on/off” switch for QD fluorescence (illustrated in Figure 2). CLQ alone was found not to influence the emission profile of the QDs studied (QDs having an emission maximum at 615 nm, or QD615), though CLQ itself demonstrated an intense and broad emission between 400 and 575 nm when excited at 370 nm (Figure 1a, dark blue and pink curves). Thus, we were able to investigate the stability of the polyplex in the presence of CLQ by monitoring the change in QD fluorescence where any decrease in the intensity of QD emission is attributed to polyplex dissociation.

As expected, addition of CLQ to solutions containing penta/DNA polyplex and QDs resulted in significant quenching of QDs when compared with control samples lacking CLQ. This provides a strong indication that CLQ indeed facilitated polyplex dissociation. The newly released pentablock copolymers appear to quench QDs immediately once they are free in solution. Released DNA is partially complexed with CLQ and therefore exhibits relatively weaker quenching effects with QDs as compared to naked DNA mixed with QDs, as shown in Figure 1b. When pentablock copolymer and DNA were mixed with QDs sequentially (i.e., penta-
block copolymer added to QD solution, followed by the addition of DNA), allowing time to equilibrate between additions, there was increased quenching of QDs over the effect achieved with either component alone. This indicates the pentablock copolymer and DNA did not significantly associate into polyplexes when introduced serially to a solution containing QDs. The combined quenching effects provide further evidence for association of pentablock copolymer and QDs via tertiary amines since these amine groups would otherwise interact with the phosphate groups of DNA to form polyplexes and partially restore the original fluorescence of QDs. Therefore, the quenching observed in a polyplex solution after addition of CLQ likely results from both free pentablock copolymer and CLQ-bound/free DNA. The overall quenching of QD fluorescence exhibited a linear relationship with the concentration of CLQ, as shown in Figures 1c,d, further confirming the feasibility of using QDs to indicate polyplex dissociation induced by CLQ.

Although this study focused on cell-free assays, the CdSe–ZnS QDs used in this work showed no measurable acute toxicity in various cell lines due in part to a protective shell and dense coating of hydrophilic DTC-Cys ligands. The QD-based quenching method can thus be utilized to sense polyplex dissociation in cellular environments. For example, by co-incubating polyplexes and QDs with cells, dissociation of polyplexes in endosomes could be detected, which is of great importance for understanding the mechanism of gene delivery and improving transgene vectors. Furthermore, since the QDs were rendered water-soluble through ligand exchange, various types of amino acids can be easily coupled to QDs as designed; for example, histidine residues can be coupled to the surface of QDs, leading them to readily escape endosomes. In this case, polyplex dissociation can be monitored by quenching of QDs throughout the cytoplasm.

Quantitative Models of Fluorescence Quenching. Since the pentablock copolymer potentially acts as the primary quenching species, we expect the QD fluorescence to decrease (and thereby quenching to increase) with increasing polymer concentration. As shown in Figure 3a, the measured QD fluorescence intensity showed an inverse dependence on the concentration of pentablock copolymer. Rather than exhibiting a linear dependence on concentration consistent with either static or dynamic quenching alone, the integrated quenching data appeared concave up (Figure 3b), suggesting a combination of quenching effects. We fit these data with a modified Stern–Volmer equation that describes combined dynamic and static quenching (Figure 3b, dashed line) in which static quenching is presumed to occur when the quencher is within a characteristic radius (spherical volume) consistent with a stable complex:25

\[
\frac{F_0}{F} = \left(1 + K_0[Q]\right) \exp\left([Q]V\right)
\]

where

\[
V = V_0N_A/1000
\]

Here, \(F_0\) and \(F\) are the fluorescence intensities in the absence and presence of quencher, respectively; \(K_0\) is the dynamic quenching constant; \([Q]\) is the concentration...
of quencher (pentablock copolymer in this experiment); V is the molar volume of the sphere within which the probability of quenching is unity; V_0 is the volume of the sphere in cm3; and N_A is the Avogadro constant. The fitted sphere volume was consistent with an interaction radius of 15 nm. Alternatively, a plot of $F_0/(F_0e^{[Q]})$ versus $[Q]$ yields a straight line with the slope equal to K_0, which is found to be about 26.5 mM$^{-1}$ (Figure 3b, solid line).

