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INTRODUCTION 

To the soil engineer, the word "soil" means a material which is used 

in any kind of civil engineering job, either as foundation material to 

support the load exerted by structures, or as construction material it

self, as in the cases of earthfill dam and highway constructions. 

From this point of view, the soil engineer is mainly interested in 

the engineering behavior of soils as foundation and construction material, 

and he needs a kind of classification system that would establish bounda

ries between differently behaving soils on the basis of soil properties 

which can be easily measured. American Association of State Highway 

Officials and Unified systems are classifications which have been used 

satisfactorily for years in the case of temperate soils, and they are 

based upon the plasticity and gradation characteristics of soils. However, 

it has been observed for a long time that these classification systems 

fail to accurately predict the engineering behavior of laterites and 

lateritic soils. The reason for this failure is the variation in plas

ticity and gradation characteristics of these soils resulting from sample 

preparation and handling which disrupt the natural structure of the soils. 

Therefore, engineering index properties of laterites and lateritic soils 

are not reproducible (25;35;44-,38;24) = In order to avoid such diffi

culties many authors have advocated a classification of laterites and 

lateritic soils for engineering purposes, based cn parent material and 

degree of weathering (46,35,19,11,26). The weathering becomes an 
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important factor in the case of tropical soils, simply because the en

vironment in tropics leads to intense weathering. 

It is the purpose of this thesis to investigate the engineering be

havior of selected Hawaiian lateritic soils derived from basalt, in rela

tion to degree of weathering and search for any possible engineering 

classification. 

The following sections of the thesis contain a brief literature re

view on laterites and lateritic soils, methods of investigation and re

sults, discussion of test results and conclusions. 
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LITERATURE REVIEW ON LATERITES AND LATERITIC SOILS 

In this section, a brief literature review on laterities and later-

itic soils will be presented. The information which will be compiled here 

was selected to be directly related to the scope of this particular study. 

More detailed information obtained from the literature on these soils can 

be found in Paulson's (49) and Fish's (23) theses. 

Definition and Genesis of Laterites and Lateritic Soils 

The recognition of laterite as an earth material, vith unique prop

erties, dates back to 1807 when Buchanan first encountered a material in 

India which he called laterite and defined as "soft enough to be readily 

cut into blocks by an iron instrument, but which upon exposure to air 

quickly becomes as hard as brick, and is reasonably resistant to the 

action of air and water" (74). 

Since Buchanan's time; the word laterite has been used to describe a 

wide variety of tropical soils without reaching an agreement on the exact 

origin, composition and properties of laterites. If one attempts to find 

the definition of laterite by searching the literature, he will encounter 

several different definitions. Among them, the one of Alexander and Cady 

(3) is widely accepted; "Laterite is a highly weathered material rich in 

secondary oxides of iron, aluminum, or both. It is nearly void of bases 

and primary silicates, but it may contain large amounts of quartz and 

kaolinite. It is either hard or capable of hardening on exposure to 

wetting and drying." Among those characteristics listed in the above 

definition, hardness is the only one which makes laterite unique. Later 
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on, Lohnes and Demirel (37) used the same definition in their studies on 

tropical soils, with the slight modification that "hardness means there is 

sufficient induration of the soil that it cannot be readily excavated by 

a shovel or spade." 

There are certain tropical soils which have not weathered as severely 

as laterites, but still have high sesquioxide and kaolinite contents, and 

low base and primary silicate contents, however, they are neither hard nor 

capable of hardening. According to Lohnes and Demirel (37), such soils 

can be referred to as lateritic soils. 

In this thesis, the terms laterite and lateritic soils will be used 

in accordance with the definitions made by Lohnes and Demirel. 

A complete accumulation of information on laterites prior to 1966 can 

be found in Maignien's (42) UNESCO report, "Review of Research on Later

ites," in which he condensed the information contained in more than 2000 

bibliographical references. 

There are numerous hypotheses on the genesis of laterites, differing 

from each other one way or another. The following points, however, remain 

common in most of them. The weathering process involves leaching of 

silica, formation of colloidal sesquioxides, and precipitation of the 

oxides with increasing crystallinity and dehydration as the rock becomes 

iTiore weathered. The parent rock which contains primary feldspars, quartz, 

and ferromagnesian minerals is transformed to a porous clayey system con

taining kaolinite, sesquioxides, and some residual quartz. The primary 

feldspars are converted to kaolinite and then, kaolinite is transformed to 

gibbsite. Primary ferromagnesian minerals, on the other hand, are 
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eventually converted to diffuse goethite, followed by well-crystallized 

goethite, and finally hematite. The crystallization leads to the forma

tion of iron and/or aluminum oxide concretions, coalescence of concretions 

and their cementation by iron and/or aluminum colloids, until the entire 

system is a continuous iron and/or aluminum oxide cemented crust (55,3, 

60,27,37). 

The weathering process of soils is very much dependent on the en

vironmental conditions in which soils are occurring. There are five major 

factors influencing the formation of soils and they are: parent material, 

climate, topography, vegetation, and time. From this point of view, the 

tropical regions with high temperature and humid conditions provide a 

favorable environment for intense weathering. 

It is quite difficult to differentiate which factors have more in

fluence on weathering than the others. One may intuitively say that the 

properties of a soil, which is the product of weathering, should be di

rectly dependent on the properties and features of the parent material 

from which the soil is derived (45,42). 

The influence of climate on weathering, on the other hand, is a 

commonly accepted fact. In discussing the factors influencing soil 

weathering, Mohr and Van Baren (45) put considerable emphasis on the 

rainfall distribution. In his study on Hawaiian soils, Sherman (54) ob

served the influence of rainfall intensity on the mineral composition of 

soils. Although many investigators (55,18,36) reported certain relation

ships between rainfall and mineral composition, there are some discrepan

cies. Dean (18) and Tanada (65), for example, observed li.ac'ln Hawaiian 
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soils, high kaolinite content occurs in regions receiving small amount of 

rainfall (65-90 cm annually), and that the kaolinite content decreases 

with increasing rainfall. Some other publications on Hawaiian soils, on 

the other hand, present cases in which kaolinite does not exist at all 

under a rainfall of 90 cm per year; instead, high amounts of sesquioxides 

of secondary origin occur. This difference in occurrence is attributed to 

the age of the soils (54,58). 

The influence of topography on weathering, also, cannot be over

looked. Since topography has influence on ground and surface water move

ment, it has a direct influence on the development of soil profile. Mohr 

and Van Baren (45) point out that the same type of rock may yield a 

weathering product of completely different composition if different 

topography and accordingly different drainage processes are involved. 

Vegetation is another important factor in the formation of laterites. 

As Sherman et al. (59) point out dehydration of the colloidal hydrated 

oxides of the soil has a very impurtant role in the development of later-

ite; and vegetation is one of the factors which determine the rate of 

dehydration. Vegetation also has a protective effect on runoff and ero

sion which are important environmental factors influencing the genesis of 

soils (42). 

Finally, the role of time in the formation of laterites and lateritic 

soils, is a well-recognized point introduced by many investigators (54,51, 

45.42.14). Sherman (54) states that "since the geoluyical ages of the 

parent materials vary greatly, the time of exposure of the parent material 
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to soil forming processes will also have had a major effect on soil de

velopment." 

As a result of the preceding discussions, it is concluded that be

cause of the combined effects of those several soil forming factors, 

laterites and lateritic soils exhibit a very complex pattern of soil 

development. 

Engineering Properties of Laterites and Lateritic Soils 

Many studies have shown that plasticity and grain size distribution 

data for lateritic soils are extremely varied and erratic (79,44,74,38). 

The reasons for this are discussed in detail by several investigators 

(44,69,26). When soils are manipulated their characteristics vary a lot. 

Pre-testing drying causes variations in some properties of lateritic soils 

and this behavior is commonly attributed to the dehydration of the col

loidal hydrated oxides occurring in these soils. In most of the cases the 

variation, resulting from drying, is irréversible and results in a soil 

with more granular characteristics. To disperse such a system for 

plasticity and grain size determinations is almost impossible (74). Be

cause of such difficulties it is extremely difficult to derive an accept

able generalization for lateritic soils with regard to plasticity and 

gradation. 

Lohnes and Demirel (37) are the first investigators who have put 

emphasis on using specific gravity as an indicator for engineering be

havior of lateritic soils. By definition specific gravity is the weighted 

average of the specific gravities of the minerals which comprise the soil. 
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In the weathering process of lateritic soils, it is always stated that the 

contents of high specific gravity minerals increase with age of formation. 

This fact, of course, should be reflected in the value of specific gravi

ty, that is, specific gravity of lateritic soils should increase with in

creasing degree of weathering. Lohnes and Demirel made an attempt to 

verify this thought by plotting extractable iron content versus specific 

gravity for several selected Puerto Rican soils and ended up with a good 

correlation between increasing specific gravity and increasing iron con

tent. They also used the data presented by Trow and Morton (70) on 

Dominican Republic soils to show increasing specific gravity with in

creasing amount of goethite. 

Thus it appears that specific gravity of lateritic soils can be re

garded as a parameter which can be used for a better understanding of the 

engineering behavior of tropical soils in relation to degree of weather

ing. 

Other engineering properties of lateritic soils, such as wet and dry 

densities, moisture content, and void ratio (or porosity), have not been 

taken into account in the majority of studies. There are very limited 

data on such properties of lateritic soils in the literature. This is an 

unfortunate situation, because these properties have an advantage over 

plasticity and gradation, in that, the majority of them are determined by 

bulk measurements and as such are not influenced by degree of manipula

tion. Specific gravity, which is used in determining the void ratio, is 

also a parameter not affected much by the manipulation of soils prior to 

testing. In addition, the bulk properties, reflect the behavior of 
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undisturbed soils; so, from the engineering point of view, they provide 

better information on laterites and lateritic soils. 

In their study on Puerto Rican soils, Lohnes and Demirel (37) ob

served a relationship between void ratio and specific gravity, indicating 

a decrease in void ratio as specific gravity increases. Besides that, 

they observed increasing cohesion with decreasing void ratio. By making 

use of these relationships, they suggested the possibility of an engineer

ing classification system for lateritic soils which relates void ratio, 

strength and degree of weathering to each other. 

Structure of Laterites and Lateritic Soils 

The size, shape, and arrangement of mineral grains which form the 

soil mass is known as soil structure. The importance of soil structure in 

explaining the engineering behavior of soils Is emphasized by many in

vestigators (29,43,62,6). In this section of the literature review the 

soil properties which have been inferred as having direct relationships 

with the soil structure will be introduced. 

Soil mineralogy 

Soil minerals occurring in the soil mass apparently have direct in

fluence on the size, shape and arrangement of the soil aggregates. 

According to many investigators the predominant minerals occurring in 

lateritic soils are kaolinite, gibbsite, arid Iron compounds (55,18,16,57, 

21,36,38). It has also been inferred that the occurrence of kaolinite in 

large amounts comes first in the course of weathering. With continued 

weathering the kaolinite content decreases, while the sesquioxides of iron 

and aluminum become larger in amount (3,27). Peterson (50) made an 
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attempt to measure the capacity of kaolinite to form water stable aggre

gates under the influence of cyclic wetting and drying, and found out that 

kaolinite is very inert as a binding agent which has very little effect on 

aggregation. Oxides of iron and aluminum, on the other hand, are reported 

as being very active as binding agents by many investigators (40,66,69,5, 

8). Area and Weed (5) point out that the relationship between aggregate 

occurrence and free iron oxide content remains highly significant and 

fairly constant at all sizes studied (0.1-2.0 mm diameter). These obser

vations suggest that the soils with high kaolinite content would show low 

aggregation, and soils with large amount of sesquioxides would exhibit 

good soil aggregation. In his study on some residual soils from the 

highlands of Papua, New Guinea, Wallace (75) made an attempt to idealize 

the structure of lateritic soils. According to him, soil aggregates are 

cemented together at their contacts to form a continuous three-dimensional 

structural framework and the precipitation of iron and aluminum hydroxides 

is responsible for the cementation. This is verified somewhat by the 

scanning electron microscope photos of Lohnes and Demirel (37). 

