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ABSTRACT

This dissertation examines computable structure theory relative to continuous logic. Due to

the continuous nature of the relevant structures and space of truth values, special care is required

to translate and modify results given in classical computable structure theory to the continuous

setting. Three primary results are proven: (1) a generalized effective completeness theorem for

continuous logic and computable presentations, (2) the existence of numerals for

hyperarithmetical real numbers coded by computable infinitary sentences, and (3) upper and

lower bounds on the complexity of the various diagram levels of the finitary and infinitary

theories of a computably presented metric structure. Also given are basic model-theoretic results,

an explicit formulation of the computable infinitary formulas of continuous logic, propositions

concerning infinitary connectives, and a novel combinatorial result which allows for the encoding

of a quantifier via a series inequality.
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CHAPTER 1. INTRODUCTION

1.1 For the Philosopher

This section is for the layperson and philosopher; the curious mind who seeks to understand

what we have done but not necessarily how we have done it. The remainder of this manuscript is

for the mathematician.

Our experience of reality is, plausibly, a relationship between the continuous and the discrete,

and the finite and the infinite. The mathematics which best describes the physical world, at least

macroscopically, is the differential geometry of general relativity. Spacetime, as constructed, is

grounded upon the real numbers. It is, therefore, a continuous structure. The resulting

Newtonian mechanics of commonplace events follow suit.

On the other hand, assuming a broadly physicalist ontology, phenomenal experiences are

grounded upon electric signals between neurons. Importantly, however, there are only finitely

many neurons in a brain. It follows that internal experiences are finite representations of a

continuous external reality.

Such representations are precisely what Turing had in mind (pun intended) when he first

described what we now call Turing machines in (33). Our descriptions of continuous events are

given in a finite language, yet these descriptions function unreasonably well. How is this possible?

And what are the limitations on such representations? Understanding this relationship so that we

can better use computers to model and reason about continuous reality is the focus of this work.

It is debated among philosophers of mind whether the internal states of the human mind

track the states of a Turing machine, but if we relegate ourselves to the “experiences” of a

classical computer, the internal states exactly track those of Turing machines. Just as information

is given to a human mind by its external surroundings, information may also be given to

computers from the external world.
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Consider a cryptographic computer in Silicon Valley capturing a digital image of a wall of lava

lamps to generate (presumably) random digits. This “randomness” needs to be qualified since the

complexity of that information is unknown. For reasons such as this, computability theorists not

only study computability at its most basic level, but also seek to understand what operations

computers can perform when given access to arbitrarily complex information.

From our study of computation relative to continuous structures, we have three main results,

summarized for the philosopher here.

First result.

Suppose one writes down a (possibly infinite) list of sentences using the “language of

continuity”. Suppose, moreover, that none of the sentences disagree with one another. It seems

intuitive, then, that those sentences ought to describe a possible continuous “reality”. (The basic

idea is this: if any two of those sentences were contradictory, then surely anything which

“realized” all of those sentences would be impossible!) This is called completeness in logic. That

is, if a set of sentences is internally consistent, then there really is some possible “thing” which

they describe. In (5), Ben Yaacov and Pedersen proved this very fact of completeness for

continuous structures.

Suppose further, now, that the list of sentences was not arbitrary, but of some specific

complexity. For example, finite lists of sentences have very low complexity, infinite lists which a

computer could print out on its own (given an infinite amount of time) are slightly more complex,

and infinite lists that a computer could only print out given some external data from the world

around it are of a higher complexity. Maybe if the list is very simple, or finite, the sentences only

describe the details of a possible world to a very low degree, while more complex lists describe the

details more intricately. It seems intuitive, then, that a possible continuous “reality” of a similar

complexity ought to exist to witness that none of those sentences are contradictory.

To give another example, “There is a sphere” is a very simple list of sentences (indeed a list

containing only one sentence). On the other hand, a list of all the sentences describing a globe

labeled with oceans and mountain ranges is considerably more complex. And while a complex



3

(spherical) globe also satisfies the sentence that “There is a sphere”, a simple, smooth, unlabeled

sphere would not satisfy the latter list. As the list becomes more complex, so does the “simplest”

object which satisfies it.