In order to interpret this result, we measured the size distribution of QD—pentablock copolymer assemblies (micelles) in solution using dynamic light scattering. The data showed nearly monodisperse micelles having a mean diameter of 200 nm (polydispersity index, PDI = 0.062). On the basis of this size distribution and the average QD diameter ($\sim 15-20$ nm), there are presumably many QDs within each micelle. This physical arrangement suggests that QDs are likely to exhibit interparticle energy transfer (i.e., FRET) which would contribute to the static quenching component of the Stern—Volmer model shown in eqs 1 and 2. The fitted interaction radius will then be representative of the composite effect of FRET-induced quenching as well as any direct quenching due to the pentablock copolymer alone. If FRET is a significant quenching mechanism, we expect the fitted interaction radius to be on the same order as the Förster distance for QD self-quenching ($R_0 \sim 4-8$ nm), which is considerably smaller than the average micelle size ($r_m \sim 100$ nm). The modified Stern—Volmer model alone is insufficient to determine the relative static quenching contribution of QD self-quenching versus direct quenching from the polymer. For this, we require experiments that isolate these effects; this is the subject of the next section.

In the case of QD quenching by DNA, again there is enhanced quenching with increasing DNA concentration, yet the data are concave down (Figure 4a,b), consistent with a fluorophore having accessible and inaccessible populations to the quencher and a fit to the following equation:

$$F_0/F = 1/f_aK_0[Q] + 1/f_a$$ \hspace{1cm} (3)

where

$$\Delta F = F_0 - F$$ \hspace{1cm} (4)

$$f_a = F_{0a}/F_0$$ \hspace{1cm} (5)

Here, F_0 and F again refer to the fluorescence in the absence and presence of quencher, respectively; f_a is a fraction of the total fluorophore population where the subscripts refer to the accessible fraction that can be deactivated by the quencher species; correspondingly, F_{0a} is the initial fluorescence and K_0 is the quenching constant of the accessible fraction. For the mechanism of quenching by DNA, guanine bases are thought to be responsible as electron donors. Since plasmid DNA cannot maintain its circular structure but rather contracts into a supercoiled conformation in aqueous solution, the guanine bases would assume a complex distribution of accessibilities to the QD surface. As a result, it might be difficult for larger QDs to contact these quenching sites as compared to smaller QDs. Thus we assumed that only a fraction of QDs were available to be quenched by DNA. Values for f_a and K_0 can be obtained readily from the intercept and slope by plotting $F_0/\Delta F$ versus $[Q]^{-1}$ (Figure 4c), which were found to be 0.62 and 0.14 μL/μg, respectively. **Self-Quenching among QDs.** Considering that both pentablock copolymer and DNA have the capacity to associate with QDs, they could feasibly generate a high local concentration of QDs and initiate self-quenching. The tendency of pentablock copolymer to form micelles in solution furthers the speculation that QD self-quenching is an important mechanism in these systems. In order to test this hypothesis, we examined the quenching of two distinct populations of QDs, QD519 (green emitting) and QD611 (red emitting), that can potentially form FRET donor—acceptor pairs between QDs, as reviewed by Somers et al.26 If such a pair is formed in proximity sufficient for energy transfer (i.e.,
on the order of the Förster distance \(R_0 \), we expect to see an increase in the ratio of red to green QD fluorescence (favorable quenching of the higher energy fluorophores). In order to elucidate the functional moieties responsible for the quenching behavior of the pentablock copolymer, a family of poly(dimethylaminoethylmethacrylate) (PDEAEM) homopolymers and Pluronic F127 were included in the study. These polymers comprise the end blocks and core triblock segments of the pentablock copolymer, respectively. As shown in Figure 5, pentablock copolymers and PDEAEM homopolymers preferentially quenched QD519 (higher QD611/QD519 photoluminescence ratio), whereas DNA quenched each QD population about equally (ratio near 1.0). Conversely, Pluronic F127 had no measurable effect on the QD emission spectra (data not shown), indicating that the core triblock structure (PEO\(_{100}-b\)-PPO\(_{65}-b\)-PEO\(_{100}\)) played no direct role in the quenching achieved with the full pentablock copolymer. The terminal PDEAEM blocks on pentablock copolymer are therefore likely to be the essential functional segments responsible for QD quenching, either by directly deactivating fluorescence relaxation pathways or aggregating QDs together. Notably, PDEAEM homopolymers exhibited variable quenching effects depending on polymerization degree (i.e., molecular weight). Although we observed greater quenching in the QD519 population as compared to QD611 for all polymers, this result alone is insufficient to demonstrate energy transfer from QD519 to QD611 unless isolated control populations of QD519 have an equal or lesser tendency to be quenched in the presence of polymer than QD611. To this end, we studied these two populations of QDs separately and found that QD611 was more readily quenched by pentablock and PDEAEM homopolymers than QD519 (Figure 6), which contrasts the observations using mixed QD populations and provided compelling evidence of energy transfer from QD519 to QD611. The quenching data shown in Figures 5c and 6c were combined into one graph to summarize the differences in polymer-induced quenching behavior between isolated and mixed QD samples. The normalized quenching ratio, \((Q_{611}/Q_{519})_{\text{mixed}}/(Q_{611}/Q_{519})_{\text{separate}} \), was calculated and shown in Figure 7, where ratios below 1.0 correspond to preferred quenching of the QD519 population in mixed QD samples, as is expected from Förster theory. From these data, we can conclude that FRET is the dominant quenching mechanism for QDs exposed to pentablock copolymers in solution. Similarly, PDEAEM homopolymers also showed capacity to facilitate self-quenching (Figures 5c and 6c) and preferential QD519 quenching in mixed samples, as summarized in Figure 7. As the polymerization degree of homopolymer increased from 15 to 35, the overall quenching increased slightly and would presumably continue to increase as the molecular weight increased further.