As it is stated by many investigators (54,45,42), the ultimate end 

product of laterization in tropical soils could be either iron oxide rich 

laterite or aluminum oxide rich laterite. According to Sherman (54) the 

end product of weathering is closely related to the distribution of rain

fall. He states that an alternating wet and dry season climate results in 

the stabilization of the iron oxide. Under continuously wet conditions; 

however, the alumina becomes the stabilized free oxide, while iron oxide 
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becomes unstable and leaches away. This explains the difference in forma

tion of so called ferruginous and aluminous, or bauxite, laterites. 

Titanium oxide, in the form of anatase, is occasionally encountered 

in tropical soils (16,56). Sherman (56) studied the titanium content of 

Hawaiian soils and discussed its significance in the weathering process of 

soils. The data presented by him suggest that the occurrence of titanium 

element usually takes place in the surface of soils, more specifically in 

A-horizon, under a climate which has definite wet and dry seasons. 

Soil pore structure 

Besides studying the size, shape and arrangement of solid phase in a 

soil mass, it should be worthwhile to study the pore phase of soils as 

well. 

Mercury Injection technique is a method recently developed, and can 

be used for analyzing several aspects of porous materials. Diamond (20) 

introduced the method first for studying the pore size distribution of 

soils. After him, several pore size studies have been performed on tem

perate soils (64,6,2), but not on tropical soils. It is the belief of 

the author that such a useful tool should be utilized in studying the pore 

structure of lateritic soils in order to be able to understand the be

havior of these soils better, with regard to soil weathering and soil 

strength. 

The most common methods utilized in studying the structure of later

itic soils have been light microscopy and recently, scanning electron 

microscopy (30,71,37). It is extremely difficult to define the soil 

structure quantitatively from the micrographs obtained from microscopic 



12 

studies. The mercury porosimetry, however, gives the opportunity to 

generate several parameters from the pore size distribution curves and 

to quantify, at least, the pore structure of soils (39). 

Strength of Laterites and Lateritic Soils 

A literature review on the strength characteristics of undisturbed 

samples of laterites and lateritic soils reveals that the investigation of 

these soils from an engineering point of view has been greatly overlooked, 

although such soils have been used as a primary engineering construction 

material in tropical and equatorial countries for many years. Some 

studies performed recently on the strength behavior of laterites and 

lateritic soils have added little because either they are incomplete or 

they deal with localized problems and in restricted areas. 

The available reported test results can be summarized in the follow

ing manner. Lateritic soils usually have relatively high to very high 

cohesion and internal friction angle (23). This behavior is generally 

attributed to the cementation which is taking place among the individual 

soil grains by the binding action of sesquioxides (23,37,49). The 

strength behavior of lateritic soils was observed to be very much de

pendent on the moisture content of the sample tested (7,49). Decreasing 

moisture content usually causes an increase both in cohesion and internal 

friction angle (7,49). This behavior is attributed to the variation in 

soil structure with varying moisture content, such that, as the soil dries 

out part of the hydrated colloidal iron and aluminum oxides dehydrates 
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and forms strong bonds among certain soil grains which, in turn, causes 

an increase in strength. 

In their study on Puerto Rican soils, Lohnes and Demirel (37) made 

an attempt to relate cohesion to degree of weathering and they observed 

that cohesion increases with increasing weathering. 

Classification of Laterites and Lateritic Soils 

There have been several attempts to classify laterites and lateritic 

soils for many years, but none of the proposed classification systems has 

been accepted universally. According to Maignien (42), these classifica

tion systems can be grouped as (a) analytical classifications which are 

based mainly on morphological characteritics with a bias toward soil 

genetic considerations, and (b) synthetic classifications which are based 

on genetic factors or soil-genetic processes or on properties of pedo-

genetic factors or processes. 

As Mchr and Van Baren (45) point out every classification system 

should have some predetermined purposes. None of the classification 

systems mentioned above has an aim to classify the soils according to 

their engineering behavior. Although there are some popular engineering 

classification systems, such as the Unified system or the American Asso

ciation of State Highway Officials system, which have been used satis

factorily in the temperate environments of the world for years, they have 

not been so successful in the case of tropical soils. These classifica

tion systems are based on plasticity and gradation data of the soils; but 

as discussed previously, such characteristics of tropical soils are not 
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reproducible by standard laboratory tests. The reasons for this, once 

again, are the influences of sample preparation and handling which disrupt 

the natural structure of the soil. 

In order to avoid such problems, several authors (46,35,26) have 

advocated a classification of laterites and lateritic soils for engineer

ing purposes, based on parent material and degree of weathering. 

Fish (23) and Gidigasu (26) made attempts to use pedalogical classi

fications for engineering purposes. Ruddock (53) has suggested an engi

neering classification based on topographic position, sample depth and 

depth to water table which are, in fact, factors influencing the degree of 

weathering. Lohnes and Demirel (37) have suggested to use specific 

gravity, void ratio and degree of weathering for engineering classifica

tion of tropical soils. None of these proposed engineering classification 

systems, however, has found a broad acceptance yet. 

From the above discussion, it becomes evident that an appropriate 

classification of laterites and lateritic soils for engineering purposes 

is still nonexistent. 
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METHODS OF INVESTIGATION AND RESULTS 

Geographic Location and Sample Sites 

The soils investigated in this study were collected from the islands 

of Oahu and Kauai, Hawaii. The islands of Hawaii are located in the 

central part of the Pacific Ocean, between 19° and 23° latitude and 154° 

and 161° longitude, and they line up in the direction of northwest to 

southeast. 

In selecting the specific sampling locations, the main consideration 

was to obtain soils which were derived from the same parent material, but 

formed under the influence of various environmental conditions. The soil 

series collected from the island of Oahu are Molokai, Lahaina, Wahiawa, 

Manana and Paaloa. All of these soils were derived from the Koolau 

basalt series on the leeward side of the Koolau mountain range. According 

to Wentworth and Winchell (78), this basalt series is very uniform chemi

cally and petrologically, so it may be assumed that the soils were derived 

from essentially the same parent rock. The sample locations are along a 

three mile traverse on the divide between Kipapa stream and Panakauki 

Gulch about three and one-half miles northwest of Pearl City. Generalized 

geologic map of Oahu and location of soil sampling sites are shown in 

P1 y Li Vô 1 • 

The soil series collected from the island of Kauai are Lihue, Puhi, 

Kapaa and Halii. All were derived from Koloa basalt series on the wind

ward side of the island. Beinroth et al. (10) state that these soil 
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Figure 1. Generalized geologic map of Oahu, Hawaii, showing location 
soil sampling sites 
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series can be considered as derived from the same parent material. Gen

eralized geologic map of Kauai and location of soil sampling sites are 

shown in Figure 2. 

According to the most recent pedological classification of the U.S. 

Department of Agriculture (72), the soils which are the subject of this 

study are oxisols and ultisols. Table 1 outlines the USDA classification 

and environmental factors of the soils. Complete profile descriptions can 

be found in the soil survey of the islands (73). 

Method of Sampling, Shipping, and Storage 

Thin walled Shelby tubes were hydraulically pushed into the soil by a 

Soil test Model DR-2000 Hydraulic Porta-Sampler to collect undisturbed 

samples. Description and efficiency of this method of sampling is ex

plained in detail in Paulson's (49) and Fish's (23) theses. 

Two or three borings were made at each location. All the samples 

were collected from B-horizon of the profile, since it is influenced by 

the weathering process more than the other horizons, and it can form a 

good basis for the comparison of different soils from the genesis point of 

view. Therefore, highly organic A-horizon and relatively unweathered C-

horizon were eliminated from the investigation. 

Permission was obtained from the U.S. Department of Agriculture to 

ship the soils into the continental United States without sterilization, 

so that the relatively undisturbed nature of the soils could be preserved. 

The method of handling and shipping the samples was the same as explained 

in Paulson's and Fish's theses. 
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Table 1. Environmental factors and USDA classification of selected Hawaiian soils 

Soil Rainfall Slope Pédologie Great soil group 
series Location cm/yr % classification Order (1938 classification) 

Molokai Gahu 57 2-•6 Typic torrox Oxisol Low-humic latosol 

Lahaina Oahu 70 2-•6 Typic torrox Oxisol Low-humic latosol 

Wahiawa Gahu 127 0-•3 Tropeptic eutrustox Oxisol Low-humic latosol 

Manana Oahu 127 6-12 Orthoxic tropohumults Ultisol Humic ferruginous latosol 

Paaloa Oahu 203 3- 8 Humoxic tropohumults Ultisol Humic latosol 

Lihue Kauai 127 0-8 Tropeptic eutrustox Oxisol Low-humic latosol 

Puhi Kauai 178 3-8 Typic umbriorthox Oxisol Humic ferruginous latosol 

Kapaa Kauai 254 3-8 Typic gibbsihumox Oxisol Humic ferruginous latosol 

Halii Kauai 381 3-8 Typic gibbsihumox Oxisol Humic ferruginous latosol 
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When the samples arrived at the laboratory, the sealed Shelby tubes 

were removed from wooden crates and stored in a 100 percent relative 

humidity, in order to prevent any moisture loss during storage. 

Laboratory Testing and Results 

Bulk measurements and determination of index properties 

Although it was stated earlier that standard engineering index tests 

are not adequate to accurately predict the field behavior of lateritic 

soils, they were performed for the completeness, and for any possible 

correlation that may show up in the analysis. 

Wet densities were determined by bulk measurements, that is, by ob

taining weight and bulk dimensions of the undisturbed, cylindrical soil 

samples. Moisture contents were calculated on oven dry weight basis and 

used together with wet densities to compute dry densities. 

In the determination of specific gravities, Atterberg limits, and 

grain size distributions, the samples were prepared by mixing the trim

mings from thin-walled tube samples obtained from various depths within 

the B-horizon, and then, the mixture was quartered with a sample splitter 

and used for testing. That way, it was attempted to analyze material 

that is representative of the B-horizon. In this thesis, the samples so 

prepared will be referred to as composite samples. All of these common 

soil tests were conducted in accordance with the standard AASHO procedures 

(4). 

Porosity and void ratio values were calculated by using dry densities 

and specific gravities. 
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Figures 3 and 4 show the grain size distribution curves of the soils 

from Oahu and Kauai, respectively. Table 2 and 3 summarize the results of 

the standard laboratory tests. 

In pore size analysis which will be discussed in one of the coming 

sections, it was observed that Puhi and Halii soil series are not con

sistent within themselves. Puhi gives different characteristic pore size 

distribution curves for samples from shallow and deep depths, and Halii 

has different curves for soil matrix and concretions it contains. So, 

each of these two soil series was treated as being two different soils and 

whenever it was possible the other soil properties of each were determined 

separately. Table 2 is an example of this. 

Mineraloqical analysis 

Qualitative mineral egical analysis In the first step of minera-

logical analysis, minerals which are present in the composite samples of 

each soil series were identified qualitatively. X-ray diffraction and 

differential thermal analysis were utilized for this purpose. 