My first result confirms this intuition. If a computer can write out a list of noncontradictory

sentences using the language of continuity, then a computer can also construct a model of an

object that those sentences are describing. This is called effective completeness.

Second result.

Some sentences are always true. A common example used among laypeople is “Two plus two

will always equal four.” (Although whether this is really a necessary truth is up for debate!)

Similarly some sentences are always false, like “There exists a married bachelor.” But are there

sentences which universally hold partial truth values somewhere in between?

Once one has understood the basics of the language of continuity, it is simple to formulate

sentences which are half-true, three-quarters true, and so on. But it turns out that, at least in the

basic form of the language of continuity, there aren’t any more ... unless we allow sentences to be

infinitely long, that is. When we do allow infinitely long sentences with no restrictions, then any

amount of truth or falsity is universally representable!

But what if, as before, we only look at infinitely long sentences of some given complexity? The

idea is that there may be some special code which allows us to write out one class of infinite

sentences, but which doesn’t work for other classes. My second result says that the complexity of

the amount of truth a sentence can universally represent exactly corresponds to the complexity of

writing out that sentence.

Third result.

What if, lastly, we work in the opposite direction? What if, instead of beginning with the

language of continuity and searching for which realities and amounts of truth it can represent, we

begin with a continuous reality and try to represent it in the language of continuity? In other

words, can the language of continuity really capture everything we want it to from continuous

realities? The answer is a qualified yes. While the language can describe everything, it’s a bit
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harder for it to describe continuous realities than it is for the language of discreteness to describe

discrete realities.

The basic idea is this: consider all the sentences of a given complexity which may or may not

describe a “simple” continuous reality. How hard is it to tell which sentences describe that

reality? In the discrete case the complexity scales directly. But in the continuous case, certain

sentences look arbitrarily similar to each other. Not actually identical, but as similar as one can

imagine. Distinguishing exactly which of these “supersimilar” sentences describe the structure

and which do not is a hard problem. Indeed, it’s just slightly harder than what a computer can

“easily” do. This is my final main result.

But this final result technically has two parts to it. First, it proves that it’s no harder than

this level of “difficult” computation which is slightly harder than regular computation. And

second, it shows that for at least one continuous reality, it’s exactly as hard as this low-level of

“difficult” computation. At the end of the day, though, this level of difficult computation is still

fairly reasonable, just not as simple as the discrete case where regular computation suffices.

1.2 For the Mathematician

Until Church’s work in (11) and Turing’s in (33), it was unclear whether any mathematical

problem couldn’t be solved by an algorithm, or indeed what an “algorithm” even was.

Nonetheless, the Entscheidungsproblem (decision problem) was given as follows.

Provide an algorithm which, given a sentence in the language of first-order logic, determines if

that sentence is valid.

Church and Turing were the first to show, in those seminal papers, that no such algorithm exists.

Thus began both the study of the computable and the incomputable. In other words, thus began

the study of determining which mathematical problems could be solved by algorithms, and which

could not.

Just previous to that work by Church and Turing, in (32), Alfred Tarski provided the

foundation for what would eventually become the discipline of model theory. Model theory is the
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study of which mathematical structures satisfy which sentences in a given language. In other

words, it is the study of truth-makers under a specified correspondence relation.

But a formal language, as was shown by Kurt Gödel in (18), may itself be viewed as a

mathematical object. Now that Turing had shown there was a distinction between mathematical

objects which were computable and those which were not, three natural questions arose.

(i) Which languages are computable? (Recursive language theory)

(ii) Which mathematical structures are computable? (Computability theory)

(iii) What is the relationship between the two? (Computable structure theory)

Since recursive languages are, themselves, mathematical objects, recursive language theory is

often viewed as a subset of computability theory, a good introduction of which is Cooper (12),

and further study of which can be found in Soare (30) and Sacks (29). Model theory, however,

with computable structure theory following suit, has largely focused on discrete mathematical

structures. Summaries of this work and related results can be found in Harizanov (21), Ash and

Knight (1), and Montalbán (25). But for mathematicians of the analytic persuasion, a lack of

computable model theory has been completed until only recently.