In particular, the pentablock copolymer led to nearly complete quenching of QDs when the concentration of PDEAEM block was as high as that in other homopolymers (Figure 6b), suggesting pentablock copolymers are more efficient at quenching QDs compared to homopolymers when holding the total mass of available PDEAEM constant. This is notable because the core triblock Pluronic F127 alone showed no
quenching effect with QDs whatsoever. In an effort to elucidate the mechanism of quenching initiated by different polymers, varying amounts of PDEAEM homopolymers having degrees of polymerization of 15 (Homo15) and 35 (Homo35) were mixed with QDs to study quenching as a function of concentration. As shown in Figure 8, the relationship between quenching extent and homopolymer concentration was well-described by the same Stern–Volmer model (eqs 1 and 2) used to characterize pentablock copolymer-induced quenching, indicating that homo- and pentablock polymers share a similar mechanism of QD quenching. However, the fitted quenching constants, K_D, for Homo15 and Homo35 were found to be 0.85 and 4.7 mM$^{-1}$, respectively, far lower than the 26.5 mM$^{-1}$ value measured using pentablock copolymer. The unique micellar structure of pentablock copolymers in solution likely accounts for this discrepancy where several QDs can bind each micelle thus facilitating and enhancing self-quenching.

FRET-induced fluorescence quenching is expected to show strong wavelength dependence due to variations in donor–acceptor spectral overlap. In our study, all PDEAEM-containing polymers showed obvious wavelength-dependent quenching behavior when mixed with QDs. Quenching measured as a function of
wavelength (Figure 9) appeared similar in shape to a plot of the spectral overlap function from Förster theory, $J(\lambda)$ (not shown), which considers the QD emission and absorption spectral overlap; this further implies a QD-to-QD self-quenching mechanism. Static quenching could also occur through complexation between the pentablock copolymer and QDs, although this type of quenching typically shows little depen-
dence on wavelength, as in a recent example of static quenching of QDs by Medintz et al.\(^2^7\) and is inconsistent with the wavelength dependence shown in Figure 9. Although substantial quenching of QDs takes place immediately in the presence of PDEAEM homopolymer, maximum quenching occurs several minutes after the initial mixing, as shown in Figure 10. The measured quenching dynamics are consistent with multiple time scales associated with static and dynamic processes but also reflect the unique aspects of the QD–polymer system. In this case, we infer that immediate quenching results from collisions among QDs and polymer molecules, but that static complexation of QDs and polymers requires additional time to reach equilibrium resulting in saturated quenching after several minutes. The concept of static quenching in this system is unusual as it is dominated by QD self-quenching interactions which are mediated by associations with polymer.