A GE-XRD-5 spectrogoniometer was used in all X-ray work. Composite 

samn^es for X-ray diffraction were prepared by first oven drying the soils 

and then sieving them through a No. 200 sieve. Either copper-Ka or 

molybdenum-Ka radiation was used. Besides oven drying, each soil was 

Subjected to glycol and heat treatments arid the effects of these treat-

ments on the X-ray patterns were observed (15). 

Analysis of the X-ray patterns exhibited that kaolinite and gibbslte 

are the main clay minerals present. Hematite is the most abundant iron 



SIEVE SIZE 
#200 #100 #60 #40 #20 #10 

100 
MOLOKAI 
LAHAINA 
WAHIAWA 
MANAMA 
PAALOA 

z «t 3C I— 
CC 

LU CJ 
cc: 
LU 
a. 

0.1 0.01 0.001 1 

GRAIN SIZE - MILLIMETERS 

Figure 3. Grain size distribution curves for soils from the island of Oahu, Hawaii 



OCI 

9CI 

80 

70 

60 

50 

40 

30 

20 

•JO 

0 
0. (  

SIEVE SIZE 
#200 #100 #60 #40 #20 #10 

— LIHUE 
— PUHI 
— KAPAA 
— HALII 

1 
1001 0.001 

1 
0.01 0.1 1 

GRAIN SIZE - MILLIMETERS 

10 

in size distribution curves; for soils from the island of Kauai, Hawaii 



Table 2 .  Some engineering properties of selected Hawaiian soils 

Soil 
series 

Depth 
cm 

Moisture 
content 

% 

Hygroscopic 
moisture content 

% 

Dry 
density 

gm/cc 
Specific 
gravity Void ratio 

Molokai 43-137 23.03 3.77 1.41 2.946 1.088 

Lahaina 48-122 22.82 3.10 1.35 2.937 1.174 

Wahiawa 30-104 27.28 3.50 1.48 2.989 1.020 

Manana 25-124 33.85 4.20 1.40 2.991 1.137 

Paaloa 38-135 39.56 3.46 1.32 3.098 1.347 

Lihue 25-147 35.54 2.20 1.33 3.112 1.342 

Puhi 61-177 41.33 7.57 1.29 3.326 1.577 

(shallow) 611-114 43.09 9.62 1.26 3.297 1.660 

(deep) 114-177 39.14 5.51 1.34 3.351 1.463 

Kapaa 38-159 45.79 1.99 1.17 3.395 1.899 

Halii 27-155 43.74 4.19 1.23 3.391 1.755 

(soil matrix) 27-155 52.53 4.94 1.17^ 3.493 1.905^ 

(concretion) 27-155 24.77 3.43 1.66^ 2.985 0.802^ 

^Determined for powder samples which are sieved through No. 200 sieve. 

^Determined from mercury porosimetry data. 



Table 3. Physical properties of selected Hawaiian soils 

Soil 
series 

Sand 
(2.0-0.06 

mm) % 

Silt 
(0.06-0.002 

mm) % 

Clay 
(<0.002 
mm) % 

Liquid 
1 imit 

Plastic 
limit 

Shrinkage 
limit 

Plasticity 
index Activity 

Molokai 28.7 51.0 20.3 45.5 38.7 24.6 6.8 0.33 

Lahaina 31.0 38.7 30.3 49.1 38.5 32.6 10.6 0.35 

Wahiawa 10.7 45.5 43.8 51.3 36.0 26.0 15.3 0.35 

Manana 69.3 16.7 14.0 67.1 50.4 39.1 16.7 1.19 

Paaloa 27.8 39.2 33.0 57.1 39.3 23.8 17.8 0.54 

Lihue 12.4 28.8 58.8 72.6 54.9 34.2 17.7 0.30 

Puhi 24.5 39.9 35.6 44.0 40.3 36.2 3.7 0.10 

Kapaa 24.0 41.7 34.3 52.0 42.0 31.0 10.0 0.29 

Halii 45.1 34.4 20.5 40.0 35.4 29.8 4.6 0.22 

ro cn 
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compound detected. Goethite and magnetite are the other iron compounds 

occurring in these soils in smaller amounts. 

Differential thermal analysis (DTA) was conducted by making use of a 

Rigaku Thermal Analyzer. Composite samples of each soil series» oven 

dried and sieved through a No. 200 sieve, were tested over a temperature 

range of 20-1000°C. The DTA curves were compared with the standard curves 

given in the literature (41,63), to identify unknown minerals which are 

present in the samples. Kaolinite and gibbsite minerals were identified 

readily by this technique. Hematite, on the other hand, does not have any 

particular reaction within the temperature range covered, so it was not 

included in DTA study. 

Quantitative mineralogical analysis In this part of the study, 

the main concern was to determine the contents of predominant minerals 

which occur in these soils, i.e., kaolinite, gibbsite, and iron oxides. 

The determination of kaolinite and gibbsite contents of the soils was 

achieved by making use of thermal gravimetric analysis (TGA) together with 

differential thermal analysis. The method used is as follows: First, a 

sample, which contains only the pure mineral in question, is prepared with 

a known weight, approximately 40 milligrams, and the weight loss corre

sponding to the most characteristic reaction of the mineral determined. 

Then; the weight loss corrssponding to the same reaction is obtained for 

the natural sample having the same weight as the pure mineral sample. 

Direct proportioning of these weight loss values gives the fraction of the 

mineral to be determined in the unknown sample (77). 
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The kaolinite and gibbsite contents determined by this technique are 

listed in Table 4 which summarizes all the mineralogical and chemical 

analyses results. 

Hematite, which commonly occurs in all the soils, was determined 

quantitatively by X-ray diffraction. For this purpose, a quantitative 

X-ray diffraction method, which is applicable for the determination of any 

soil mineral, was developed. The theory and the application of the method 

are given below. 

The basis of the proposed method is the comparison of X-ray diffrac

tion peak intensities of the mineral in the sample with the intensities of 

the same peak in specimens which are a mixture of the original soil sample 

and known additional amounts of the mineral in question, that is, the 

component to be determined is used as an internal standard. 

Norrish and Taylor (48) expanded upon the ideas of Klug and Alexander 

(34) to demonstrate that the measured intensity of an X-ray diffraction 

peak of a crystalline component in a sample is related to the weight frac

tion of that component in the sample by the equation: 

where 1^ is the measured intensity of the diffraction peak of a crystal

line component in a soil sample, p is the true density of the component 

used to make the diffraction pattern, x is the weight fraction of the 

component being estimated, K is a constant for any particular peak of a 

particular component, and is the mass absorption coefficient of the 

sample. Norrish and Taylor state that the use of this equation without 



Table 4. Mineralogical and chemical analyses results 

Total iron content 

Soil 
series 

Kaolinite 
content® 

% 

Gibbsite 
content® 

% 

Hematite 
content^ 

% 

by X-ray 
fluor. 
% 

by atomic ab
sorption spec. 

% 

Total Fe203 
contente 

% 

Organic 
matter 

mg/gm 

Molokai 52! 9 12.6 11.4 13.5 16.3 4.28 

Lahaina 60 9 10.3 11.9 12.7 17.0 4.14 

Wahiawa 54 5 13.3 12.4 14.3 17.7 3.81 

Manana 43 16 6.4 16.3 17.1 23.3 8.43 

Paaloa 30 33 20.1 17.3 18.9 24.7 8.67 

Lihue 511 10 3.8 14.3 14.3 20.4 8.91 

Puhi 11 47 15.0 17.7 25.1 25.3 11.30 

(shallow) 10 42 12.1 14.2 26.0 20.3 12.10 

(deep) 13 52 8.6 19.3 24.1 27.6 10.50 

Kapaa 10 48 6.6 24.8 26.5 35.4 12.12 

Hal il 11 53 12.1 28.1 30.4 40.1 15.40 

(soil matrix) 11 52 16.2 18.6 28.5 26.6 13.21 

(concretion) 0 76 13.6 19.2 32.2 27.4 17.58 

®By thermal gravimetric analysis. 

^By X-ray diffraction. 

^From X-ray fluorescence. 
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internal standards is difficult because the mass absorption coefficients 

of the standard mixtures vary as the amount of known mineral content 

changes in the specimen. The derivation here takes this variable into 

account but assumes that the ratio of K/p will remain constant so long as 

the crystalline structure of the standard component which is added to the 

soil sample is essentially the same as that of the component which occurs 

in the soil sample. 

Equation 1 can be written as 

. _ Kx 
0 p(XA|^+X2A2+X3A3+. .. ) 

where is the mass absorption coefficient of the component being meas

ured, ^2> A3, etc. are the mass absorption coefficients of the other 

minerals in the soil, and X2, X3, etc. are the weight fractions of those 

other minerals. The true mass absorption coefficient of the sample con

sisting of components exclusive of the one being measured is A^. These 

minerals exclusive of the one being estimated will be referred to as the 

"matrix minerals." The true mass absorption coefficient of the matrix 

minerals is given by the equation: 

therefore 

(X2A2+X3A3+...) 

the term X2A2 + X3A3+ ... can be called the appearent mass absorption 

coefficient of the matrix minerals, A^.. Therefore, 
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If a known quantity of the component being estimated is added to the 

sample, this mixture can be referred to as a specimen. Let c be the known 

added weight fraction of the component in the specimen, and X is the com

posite or total weight fraction of the component in the specimen. The 

weight fraction of the sample in the specimen is 1 - c and the unknown 

weight fraction of the component in the specimen is (l-c)x. Therefore, 

the total weight fraction of the component in the specimen is: X = 

(l-c)x + c. And the peak intensity produced by the total amount of the 

component in the specimen is: 

(Eq. 3) 

where is the peak intensity and is the complete mass absorption 

coefficient of the specimen. The mass absorption in terms of the total 

and added weight fractions in the specimen is: 

= XA^ + (1-C)X2A2 + (l-cjXgAg + ... 

which can also be written in terms of the unknown weight fraction of the 

component in the sample: 

A^ = [(l-c)x + c]A^ + (1-c)Cx2A2 + X3A3 + ...] 

The value of the apparent mass absorption coefficient of the matrix 

minerals can be substituted into the above equation to give: 

Aç = [(l-c)x + c]A^ + (1-c) Â. (Eq. 4) 

Substitution of Equation 4 into Equation 3 gives: 
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The ratio of the peak intensities produced by the sample and the 

specimen is: 

& _ [(l-c)x + c][xAm + Ai2 
Iq {[(l-c)x + cjA^ + (1-c) A.}x 

which can be written as: 

'c 

^0 \ , 1-c 
Â. (l-c)x + c 

(Eq. 5) 

If 

and this term is substituted into Equation 5 then by adding and sub

tracting 1 the equation becomes: 

T~ - _ Orv J4- 1 _ r ^ (Eq. 6) 
1 _ r\f\ • • »w , w 

0 

L 
Let T— 1 = 1 and substitute it into Equation 6 to give: 

0 

Y = A/Z - Ac/Z + Acx + X - cx 

grouping terms: 

y= c[Ax •= x(Ax-t-l)] f x(Ax-rl) (Eq, 7) 

Let m = [Ax - x(Ax+l)] and n = x(Ax+l). Equation 7 becomes a linear 

equation; 

Q 
1" = mc + n (Eq. 8) 
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such that if the concentration of the component added to the sample di

vided by the intensity ratio minus one is plotted versus the concentration 

of the component added to the sample for various concentrations, then a 

straight line should result with a slope of m and an intercept of n. From 

these experimentally determined values it is possible to compute x, the 

unknown amount of the component in the soil sample. The values of m and n 

give two equations with two unknowns, x and A. By eliminating A, x can be 

related to m and n in the following manner: 

It is also possible to compute experimentally the ratio of the mass ab

sorption coefficient of the mineral A^ to the mass absorption coefficient 

of the matrix minerals. 

In order to evalute the reliability of this method an "artificial 

soil" was prepared containing 5% hematite ground from a naturally 

occurring hematite and 95% kaolinite. This "soil" sample was then mixed 

with additional known amounts (5, 8, 12, 15, and 20%) of a chemically pure 

hematite. For consistency of volume and weight percentages, specimens 

were compressed into rings at a constant porosity. The intensities of the 

100 peaks for the sample and each specimen were measured. The intensity 

ratio for each specimen was computed and a plot of c/I versus c was pre

pared. The radiation used was molybdenum-Ka and the 100 reflection gives 

a peak at the 29 angle of 15.15 degrees. As can be seen in Figure 5, 

there is an overlap of the 15.15 degree peak and the next peak corre

sponding to both hematite and kaolinite at around 16.4 degrees. Therefore 

it is necessary to sketch the lower portion of both peaks to the baseline 



HEMATITE MINERAL = 

RADIATION = 

20 

Figure 5. Example of definition of X-ray peak for intensity measurements 
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so that the higher intensity caused by the overlap is equal to the sum of 

the areas of the two tails. The baseline is determined by extending a 

straight line from one background level at a lower 20 angle where there 

are no peaks to another low background at a higher 20 angle. The area of 

the peak so defined was then measured with a planimeter. 

Four separate intensity measurements were made on each specimen and 

the "soil" sample, then the intensity ratios were calculated using the 

average intensities. The values of c/I then were calculated and plotted 

versus c. The graph is shown in Figure 6 with the regression line and 95% 

confidence limits. The hematite content which was determined from m and n 

is 5.15% which compares favorably with the 5.00% which is in the artifi

cial soil sample. The calculus method of error analysis (67) revealed 

that at the 5% significance level the range in calculated hematite con

tents is from 4.6% to 5.7%. Theoretical mass absorption characteristics 

for hematite and kaolinite were determined as 27.26 and 3.4, respectively. 

The theoretical value of the mixture of 5% hematite and 96% kaolinite is 

therefore 8.4. The mass absorption coefficient that was determined from 

Figure 6, and the parameters m and n, is 6.11. 

Based upon the good agreement between the amount of hematite in the 

artificial "soil" sample and the amount of hematite estimated by the 

method described here, it is concluded that this method offers promise of 

being a reliable method for the determination of various mineral com

ponents in natural soils. The fair agreement between theoretical and 

experimentally determined mass absorption coefficient is taken as further 

evidence of the reliability of this method. 
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Figure 6. Average values of peak intensity resulted in this relationship of concentration to 
intensity ratio versus concentration of added hematite 
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One source of the variability in the four individual values is 

interpreted as arising from the judgment that goes into the definition 

of each peak due to the overlap of sequential peaks. 

Another source of scatter in the values may be the result of varia

bility in the time rate of X-ray photon densities due to voltage alterna

tion. Thus on any given determination, a different population of grains 

in the powder will be irradiated; this will result in varying intensities 

for each individual determination. Rotating the sample should minimize 

this effect. By taking this into account, the composite samples of 

Hawaiian soils, subjected to this analysis, were rotated in the plane of 

the sample holder so as to give a better statistical sample of the 

crystallites being irradiated. 

Application of this method for Hawaiian soils to determine the 

hematite contents gave the results listed in Table A1 in Appendix A. The 

hematite content values were then corrected for hygroscopic moisture, in 

order to have the contents on dry weight basis. The corrected values are 

listed in Table 4. 

The importance of iron oxides in lateritic soils was discussed 

earlier. In order to get the total amount of iron oxides occurring in 

these soils, the most common approach utilized is to determine the amount 

of total iron element which is present, and accordingly to calculate total 

iron oxides on the basis of total iron content. To achieve this, a 

quantitative X-ray fluorescence analysis was developed by similar approach 

as presented above for the cases of determining the contents of soil 

minerals. The theory and the application of the method is given below. 
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The basis of the analysis is the comparison of X-ray fluorescent peak 

intensities of the element in the sample with intensities of the same 

element in specimens of the original sample plus known additional amounts 

of the element in question. In other words, the element to be determined 

is used as an internal standard. Although use of the element to be de

termined as an internal standard was suggested by many authors, a linear 

relationship between the intensity and the concentration of the element 

was assumed (12,28,1,33). This assumption is true only when the concen

tration of the element in the soil and the additional known amounts are 

rather low. Otherwise, due to the effects of absorption and enhancement 

the relationship between the intensity and the concentration is not 

linear (12,13,1,17,33,47). The method described here takes both absorp

tion and enhancement into account and is applicable to soil samples con

taining high concentrations of the element in question. 

For a direct quantitative analysis of a sample it is necessary to 

have a relation between the measured peak intensity of a particular ele

ment and its percentage in the sample. Such a relation, however, is 

usually governed by the matrix effects which include both absorption and 

enhancement as shown below, therefore a direct correlation is not 

possible. 

Birks (12) gives a complete derivation of the equation for expected 

fluorescent intensity. Both absorption and enhancement are taken into 

consideration in that derivation. If an assumption is made that the 

exciting radiation is monochromatic, the following expression is obtained 

for intensity: 
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V„.P, 

where = expected fluorescent intensity of some characteristic line of 

'fx = (.csc5<;csc,,)p n - (Eq. 10) 

element x 

= excitation constant of element x 

I = intensity of the primary radiation 
Po 

= density of element x in the layer dl which is shown in 

Figure 7 

p = density of the sample 

Pp = mass absorption coefficient of the sample for the primary 

radiation 

= mass absorption coefficient of the sample for the fluorescent 

radiation 

ijip = angle at which primary radiation strikes the surface of the 

OUIItpiC UO O I XWMH til I t^MIW / 

= angle at which fluorescent radiation emerges, as 

Figure 7 

1 = the distance from the surface of the sample to the layer dl 

as shown in Figure 7 

The expression, (y^csc^Q+y^csc*^), in the Equation 10 accounts for 

absorption and enhancement, which was verified experimentally by Beattie 

and Brissey (9). 

Now, if 1 is allowed to go to infinity and p /p is expressed by x, 

which is the weight fraction of the element to be measured, Equation 10 

becomes simply: 
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////////////////////////////////////̂ ^̂  dl 

Figure 7. Primary and fluorescent radiation paths through a thick 
specimen 
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^fx ~ (;pCSC*p+2fCSC*f) (Eq. 11) 

By definition, mass absorption coefficients, Pp and can be ex

pressed as: 

"p ° '•'•"'"mp ° "'"xp - *mp ) + \p (EC- ^2) 

"f ' x^xf ^ ' *(%xf - "mf' + V (Eq- ") 

where u^p and p^p are mass absorption coefficients of the element being 

determined and the matrix material for primary radiation, respectively. 

Parameters and are mass absorption coefficients of the element 

being determined and the matrix material for fluorescent radiation, 

respectively. 

Substitution of Equations 12 and 13 into Equation 11 gives: 

Qylpn* 
'f" ° x[(;xp-"mp)csc*p ^ 

The terms [(Wxp-%mp)csc*p + (^mpCSCOp+UmfCSCff) are 

constants, and can be designated as A and B, respectively. Therefore 

Equation 14 becomes: 
Qyl- X 

'fx = Srï°B (Eq. 15) 

The matrix effects (i.e., absorption and enhancement) are accounted for in 

this equation by the parameters Q^, A, and B. As it is shown by the 

following analysis, these effects can be eliminated by addition of known 

quantities of the element being determined to the sample. 

When a known quantity of the element being determined is added to the 

sample, this mixture is referred to as the specimen. However, it is 
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usually more expedient to add a compound of the element rather than the 

pure element. Therefore, in addition to the element in question, other 

elements are added to the sample. Let c be the known added weight frac

tion of the element in the specimen and k be the weight fraction of the 

element in the compound added. Then, the weight fraction, c^, of the 

elements other than the element being determined can be obtained from: 

CQ = c (Eq. 16) 

Now, the weight fraction of the sample in the specimen is (l-c-c^) and the 

unknown weight fraction of the element in the specimen is (I-C-CQ)X. 

Therefore, the total weight fraction of the element in the specimen is: 

X = (I-C-CQ)X + c (Eq. 17) 

Substitution of Equation 16 into Equation 17 gives: 

X = (1 - f)x + c (Eq. 18) 

Obviously, the mass absorption coefficients of the specimen for primary 

and fluorescent radiations will be different than those of the sample. 

These coefficients can be expressed in the following manner: 

' Sp + (1 - X - ^ ^ "op 

or 

"p " X(wxp-^mp) "op • "mp> "mp 

and 

"f ° "of - "mf) "mf (^4. 20) 

where and are mass absorption coefficients of the specimen for 

primary and fluorescent radiations, respectively; and y^^ and y^^ are mass 
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absorption coefficients of the added elements other than the element being 

measured for primary and fluorescent radiations, respectively. 

Now, fluorescent intensity, produced by the total amount of the 

element in the specimen can be expressed as: 

^fc " (u^cscfp+S^csc^f) 21) 

Substitution of Equations 19 and 20 into Equation 21 gives: 

QvIn^X 
I = :j-r ^^ (Eq. 22) 

AX + B + c[(-:-)(Pop-Wmp)csc4p+(-:-)(wQf-Wmf)csc*f] 

The term [(^^^Ofwop-^mp^cscOp + (^ir^(^of"^mf)^sc*f] is a constant which 

can be designated as D. Thus Equation 22 takes the following form: 

"fc ^ AX"+ B + DC (Eq, 23) 

Then, by dividing Equation 23 by Equation 15, the ratio of the peak in

tensities produced by the specimen and the sample can be expressed as 

follows: 

4c _ X(Ax + B) 
" x(AX + B + Dc) 

The value of X as defined by Equation 18 can be substituted into the above 

equation to give: 

Ifc [(1 - f)x + c](Ax + B) 

4x x{A[(l - •|)x + c] + B + Dc} 

or 

I^c Ax2 - ^ x2 + Acx + Bx - "Y X + Be 

4x Ax^ " IT * Acx + Bx + Dcx 
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By subtracting 1 from both sides of the above equation, one can obtain the 

following equation: 

Ifc _ , Bkc - Bxc - Dkxc /p ..v 
Akx^ - Ax^c + Akxc + Bkx + Dkxc ^ ' 

Ifr 
By letting Y~^ - 1 be equal to I and grouping the terms. Equation 24 

4x 
becomes : 

J _ c(Bk - Bx - Dkx) 
c(Akx + Dkx - Ax^) + Akx^ + Bkx 

and 

c _ _rAkx + Dkx - AX^t . r AkxZ + Bkx i /r_ 
T - ci Bk - Bx - Dkx J ^ I^Bk - Bx - Dkx^ (=4. 25) 

Now letting 

- rAkx ^ Dkx - Ax^i 
^ L Bk - Bx - Dkx J 

and 

_ _ r AkxZ + Bkx 
" '-Bk - Bx - Dkx-' 

Equation 25 becomes a linear equation: 

Y = mc + n (Eq. 26) 

If c, the concentration of the element added to the sample, is 

plotted versus c/I, a straight line will be obtained with a slope of m and 

an intercept of n. From these experimentally determined values it is 

possible to compute x, the unknown weight fraction of the element in the 

sample. 