CONCLUSIONS

We have shown that water-soluble Cys-capped CdSe–ZnS QDs are capable of sensing the dissociation of DNA/polymer polyplexes following exposure to chloroquine. Upon exposure to free pentablock copolymer and/or DNA, the QD fluorescence is quenched increasingly with concentration. The mechanism of fluorescence quenching was determined by exposing QDs to polymers and DNA individually and in various combinations. Studies with PDEAEM homopolymers suggested that tertiary amines were the functional groups responsible for quenching during exposure to the pentablock copolymer. However, the greatest quenching effect was observed when using pentablock copolymer, presumably due to its unique micellar conformation. QD fluorescence quenching was modeled using modified Stern–Volmer equations that account for static and dynamic quenching subject to modifications specific to DNA and PDEAEM. Studies with mixed...
portions of QDs showed that energy transfer plays a significant role in the overall quenching effect using PDEAEM and pentablock copolymer. These results collectively suggest that these QDs have the potential to sense the dissociation of DNA cargo from polyplexes both in vitro and within living cells.

MATERIALS AND METHODS

Materials. Hexadecylamine (HDA, 90%), hexamethyldisilathiane (TMS$_2$S), trioctylphosphine (TOP, 90%), and diethylzinc (Et$_2$Zn) were purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Cadmium acetylacetonate (Cd(acac)$_2$) and selenium shot (Se, 99.99%) were used as received from Strem Chemicals (Newburyport, MA). Trioctylphosphine oxide (TOPO, 98%) was obtained from Alfa Aesar (Ward Hill, MA) and used as received. Chloroauric chloride (HAuCl$_4$·3H$_2$O) was purchased from Acros Organics (Florham Park, NJ) and used without further modification. Chloroauric acid (HAuCl$_4$·H$_2$O) and silver nitrate (AgNO$_3$) were purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Cadmium acetylacetonate (Cd(acac)$_2$) and selenium shot (Se, 99.99%) was purchased from Acros Organics (Florham Park, NJ) and used as received. Chloroauric chloride (HAuCl$_4$·3H$_2$O) was purchased from Acros Organics (Florham Park, NJ) and used as received. Chloroauric acid (HAuCl$_4$·H$_2$O) and silver nitrate (AgNO$_3$) were purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Chloroauric chloride (HAuCl$_4$·3H$_2$O) was purchased from Acros Organics (Florham Park, NJ) and used as received. Chloroauric acid (HAuCl$_4$·H$_2$O) and silver nitrate (AgNO$_3$) were purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Chloroauric chloride (HAuCl$_4$·3H$_2$O) was purchased from Acros Organics (Florham Park, NJ) and used as received. Chloroauric acid (HAuCl$_4$·H$_2$O) and silver nitrate (AgNO$_3$) were purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Chloroauric chloride (HAuCl$_4$·3H$_2$O) was purchased from Acros Organics (Florham Park, NJ) and used as received. Chloroauric acid (HAuCl$_4$·H$_2$O) and silver nitrate (AgNO$_3$) were purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Chloroauric chloride (HAuCl$_4$·3H$_2$O) was purchased from Acros Organics (Florham Park, NJ) and used as received. Chloroauric acid (HAuCl$_4$·H$_2$O) and silver nitrate (AgNO$_3$) were purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Chloroauric chloride (HAuCl$_4$·3H$_2$O) was purchased from Acros Organics (Florham Park, NJ) and used as received. Chloroauric acid (HAuCl$_4$·H$_2$O) and silver nitrate (AgNO$_3$) were purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Chloroauric chloride (HAuCl$_4$·3H$_2$O) was purchased from Acros Organics (Florham Park, NJ) and used as received. Chloroauric acid (HAuCl$_4$·H$_2$O) and silver nitrate (AgNO$_3$) were purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Chloroauric chloride (HAuCl$_4$·3H$_2$O) was purchased from Acros Organics (Florham Park, NJ) and used as received. Chloroauric acid (HAuCl$_4$·H$_2$O) and silver nitrate (AgNO$_3$) were purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Chloroauric chloride (HAuCl$_4$·3H$_2$O) was purchased from Acros Organics (Florham Park, NJ) and used as received. Chloroauric acid (HAuCl$_4$·H$_2$O) and silver nitrate (AgNO$_3$) were purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Chloroauric chloride (HAuCl$_4$·3H$_2$O) was purchased from Acros Organics (Florham Park, NJ) and used as received. Chloroauric acid (HAuCl$_4$·H$_2$O) and silver nitrate (AgNO$_3$) were purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Chloroauric chloride (HAuCl$_4$·3H$_2$O) was purchased from Acros Organics (Florham Park, NJ) and used as received. Chloroauric acid (HAuCl$_4$·H$_2$O) and silver nitrate (AgNO$_3$) were purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Chloroauric chloride (HAuCl$_4$·3H$_2$O) was purchased from Acros Organics (Florham Park, NJ) and used as received. Chloroauric acid (HAuCl$_4$·H$_2$O) and silver nitrate (AgNO$_3$) were purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Chloroauric chloride (HAuCl$_4$·3H$_2$O) was purchased from Acros Organics (Florham Park, NJ) and used as received. Chloroauric acid (HAuCl$_4$·H$_2$O) and silver nitrate (AgNO$_3$) were purchased from Sigma-Aldrich (St. Louis, MO) and used as received.