By adding 1 to the expression for m and then dividing it by n, all 

the unknown quantities are eliminated except x, and the following 
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equation results: 

m + 1 _ k - X 
n kx (Eq. 27) 

solving Equation 27 for x the following expression is obtained: 

^ k(m+l) + n (Eq. 28) 

where, once more, m and n are experimentally determined slope and inter

cept, respectively, and k is the weight fraction of the element in the 

compound added. 

In order to evaluate the reliability of this method, an "artificial 

soil" sample was prepared with high concentration of iron element. More 

precisely, it contained 40% hematite and 60% kaolinite. Since the weight 

fraction of iron in hematite is 0.7, the concentration of iron element in 

the artificial "soil" was calculated to be 28%. This "soil" sample was 

then mixed with additional known amounts (5, 8, 12, 15, and 20%) of a 

chemically pure hematite, to prepare the specimens. Steel rings 4.5 mm 

thick were used as sample holders to satisfy the assumption of infinite 

thickness of the sample, which is necessary for Equation 11. Sample 

holders were made large enough not to intercept the excitation radiation 

and were checked by blank tests. For consistency of volume and weight 

percentages, specimens were compressed into the rings at a constant 

porosity. Tungsten radiation operated at 40 kvp and 10 ma was used for 

excitation. The fluorescent radiation was analyzed using a flat NaCl 

single crystal and a gas flow tube detector (10% methane + 90% argon). 

The diffraction peak corresponding to the Ka characteristic radiation of 

iron, which has a wavelength of 1.9373 A, and (200) spacing of NaCl 



crystal, which has a value of 2.82 A, was recorded on a strip chart re

corder at a 29 angle value of 40.14 degrees. Peak intensities, as shown 

in Figure 8, were determined by measuring the peak areas above the base

line using a planimeter. 

Three separate intensity measurements were made on the artificial 

"soil" sample and each specimen, and the intensity ratios were calculated 

using the average intensities. The values of c/I were calculated and 

plotted versus c. The graph is shown in Figure 9 with the regression line 

and 95% confidence limits. Knowing the slope, m, and the intercept, n, 

of the resulting line. Equation 28 was used to calculate the amount of 

iron in the artificial "soil" sample. The result came out to be 27% which 

compares favorably with the 28% which is the concentration of iron in the 

artificial "soil" sample. The calculus method of error analysis (67) 

exhibited that at the 5% significance level the range in calculated iron 

content is from 25.5% to 28.5%. 

The composite samples of each soil series were subjected to the 

analysis described above for the determination of total iron contents of 

Hawaiian soils. 

Besides X-ray fluorescent analysis, replicates of each soil sample 

were digested in a mixture of perchloric and phosphoric acid, filtered, 

diluted to a known volume and analyzed for iron content with an atomic 

absorption spectrophotometer. 

The results of X-ray fluorescent analysis are shown in Table A1 in 

Appendix A. These values were, again, corrected for hygroscopic moisture 



RADIATION = TUNGSTEN ELEMENT = IRON 
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Figure 8. Diffraction peak of fluorescent radiation 
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Figure 9. Experimental results of artificial soil containing 28% iron 



48 

and listed in Table 4 together with the results obtained from atomic 

absorption spectrophotometer. 

Organic matter contents of the soils were also determined by the 

dichromate method and are included in Table 4. 

Pore size analysis by mercury injection 

The usefulness of mercury injection porosimetry to characterize the 

pore size distribution of soils in order to relate soil structure to 

engineering properties was introduced by Diamond (20). Since then several 

studies have been conducted satisfactorily on soils (64,6,2). The tech

nique is based upon the Washburn (76) equation: 

p - -2T cose 
r 

where P is pressure, T is surface tension, 9 is angle of contact, and r is 

radius of pore. Prior to being placed in the sample cell of the 

porosimeter, the soil sample is dried. The sample cell, containing the 

dry soil, is then placed in ths sample chamber of a mercury penetration 

porosimeter. The porosimeter used in this study is a Micromeritics Model 

910 Mercury Penetration Porosimeter. The sample chamber is evacuated with 

a vacuum pump so that gas will not block the flow of mercury into the 

pores of the sample. Once the sample chamber is evacuated, mercury is let 

into the chamber filling the sample cell and immersing the soil sample. 

By knowing the volume of sample cell and measuring the volume of mercury 

which flows into the cell, it is possible to calculate the total volume of 

the sample. As pressure is applied, mercury penetrates the samples. Both 

the volume of mercury which penetrates the soil and the pressure required 

to cause this penetration are measured. Using these data in the Washburn 
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equation, it is possible to compute the radius of pore which is being 

penetrated at a given pressure. It is then possible to plot a pore size 

distribution curve. 

The instrument used in this study has a pressure range from 1 psi 

(0.07 kg/cmf) to 50,000 psi (3500 kg/cm^). Using a mercury surface ten

sion of 474 dynes per centimeter and a contact angle of 140 degrees, it is 

possible to measure pore radii between 105.4 micrometers and 0.00211 

micrometers. This porosimeter also has the capability to empty the pores 

by reducing the pressure and eventually applying a vacuum at the end of 

the penetration phase. This allows measuring the pore size distribution 

on the "extrusion" cycle and from that data a characterization of the 

irregularity of the pores or the so-called ink bottle effect. 

As it was stated earlier, prior to testing with mercury porosimeter, 

soil samples need to be dried, in order to remove the moisture from the 

pores into which the mercury will penetrate. To evaluate the influence of 

drying on the pore size distribution of all soil series, two or three 

portions of each soil from the same boring and depth were subjected to 

freeze drying, oven drying and/or air drying. Among those three drying 

techniques, freeze drying is accepted as the best, to keep the disturbance 

that may be caused by drying at a minimum level, if it is performed prop

erly, The most important step in freeze drying technique is to freeze the 

sample rapidly enough to prevent any formation of ice crystals which cause 

expansion and disturbance within the sample. To achieve this, iscper.tane 

is used as suggested by Tovey and Wong (68). First, a bottle of iso-

pentane is immersed into the liquid nitrogen and then, when the tempera



50 

ture of isopentane drops down to its freezing point (-160 degrees centi

grade), soil sample is immersed into the isopentane and left there for at 

least three minutes. After that process, the sample is immediately 

transferred to the freeze dryer for sublimation. The samples were kept in 

the freeze dryer for at least 48 hours, and sublimated under a vacuum of 

0.3 to 0.4 micrometer mercury pressure. The results exhibited that other 

than three soil series, Puhi, Kapaa, and Halii, all give practically the 

same pore size distribution curve for three differently dried samples, as 

shown in Figures B1-B6 in Appendix B. 

For each series four to ten samples from various depths and borings 

were subjected to pore size distribution determinations. Figures Bl-BlO 

show the range of pore size distribution curves for all the soil series. 

Puhi has different pore size distribution for samples from shallow and 

deep portions of B-horizon. Halii, on the other hand, has some concre

tions which give different pore size distribution compared to soil matrix. 

So these two soil series were investigated as if they were four separate 

soils. For soils other than Puhi and Halii, it was concluded that the 

variation in pore size characteristics within a soil series is fairly 

small, and an average curve was considered to represent the whole soil 

series. 

On the other hand, when the representative pore size distribution of 

the various soil series are compared, there is a wide range in the curves, 

as shown in Figures 10-i3. From these curves, once more, each of which is 

representative of a series, it is possible to generate a set of parameters 

to characterize the pore structure of each series. The parameters 
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generated are the median (50%) and small mode pore diameters, the uni

formity coefficient, and the void ratios computed from the mercury injec

tion data as well as from measurements of the bulk geometry of the Shelby 

tube samples and the dry weight of the samples. The uniformity coeffi

cient is defined, in analogy with the uniformity coefficient calculated 

from particle size distribution curves, as the ratio of the minimum pore 

diameters corresponding to 40 and 80 percent of the total pore volume 

penetrable by mercury, respectively. 

In addition to the injection curves, extrusion curves were plotted to 

describe the pore diameter versus volume relationship as the mercury 

pulled from the soil, as shown in all the figures in Appendix B. The 

volume of mercury which remains in the sample at the end of the evacuation 

is a measure of the necking down of pores. The volume of mercury retained 

in the soil is expressed as a percentage of the total volume of mercury 

injected into the sample during the pressurization cycle of the test. 

Table 5 outlines all the parameters generated from mercury 

porosimetry results. 

Scanning electron microscopy 

Scanning electron microscope, a JEQL 1971 Model U3, was used for 

visual inspection of the pore structure and aggregate size of selected 

undisturbed soils. A magnification of 100 was used all through the study 

in order to have a large scanning area, and consequently to characterize 

soils better. The samples used were either oven or freeze dried, and 

coated with carbon and gold before they were studied with the microscope. 

The micrographs obtained are shown in Figures 14-16. 



Table 5. Pore size parameters generated from mercury porosimetry data 

Void ra- Percent of 
tio by Void ra- total pore Small mode 
bulk tio by volume in- Median pore diam- Mercury Uniformity 

Soil meas- Hg-injec- traded by diameter eter retained coefficient 
series urement tion Hg ym ym % d^g/dgo 

Mol okai 1.088 0.960 88.5 0.037 0.015 55.2 107.9 

Lahaina 1.174 0.919 78.3 0.019 0.014 47.6 5.2 

Wahiawa 1.020 0.723 70.9 0.017 0.015 50.0 1.8 

Manana 1.137 0.978 86.0 0.023 0.022 36.1 1.6 

Paaloa 1.347 1.029 76.4 0.038 0.031 40.4 2.2 

Li hue 1.342 1.075 80.1 0.021 0.020 38.6 1.6 

Puhi (deep) 1.463 1.255 85.8 0.135 0.032 31.3 13.9 

Puhi (shallow) 1.660 1.660 100.0 0.190 0.025 30.2 82.0 

Kapaa 1.899 1.739 91.6 0.102 0.040 28.9 9.0 

Halii 
(soil matrix) 1.905 1.902 99.8 0.380 - 25.1 41.2 

Halii 
(concretion) 0.802 0.609 75.9 0.590 - 36.9 27.4 
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Figure 15. Li hue soil series Figure 14. Wahiavva soil series 

Figure 16. Halii soil series 
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Slaking tests 

Two undisturbed samples from each soil series were subjected to 

slaking tests in order to measure stability and size of soil aggregates. 

One of the two samples of each soil series was oven dried at 105 degrees 

centigrade for 24 hours, before the test. The other sample was tested at 

its natural moisture content. Each soil sample weighing about 12 grams 

was immersed into the water and observed carefully for 24 hours. The rate 

of slaking, the amount of slaking at the end of the test, and relative 

sizes of the aggregates at the end of disintegration, were recorded. The 

results are given in Table 6. 

Strength tests 

Strength characteristics of the soils were analyzed by Paulson (49). 

Direct shear testing was used as a means of determining laboratory un

disturbed soil strength. This method was considered to be the best for 

the purpose of characterizing several soils, with limited undisturbed 

samples. The method of preparation of undisturbed samples for direct 

shear and the method of testing are explained and discussed in detail in 

Paulson's thesis (49). 

The strain rate utilized was 0.05 inches per minute and normal 

pressures used had a range of 6-210 psi. Prior to shearing, each soil 

sample was consolidated under a nôrtnâl pressure which 1s equal to In situ 

overburden pressure. Paulson states that it is very difficult to obtain a 

completely drained or completely undrair.ed condition with direct shear 

testing as is possible with triaxial testing. Therefore, the procedure 
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Table 6. Slaking test results 

Soil Moisture condition Rate of Slaking at the Relative size 
series of the sample tested slaking end of 24 hours of aggregates 

Molokai Oven dried Fast Complete Small 

Natural moisture Fast Complete Small 

Lahaina Oven dried Very fast Complate Small 

Natural moisture Very fast Complete Small 

Wahiawa Oven dried Fast Complete Small 

Natural moisture Fast Complete Small 

Manana Oven dried Slow Complete Large 

Natural moisture Slow Complete Large 

Paaloa Oven dried Slow Complete Large 

Natural moisture Medium Complete Large 

Li hue Oven dried Fast Complete Medium 

Natural moisture Slow Complete Mcdlurn 

Puhi Oven dried Almost 
zero 

Some cracks -

Natural moisture Very slow Complete Large 

Kapaa Oven dried Almost 
zero 

Some cracks -

Natural moisture Very slow Complete Large 

Halii Oven dried Zero - -

Natural moisture Almost 
zero 

Some cracks -
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used by Paulson in the determination of strength parameters can be re

ferred to as "consolidated-partially drained" type. 

Table 7 outlines the representative strength parameters of the soils, 

tested undisturbed, at room temperature, and under the natural moisture 

conditions. 

Table 7. Strength parameters of undisturbed soils 

Cohesion Internal friction angle 
Soil series psi degree 

Molokai 40 34 

Lahaina 50 52 

Wahiawa 25 27 

Manana 30 57 

Paaloa 22 38 

Li hue 17 41 

Puhi 12 52 

Kapaa 10 44 

Halii 7 35 



61 

ANALYSIS AND DISCUSSION OF TEST RESULTS 

In this section of the thesis, the data will be analyzed, in order to 

evaluate the significance of degree of weathering on the engineering be

havior of lateritic soils derived from basalt. Other studies, performed 

on basalt derived tropical soils, will be included in the analysis, to 

widen the spectrum and to improve the understanding of such soils from an 

engineering point of view. 

Engineering Properties of the Soils 

Specific gravity of lateritic soils appears to be a very useful 

parameter in relating these soils to the degree of weathering. The possi

bility of specific gravity as a classification parameter for predicting 

the engineering behavior of lateritic soils was first introduced by Lohnes 

and Demirel (37). As stated previously, by definition, the specific 

gravity of ? soil sample is the weighted average of the specific gravities 

of the minerals which comprise the soil. The specific gravities of 

common rock-forming minerals and secondary minerals observed in laterites 

and lateritic soils are shown in Table 8. According to Alexander and Cady 

(3), primary feldspars are reduced to kaolinite and primary ferromagnesian 

minerals are converted to sesquioxides, even the kaolinite is converted to 

gibbsite, as weathering proceeds. Higher specific gravity indicates the 

presence of relatively larger amounts of high specific gravity minerals in 

the soil, and suggests a more weathered soil. Lohnes and Demirel (37) 

observed a good correlation between the specific gravity and extractable 

iron content of some selected Puerto Rican lateritic soils. Trow and 
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Table 8. Specific gravities of common minerals in lateritic soils 

Primary minerals 
Specific 
gravities Secondary minerals 

Specific 
gravities 

Quartz 2.65 Kaolinite 2.2-2.6 

Orthoclase feldspars 2.5-2.6 Gibbsite 2.4 

Plagioclase feldspars 2.61-2.75 Hematite 4.9-5.3 

Augite 3.3--3.6 Goethite 3.3-3.5 

Hornblende 2.9-3.3 

Serpentine 2.5-2.8 

Morton (70) reported some engineering data on selected lateritic soils 

from the Dominican Republic, showing that the specific gravity is closely 

related to goethite content. The Hawaiian soils investigated in this 

study also exhibit a good correlation between specific gravity and total 

iron content, measured by X-ray fluorescence analysis, as shown in Figure 

17. Therefore, it was concluded that specific gravity could be considered 

as a measure of degree of weathering. In the following analyses, specific 

gravity will be taken as a parameter reflecting the degree of weathering, 

and the other properties of the soils will be examined versus specific 

gravity, to observe whether there exists a correlation between those 

properties and the weathering or not. 

The relationship between dry density of the soils and specific 

gravity is shown in Figure 18, which also includes some basalt derived 

soils from Puerto Rico, studied by Lohnes and Demirel (37). The relation-
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ship indicates that dry density increases first as specific gravity in

creases, and then it starts to decrease with further increasing in specif

ic gravity. The void ratio, on the other hand, first decreases and then 

increases with increasing specific gravity as shown in Figure 19. These 

relationships of dry density and void ratio with specific gravity are 

interpreted as follows. In relatively less weathered soils the formation 

of clay minerals is the major event taking place in the course of weather

ing. During this stage the voids of the B-horizon are filled with the 

accumulation of fine clay particles, so void ratio decreases and dry 

density increases. Further weathering, however, causes an increase in the 

content of sesquioxides and diminishes the active role of clay content. 

At this stage, the accumulation of secondary minerals is almost over, and 

the sesquioxides start to play an important role within the body of the 

soil. Sesquioxides of iron and aluminum are known as very active binding 

agents to cause aggregation (40,5,8). This effect plus increasing specif

ic gravity which means less volume of solids in the unit volume of soil, 

cause an increase in the void volume, and accordingly void ratio increases 

and dry density decreases. 

The plasticity and gradation data are given in Table 3. Although, as 

previously noted, these data for lateritic soils have limited usefulness, 

attempts were made to correlate these data with the weathering and with 

other data obtained by measurements on undisturbed samples and mineralogi

es! analysis. No correlations were found. All the soils show very low 

activities, and according to Skempton's (61) classification they are 

rated as inactive. Since kaolinite, which has a low activity of 0.38, is 
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the main clay mineral encountered in these soils, one should not expect 

high activity in such soils. 

These results support the idea which eliminates plasticity and grada

tion properties of lateritic soils in characterizing these soils from an 

engineering behavior point of view. As discussed previously, the inade

quacy of plasticity and grain-size distribution data for the prediction of 

engineering behavior of lateritic soils is generally attributed to the 

difficulty to disperse the individual soil grains, which are cemented to

gether by sesquioxides, prior to testing. 

Mineralogical and Chemical Analyses 

The predominant materials in the Hawaiian soils studied are 

kaolinite, gibbsite and iron oxides. Quantitative mineralogical and 

chemical analyses of soils were performed by making use of X-ray diffrac

tion, X-ray fluorescence, differential thermal analysis, and thermal 

gravimetric analysis. The results are shown in Table 4. 

If the constituents are considered in relation to weathering, it will 

be observed that sesquioxide content, which is obtained by gibbsite con

tent plus total Fe203 content, increases as the degree of weathering, or 

specific gravity, increases as shown in Figure 20. Kaolinite, on the 

other hand, decreases with increased weathering» Figure 21 which also 

includes three basalt derived Puerto Rican soils studied by Lohnes and 

Demirel (37) shows the relationship between kaolinite and specific gravi

ty. Note that the trend for Puerto Rican soils is the opposite compared 
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to the one of Hawaiian soils, that is, kaolinite increases with increasing 

specific gravity for Puerto Rican soils. 

These observations agree with the model of weathering proposed by 

Alexander and Cady (3), and by Hamilton (27). In the early stages of 

weathering, the formation of clay minerals is significant, but as weath

ering proceeds, clay content starts to decrease, and sesquioxides of 

aluminum and iron constitute the major portion of the minerals. This can 

be shown further by plotting kaolinite content versus sesquioxide content 

of Hawaiian soils, as shown in Figure 22, which indicates a gradual de

crease in kaolinite content while sesquioxides are increasing in amount. 

As previously noted, Halii soil series which is the most weathered of 

all soils studied contains some concretions. Those concretions were sub

jected to quantitative minsralogical analysis, and it was observed that 

about 75% of the sample is composed of gibbsite. The rest are iron oxides 

as measured by total analysis. This explains the low specific gravity of 

concretions. On the other hand, soil matrix of Halii has lower gibbsite 

content and higher specific gravity. 

Besides mineralogical analysis, organic matter content of each soil 

series was also determined and shown in Table 4. The organic matter con

tent increases with increasing weathering as shown in Figure 23. Organic 

iïîâîtcr also IS KRCWn aS u ulnuTuy uySnt In SOlls lââdïXg tO SÔî] 

tion. In tropical soils, however, this effect of organic matter is not 

that important, because mainly sesquioxides are responsible for stable 

aggregate formation (8). 
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Although the presence of halloysite and montmorillonite in Hawaiian 

lateritic soils was reported occasionally in the literature (21), they 

were not observed in the soils studied. These two minerals are known as 

being formed in the very early stages of weathering and they are not 

stable. So, under the influence of favorable environmental conditions 

present in the tropical regions, the weathering proceeds quite rapidly, 

and these unstable minerals are converted to more stable minerals in a 

relatively short period of time. The soils studied here appear to be 

weathered enough not to contain any such unstable minerals. 

Titanium is another element which is encountered in lateritic soils 

(16,55), mostly in the form of ilmenite as primary mineral, or anatase as 

secondary mineral. The highest concentration of titanium oxides, though, 

usually takes place at the surface of the soil. In other words, if 

titanium exists in a lateritic soil profile, it is generally concentrated 

in the A-horizon (56). Since in this study only the B-horizons of the 

soils were investigated, the possibility of observing high amount of 

titanium was quite low. No titanium compound was detected by X-ray and 

differential thermal analysis. An elemental analysis by scanning electron 

microscope performed on the same soils by Paulson (49) exhibited some 

titanium in trace amounts. 

Pore Size Analysis 

The importance of soil structure in understanding the engineering 

behavior of lateritic soils is well-recognized (29,43,62,6). The most 

common methods utilized in studying the structure of lateritic soils are 
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microscopic methods, such as scanning electron microscopy, and analyzing 

thin sections by light microscopy. Mercury injection technique which has 

been recently applied to soils promises to be another useful tool to 

analyze the soil structure, and to quantify, at least, the pore structure 

of soils. 

Here, an attempt was made to analyze the pore structure of selected 

lateritic soils with mercury injection technique. Various parameters were 

generated from the pore size distribution curves to characterize the pore 

structure of the soils and they are listed in Table 5. 

At this step, the first thing to be observed is to plot various pore 

size parameters versus specific gravity and see how these parameters vary 

with proceeding weathering. Figure 24 shows median diameter versus spe

cific gravity plot, indicating that pore sizes are getting larger as the 

soils get more weathered. The very same thing is indicated in small mode 

pore diameter versus specific gravity plot, shown in Figure 25. Figure 26 

shows a decrease in volume of mercury retained in the sample, at the end 

of the test, as weathering proceeds, and this was interpreted as another 

indication for enlargement of pores in more weathered soils, because larg

er the pore sizes, the less possibility of necking down of pores. The 

uniformity coefficient versus specific gravity plot shown in Figure 27 

exhibits that in the cases of more severely weathered soils the distribu

tion gets less uniform, that is, instead of having a narrow range of pore 

size to contain the major portion of the pore volume, there are all sizes 

of pores distributed more evenly within the soil domain. 
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A comparison of void ratios calculated from mercury injection with 

void ratios determined from bulk density measurements reveals that, in 

majority of the soils, not all the voids have been intruded by the 

mercury. In other words, a portion of the total pore volume is occupied 

by pores which have diameters smaller than 0.0042 micrometers. The per

cent of total pore volume, intruded by mercury, listed in Table 5, indi

cates that the amount of these very small pores gets smaller as the soils 

get more weathered. 