Preparation of Water-Soluble QDs by Ligand Exchange. CdSe–ZnS core–shell QDs were synthesized using a method previously reported by Ciappi et al. and Howarth et al. with some minor modifications. Briefly, appropriate quantities of hexadecylamine (HDA) and trioctylphosphine oxide (TOPO, ~10–30 g) were melted in a three-neck round-bottom flask at ~150 °C followed by degassing under vacuum and purging with N$_2$ via a Schlenk line. The mixture was further heated above 300 °C, where cadmium acetylacetonate (Cd(acac)$_2$) and selenium precursor (1 M trioctylphosphine-coordinated selenium, TOPSe) were rapidly injected by syringe into the flask through a rubber septum. The temperature was then abruptly reduced to 80 °C to arrest the nanocrystal growth and ensure a narrow size distribution of CdSe core particles. CdSe cores were subsequently overcoated with multiple ZnS layers (three or more) by dropwise addition of diethylzinc (Et$_2$Zn) and hexamethyldisilathiane ((TMS)$_2$S) at ~140 °C. The resulting core–shell QDs were allowed to stir and anneal at 80 °C overnight.

To render CdSe–ZnS QDs water-soluble, a biphasic ligand re-}

Preparation of Pentablock Copolymers and Homopolymers. Poly(diethylaminoethylmethacrylate) (PDEAEM)/Pluronic F127 pentablock copolymers and PDEAEM homopolymers were synthesized via atom transfer radical polymerization (ATRP). The detailed procedure has been described elsewhere.

Polypylex Formation. Appropriate amounts of pentablock copolymer and plasmid DNA in water were mixed at N/P (nitrogen/phosphorus) ratio of 20, followed by incubation at room temperature for 30 min to ensure complete complexation. Detailed investigation of the properties of polypyles was reported elsewhere.

Measurement of Fluorescence. The fluorescence spectra of QDs in the presence of pentablock copolymers, polypyles, DNA, chloroquine, and homopolymers were measured by a dual monochromator spectrofluorimeter (Fluoromax-4, Horiba Jobin Yvon) with excitation at 370 nm and slit widths of 3 nm (ex-