In order to show further experimental evidences of the enlargement of 

pores with increasing weathering, the absolute volume of pores per gram of 

dry soil for different ranges of pore size as determined from Figures 12 

and 13 is plotted versus specific gravity. The results, shown in Figures 

28-31, indicate that small size pores decrease while medium, large and 

very large size pores increase in amount with increasing weathering. Very 

large, large, medium, and small pores correspond to the size ranges of 

larger than 10.0, 10.0-1.0, 1.0-0.1, and 0.1-0.01 micrometer pore diam

eter, respectively. Figures 32-35, on the other hand, show the percentage 

of each pore size range based on total pore volume intruded by mercury 

versus specific gravity plots, again indicating that the percentage of 

small pores decreases, and of medium, large, and very large pores in

creases with proceeding weathering. 

To have large size pores in more weathered soils can be interpreted 

as having larger soil aggregates in such soils. To have a soil composed 

of fine grains with large size pores among them, is not very likely. When 

this observation is considered together with the results of mineralogical 
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analysis, the situation might be understood better. As stated previously, 

in the course of weathering at one stage, kaolinite is the major mineral 

component in the soil. In the further stages of weathering, kaolinite 

content starts to decrease while sesquioxides of iron and aluminum in

crease in amount. Kaolinite is known to be very inert as a binding agent 

and has very little effect on aggregation (50). Sesquioxides, on the 

other hand, have the capability of cementing the small grains together and 

forming larger, water stable soil aggregates (40,5,8). As long as there 

is available sesquioxides in the soil, aggregation proceeds in the direc

tion of forming larger and larger aggregates (5). As weathering proceeds 

further, sesquioxide content keeps on increasing, leading to the formation 

of larger soil aggregates. As a result of this discussion, it might be 

said that toward the last stages of weathering, lateritic soils possess a 

granular quality due to the aggregation taking place. 

The influence of drying on the structure of lateritic soils was in

vestigated by taking two or three portions of an undisturbed soil sample 

obtained from the same boring and depth of a soil series and subjecting 

them to freeze drying, oven drying, and/or air drying. Then each sample 

was tested in the mercury porosimeter and the results were compared to see 

if there is any difference in the pore structure of those differently 

dried samples. Six of the nine soil series gave essentially the same kind 

of pore size distribution for all differently dried samples. Three 

naturally wet soils, Puhi, Kapaa and Halii soil matrix, exhibit some 

Shrinkage in oven dried samples, that is, absolute volume of pores per 

gram of dry soil are less in oven dried samples compared to freeze dried 
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samples as shown in Figures B7-B10 in Appendix B. The shrinkage in these 

three soils was caused by high natural moisture contents which are well 

above the shrinkage limits of these soils. The rest six soil series have 

either lower or little above moisture contents compared to their shrinkage 

limits. In a soil which has a moisture content less than its shrinkage 

limit, one should not expect any shrinkage after drying. This observa

tion, in a sense, is in contrast with what is reported in the literature. 

Many investigators suggest that lateritic residual soils have a cemented 

structure, forming a continuous three-dimensional framework, resulting 

from the binding action of sesquioxides (75,37). The results obtained in 

this study, however, do not support this concept for all soils. If that 

were the situation, there would not be any shrinkage in the soil body. 

The shrinkage observed in those three soils suggests that instead of 

having a continuous three-dimensional framework, the soil grains are coated 

by the sesquioxides. and cemented together by iron and aluminum gels to form 

larger individual particles as described by Baver et al. (8). Alternate 

wetting and drying dehydrates irreversibly these gels and water stable 

soil aggregates are formed. There might be, of course, some cementation 

among individual soil aggregates too, but to consider the whole body of 

soil as being a continuous, stable, three-dimensional framework cannot be 

justified. Such a structure of continuous three-dimensional framework 

most probably occurs in laterite crusts or within the individual concre

tions which have rock-like or gravel-like intact structures. 
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Slaking Tests 

Oven dried and naturally moist samples of each soil series were sub

jected to slaking test and the results are listed in Table 6. The general 

trends observed are as follows. Relatively less weathered soils slake 

faster and into smaller aggregates. More weathered soils, on the other 

hand, slake very slowly or do not slake at all; the ones which slake 

disintegrate into relatively larger aggregates. By comparing the slaking 

test results obtained from oven dried and naturally moist samples, it was 

concluded that oven dried ones are more resistant against slaking. This 

latter observation is one of the characteristics of lateritic soils. In 

the case of temperate soils, dry samples slake more rapidly than naturally 

moist samples, because in such soils, dry state leads to a rapid moisture 

intake and swelling accompanied by compression of contained air which may 

ultimately cause an explosive-like effect (80). The larger resistance of 

lateritic soils to slaking in dry state is attributsd to the cementation 

caused by dehydration of hydrated iron and aluminum oxides (80). 

If the slaking test results of those three wet soils, Puhi, Kapaa 

and Halii, which exhibit considerable volume changes after oven drying 

are considered, it will be observed that in naturally moist state, they 

are either completely disintegrated or cracked. This can be considered as 

a further verification of a soil structure which has a particulate nature, 

rather than being a continuous three-dimensional framework. It appears 

that in the state of natural moisture, the voids among individual soil 

aggregates are filled with water, and as the soils dry out the moisture 
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evaporates, and this brings the soil aggregates closer to cause a 

shrinkage. 

The larger aggregates in more weathered soils can be explained, once 

more, by the presence of larger amounts of sesquioxides which lead to soil 

aggregation. In less weathered soils, kaolinite which is quite inactive 

as a binding agent is the predominant mineral, so the formation of soil 

aggregates is at a quite low level, and as a result of that, soils slake 

fast and into relatively small particles. 

Scanning Electron Microscopy 

Scanning electron microscopy was utilized in order to get some more 

supporting data showing the differences in the structure of the soils 

weathered to different degrees. To achieve this3 three soil series were 

selected, one being relatively less weathered, one intermediately weath

ered, and one heavily weathered, and subjected to microscopic studies. 

The micrographs taken are shown in Figures 14-16. If these micrographs 

are examined carefully, it will be observed that the relatively less 

weathered soil, Wahiawa, has the smallest soil aggregates accompanied 

with small size pores. The heavily weathered soil, Halii, on the other 

hand, clearly exhibits the aggregation, and the size of pores among those 

aggregates are larger compared to those of Wahiawa soil: Intermediately 

weathered soil, Li hue, can be placed in between those two, from the pore 

and aggregate sizes point of view. 
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The samples belonging to those soil series which do not show any 

shrinkage, i.e., Wahiawa and Lihue, were examined oven dried. Halii was 

freeze dried to keep the in situ structure undistrubed. 

Strength Tests 

Strength parameters, cohesion and internal friction angle of the 

undisturbed soils tested at their natural moisture content were determined 

by direct shear testing. The results are listed in Table 7. 

The variation in these parameters as degree of weathering varies is 

shown in Figures 36 and 37. Puerto Rican basalt derived lateritic soils 

are again included in those plots to have a wider spectrum. Cohesion 

versus specific gravity plot. Figure 36, shows that cohesion first in

creases and then decreases with increasing degree of weathering. Examina

tion of the other properties of soils versus cohesion reveals that the 

void ratio can be considered as the controlling factor of cohesion. This 

is a similar observation obtained by Lohnes and Demirel (37) for Puerto 

Rican soils. To show this better, void ratio is plotted against cohesion 

as shown in Figure 38. It appears that cohesion increases with decreasing 

void ratio. 

Internal friction angle, on the other hand, keeps on increasing all 

the way through as weathering proceeds, as shown in Figure 37. This be

havior is interpreted in the following manner. During the stage of clay 

formation, although clay content increases, the void ratio decreases due 

to the accumulation of clays in the B-horizon and filling the large voids. 

This process apparently leads to a well-graded soil and improves the value 
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of the internal friction angle. In the further stages of weathering, due 

to the increasing amount of sesquioxides, the formation of large, water 

stable soil aggregates takes place and this yields a soil which is granu

lar in nature. This improves the internal friction angle even further. 

A question that is worthwhile to be answered is: What is the rela

tionship between the mineralogy and the shear strength of the soils 

studied? At the first glance, it will be observed that cohesion varies in 

accordance with varying kaolinite content, that is, larger the kaolinite 

content, larger the cohesion of the soil as shown in Figure 39. This is 

what one should expect; the cohesion of a soil increases with increasing 

clay content. 

Internal friction angle, on the other hand, has the tendency to in

crease with increasing amount of sesquioxides. This is again due to the 

formation of large, water stable soil aggregates with the binding action 

of sesquioxides. 

From the preceding discussion, one may conclude that mineralogy of 

lateritic soils is the governing factor of almost all the other soil 

properties. Engineering properties of the soils, such as natural dry 

density, void ratio, and specific gravity, have been found to be closely 

related to the minerals present in the soils. Pore structure and grain 

size are again directly related to the mineralogy. Finally, shear 

strength of the soils is found to be controlled by the mineralogy. 

The influence of moisture on the strength parameters of lateritic 

soils has been investigated by many investigators (7,49). The strength 

parameters were found to vary with the varying moisture content, even 
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within the same soil series (49), such that, the less moisture content, 

the stronger the soils become. This aspect was investigated here by com

paring the cohesion values of the Hawaiian soils studied with their 

natural moisture contents. Figure 40 shows the variation in cohesion with 

varying natural moisture content, indicating that the cohesion reduces as 

the natural moisture increases. 

Environmental Considerations 

As stated previously, there are five main factors influencing the 

soil formation. They are parent material, climate, topography, vegeta

tion, and time. The soils investigated in this study have more or less 

the same parent material, vegetation, and time. Even topography does not 

differ drastically from one soil series to another. Therefore, climate 

can be considered as the governing soil forming factor of the soils 

studied. Furthermore, rainfall intensity is the only major climatic 

factor varying from soil to soil. In a sense, rainfall here, reflects the 

degree of weathering of the soils. This fact can be observed readily by 

relating the other soil properties to rainfall. Good correlations exist 

between them, similar to those obtained between other soil properties and 

specific gravity. Mineralogy, for example, is highly related to rainfall 

in these soils. Figures 41-43 show the relationships of kaolinite-, 

gibbsite and total iron with varying rainfall, respectively. Gibbsite and 

total iron increase, kaolinite decreases very systematically with in

creasing rainfall intensity indicating that more weathered soils occur in 

high rainfall regions. This is not always the case, though, there are 
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some cases in which the influence of some other soil factors outweigh that 

of climate. In their study on some selected lateritic soils from Puerto 

Rico, Lohnes and Demirel (37) found that for some soil series topography 

has much more influence on weathering than rainfall does. To show this 

better, specific gravity is plotted versus rainfall for Hawaiian and 

Puerto Rican soils as shown in Figure 44. As this figure exhibits specif

ic gravity increases with increasing rainfall for Hawaiian soils, indi

cating that the rainfall is the major environmental factor influencing the 

weathering. In the case of Puerto Rican soils, however, specific gravity 

decreases with increasing rainfall showing that rainfall, as a soil form

ing factor, is not as effective as in the case of Hawaiian soils. 

Natural moisture content and void ratio, which were found to in

fluence the strength behavior of the soils, have tendencies to increase 

with increasing rainfall. Figure 45 shows the relationship between 

natural moisture content and rainfall intensity for Hawaiian and Puerto 

Rican soils. 

A Model for Engineering Classification of 

Lateritic Soils Derived from Basalt 

In the light of the previous discussions, an attempt is made here to 

establish a model which relates engineering properties, mineralogy, and 

strength characteristics of lateritic soils to weathering. The proposed 

model is shown schematically in Figure 45 and expands on an earlier pro

posal by Lohnes and Demirel (37). The model can be explained as follows. 
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Figure 46. A model Tor variation in engineering properties of 
derived lateritic soils resulting from weathering 

basalt 
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The parent rock, shown as Stage 1 in Figure 46, has very low void 

ratio and quite high cohesion and internal friction angle. The charac

teristic values of these parameters and of specific gravity for basalts 

can be found in literature on rock mechanics (52,22,32,31) and they are 

listed below: 

Specific gravity = 2.80-2.90 

Void ratio = 0.01-0.03 

Cohesion = 2800-8600 psi 

Internal friction angle = 50-55 degrees 

In Stage 2, the weathering starts to work on the rock, and the rock 

begins to disintegrate. This process causes a decrease in the cohesion 

and the internal friction angle, and an increase in void ratio. The 

specific gravity of the material, on the other hand, tends to decrease 

during this stage, because of the eventual formation of secondary minerals 

which have lower specific gravities than those of primary minerals. 

During Stage 3, clay content continues to increase and becomes the 

major constituent of the soils. This leads to higher cohesion values. 

The internal friction angle also starts to increase in this stage as the 

clays fill the voids and produce a well-graded soil. As clays are formed, 

the voids are filled and consequently, the void ratio starts to decrease. 

The slow increase In sesquioxide content during Stage 3 influences th# 

specific gravity of the material and it begins to increase especially due 

to high specific gravity values of iron compounds. 

Further weathering brings the soil to Stage 4, in which while 

sesquioxide content keeps on increasing, kaolinite content starts to 
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decrease. As Alexander and Cady (3) point out, the kaolinite is probably 

converted to gibbsite at this stage of the weathering. Since sesquioxides 

are very active as binding agents, they cement clay particles together and 

form water stable soil aggregates. Although such stable aggregates have 

quite high internal cohesion within themselves, the cohesion of the whole 

soil domain starts to decrease due to the granular nature of the soil 

resulted from aggregation. The internal friction angle continues to in

crease due to the formation of large stable aggregates which, in turn, 

yield a higher degree of interlocking during shear. Specific gravity in

creases due to the increasing amount of iron oxides. Void ratio, on the 

other hand, starts to increase in this stage due to the increasing specif

ic gravity which means less volume for solid phase in the soil domain, and 

due to the formation of larger aggregates which yield to larger pores 

among them. 

In Stage 5, advanced weathering causes a further increase in the 

amount of sesquioxides and further cementation among the soil aggregates. 

This leads to the formation of larger concretions of gravel size, and 

consequently the void ratio starts to decrease. As cementation among 

larger particles goes on taking place, cohesion starts to increase, as 

well as internal friction angle. The variation in specific gravity during 

this stage depends on whether the sesquioxides of iron or aluminum are 

abundant in the soil. If iron is dominating, the specific gravity keeps 

on increasing, if aluminum is dominating, specific gravity decreases. 

The formation of concretions is then followed by coalescence of con

cretions and their cementation by iron and/or aluminum colloids, until the 
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entire system is a continuous iron and/or aluminum oxide cemented crust.  

This end product of weathering is indicated as "secondary rock" in Figure 

46. One may intuitively say that this end product will have high cohesion 

and internal friction angle, low void ratio, and either high or low 

specific gravity depending upon whether the laterite is ferruginous or 

aluminous, respectively. 

The Hawaiian soils studied here cover Stage 4 and part of Stage 3 and 

5. The Puerto Rican soils studied by Lohnes et al.  (38,37) provide some 

data for Stage 3. Stage 1 is known from the studies performed on basalts 

and Stage 6 should be very close in properties to Stage 1. So, the only 

stage without any experimental evidence is Stage 2. 

An Engineering Classification Scheme for 

Basalt Derived Lateritic Soils 

The model described above indicates some very interesting correla

tions between the strength parameters and other properties of lateritic 

soils, in the course of weathering process. 

The cohesion, for example, seems to be closely related to void ratio, 

such that i t  increases as void ratio decreases. The internal friction 

angle, on the other hand, has a good correlation with the specific gravi

ty. More specifically, internal friction angle increases with increasing 

specific gravity. 

The strength characteristics of lateritic soils can also be related 

to the mineralogy. Kaolinite content, for example, appears to be con

trolling the cohesion, such that as i t  increases, cohesion also increases. 
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Sesquioxide content appears to be controlling the internal friction angle; 

larger the sesquioxide content, higher the internal friction angle. 

A common problem facing the field engineer in the tropics is how to 

predict the behavior of lateritic soils without doing extensive measure

ments on soils.  The relationships mentioned above suggest an engineering 

classification scheme for basalt derived lateritic soils in order to meet 

that need. The specific gravity and the void ratio are two easily deter

mined soil properties which can be used for classification purposes. 

Figure 47 shows the proposed classification system for basalt derived 

lateritic soils. Mineralogy is left out from the classification system, 

since i t  needs special instruments and time consuming approaches to be 

determined. 

According to the classification system proposed, a specific gravity 

value of 3.05 is considered to be critical from the engineering point of 

view. Most of the relationships between any soil properties and specific 

gravity show differing trends above and below that value of specific 

gravity. Due to the granular nature of the soils which have specific 

gravities larger than 3.05, the internal friction angle is quite high, 

more specifically, higher than 35 degrees. 

The data also suggest some critical values for void ratio. As stated 

previously» cohesion increases with decreasing void ratio. Therefore, 

void ratios of 1.25 and 0.90 are chosen as being the critical void ratios. 

Soils having void ratios larger than 1.25 have low cohesion values, lower 

than 20 psi.  Soils which have void ratios between 1.25-0.90 have higher 

cohesion values, higher than 20 psi.  In cases where void ratio is lower 

than 0.90, the cohesion gets considerably higher. 
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The classification system shown in Figure 47 contains several regions 

corresponding to different values of specific gravity and void ratio, and 

each region indicates a range for strength parameters of the soils which 

fall in that region. 

In any case, mineralogical analysis can be used as further informa

tion to find out the stage of weathering at which the soil is occurring 

and have additional data for predicting the engineering behavior of soils.  
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CONCLUSIONS 

Based upon the results of this study, the following conclusions can 

be made regarding the engineering behavior of the Hawaiian basalt derived 

lateritic soils: 

1. Plasticity and gradation data of the soils studied do not show 

any appreciable correlations with the degree of weathering or with other 

properties of soils.  This supports the idea that they cannot be satis

factorily used for classification of lateritic soils. 

2. Mineralogy has very good correlation with the degree of weather

ing. Kaolinite content first increases and then decreases with increasing 

weathering, whereas, sesquioxides of aluminum and iron keep on increasing 

in amount all  the way through, as weathering proceeds. 

Organic matter was found to be increasing with proceeding weathering. 

3. Specific gravity of lateritic soils can be utilized as a param

eter that reflects the degree of weathering. This can be justified by the 

definition of specific gravity which reads as the weighted average of the 

specific gravities of the minerals comprising the soil.  Since in the 

course of weathering the content of heavy minerals keeps on increasing all  

the way through, the specific gravity should also increase as the weath

ering proceeds. 

4. Pore size analysis with mercury injection technique, slaking 

tests, and scanning electron microscopy studies revealed that soil aggre

gation increases with increasing weathering due to the increasing amount 

of sesquioxides which act as binding agents to cement the soil particles 

together. This yields a soil which is granular in nature. 
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5. Strength parameters, cohesion and internal friction angle, as 

determined by direct shear testing, have systematic trends with increasing 

degree of weathering. Cohesion and internal friction angle appear to be 

controlled by void ratio and specific gravity, respectively. More spe

cifically, cohesion increases with decreasing void ratio, end internal 

friction angle keeps on increasing as the specific gravity increases. 

6. Strength parameters can also be related to mineralogy. Kaolinite 

content and sesquioxide content control the cohesion and the internal 

friction angle, respectively. The cohesion increases with increasing 

kaolinite content, and the internal friction angle increases with in

creasing sesquioxide content. 

7. For the particular group of soils investigated in this study, 

rainfall intensity appears to be the only varying soil forming factor from 

one soil series to another. The rest of the soil forming factors are more 

or less the same for all the soil series. 

8. The conclusive remarks made above suggest a model for relating 

engineering properties, mineralogy, and strength characteristics of basalt 

derived lateritic soils to weathering in the manner as shown schematically 

in Figure 46. Hawaiian and Puerto Rican lateritic soils derived from 

basalt provide some experimental evidences to justify this suggested 

model. 

9. Specific gravity and void ratio are the two easily determined 

parameters which classify basalt derived lateritic soils-. The classifica

tion scheme is shown in Figure 47. In general,  void ratio controls the 

cohesion and specific gravity controls the internal friction angle. More 
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specifically, larger the void ratio lower the cohesion, and larger the 

specific gravity higher the internal friction angle. 
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APPENDIX A: QUANTITATIVE X-RAY DIFFRACTION AND 

FLUORESCENCE ANALYSES RESULTS 



Table Al. Quantitative X-ray diffraction and fluorescence analyses results 

Determination of hematite content Determination of total iron content 
goil by quantitative X-ray diffraction by quantitative X-ray fluorescence 

series Slope Intercept Hematite, % Slope Intercept Total iron, % 

Molokai 1.1304 0.2584 12.1 0.5797 0.2053 11.0 

Lahaina 0.2971 0.1444 10.0 0.3448 0.1859 11.5 

Wahiawa 1.1087 0.3110 12.8 0.6622 0.2404 12.0 

Manana 0.6522 0.1077 6.1 0.2174 0.2437 15.6 

Paaloa 0.4058 0.3393 19.4 0.4451 0.3166 16.7 

Li hue 0.7101 0.0648 3.7 0.3830 0.2418 14.0 

Puhi 0.1449 0.1846 13.9 0.9834 0.4234 16.4 

(shallow) 0.3551 0.1654 10.9 2.5128 0.5481 12.8 

(deep) 0.5863 0.1394 8.1 0.7246 0.4231 18.2 

Kapaa 0.2681 0.0878 6.5 0.9213 0.7166 24.3 

Hal i i  0.1594 0.1529 11.6 1.0041 0.8777 26.9 

(soil matrix) 0.2826 0.2341 15.4 1.6503 0.6270 17.7 

(concretion) 0.4420 0.2170 13.1 1.3561 0.5921 18.5 
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APPENDIX B; PORE SIZE DISTRIBUTION CURVES 

OBTAINED FROM MERCURY POROSIMETRY 
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Figure B1. Pore size distribution curves for Molokai soil series 
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Figure B2. Pore size distribution curves for Lahaina soil series 
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Figure B3. Pore size distribution curves for Wahiawa soil series 
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Figure B4. Pore size distribution curves for Manana soil series 
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Figure B5. Pore size distribution curves for Paaloa soil series 
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Figure B6. Pore size distribution curves for Li hue soil series 
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Figure B7. Pore size distribution curves for Puhi (shallow) soil series 
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Figure B8. Pore size distribution curves for Puhi (deep) soil series 
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Figure B9. Pore size distribution curves for Kapaa soil series 
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Figure BIO. Pore size distribution curves; for Halii soil series 