In Ben Yaacov et al. (3), the authors provide an extension of the fuzzy  Luckasiewicz logic,

called first-order continuous logic, which functions extremely well as a logic for continuous

structures. Indeed, in Ben Yaacov and Pedersen (5), they actually prove it is a complete logic for

metric structures. Very briefly, notions of effectivity on such structures were considered in Calvert

(8), relating metric structures to probabilistic computation via an effective completeness theorem.

However, this project yielded minimal fruit.

Soon after, in Melnikov (23) and his work with Nies (24), techniques from traditional

computable model theory were adapted for use in metric structures. The work combines classical

model theory with ideas from computable analysis, a primer of which is Weihrauch (34). The

computable presentations of structures introduced served as continuous correlates of the
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computable copies of classical computable model theory. The success of this method can be found

more recently in McNicholl’s work with Brown and Melnikov (7) and Franklin (16).

In the 2010s, three projects were undertaken on effectivity with respect to continuous logic

and metric structures. Didehvar and Pourmahdian completed joint work with Ghasemloo (13)

and Tavana (28), and Moody wrote a Ph.D. thesis (26). The first two of these implicitly used

computable presentations, while the last did so somewhat explicitly. In (13), an effective

completeness theorem with respect to linearly complete theories was proven, and in (28), an

effective omitting types theorem followed. Lastly, the dissertation of (26) is presented in a

somewhat scattered state, with arcane notation. This thesis attempts to construct a more firm

foundation for the computable structure theory of continuous logic.

Also related to this paper is infinitary continuous logic and its computable fragment.

Infinitary continuous logic was first introduced in Ben Yaacov and Iovino (4), with further work

completed by Eagle in (14) and (15). Classical infinitary logic was used in relation to classical

computable structure theory in Ash et al. (2) and Chisholm (10), and summarized in Ash and

Knight (1). Though briefly sketched in Moody (26), our manuscript is the first to formally

construct the computable fragment of infinitary continuous logic.

The three main results of this work are as follows.

Theorem 8. There is an effective procedure which, given a name X ∈ NN of an L-theory T ,

produces a presentation of an L+-structure M such that M ⊨ T .

In this case, L is a continuous signature with a metric, theories are consistent sets of sentences

in that signature, L+ is an extension of L which includes Henkin witnesses, and M is a metric

structure. This result is a very strong version of effective completeness, generalizing and

strengthening the result found in (13).

Theorem 9. (C., McNicholl, 2022+) There are partial computable functions f and g from

(O \ {1})× N to the set of computable infinitary sentences such that the following hold, for every

1 ≤ α < ωCK
1 .
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• If ⟨a, i⟩ is a Π0
α index of a right Dedekind cut of a real number s, then f(a, i) is a code of a

Πc
α sentence φ such that for every L-structure M, φM = s.

• If ⟨a, i⟩ is a Σ0
α index of a right Dedekind cut of a real number s, then g(a, i) is a code of a

Σc
α sentence φ such that for every L-structure M, φM = s.

This theorem shows that computable infinitary sentences in continuous logic are robust

enough to track hyperarithmetical real numbers. Moreover, such real numbers are actually

representable as numerals in every metric structure.

Theorems 11, 12, 13, and 14. (C., Goldbring, McNicholl, 2021) Let M be a computably

presentable L-structure, and let N be a positive integer.

1. The closed ΠN diagram of M is Π0
N , and the open ΠN diagram of M is Σ0

N+1.

2. The closed ΣN diagram of M is Π0
N+1, and the open ΣN diagram of M is Σ0

N .

These results hold uniformly in the sense that from N and an index for a computable presentation

for M, one can compute an index for any of the above diagrams. Moreover, there is an

L-structure in which these bounds are optimal, and similar correlates hold in the infinitary case.

These theorems prove fundamental results concerning the complexity of the theory of a

computably presented metric structure and have already seen application by Goldbring and Hart

(19).

1.3 Map of the Manuscript

The remainder of this thesis is organized as follows. Chapter 2 introduces the syntax and

semantics for finitary and infinitary continuous logic, and discusses important results on

completeness which will be used throughout this manuscript. Chapter 3 reviews key ideas from

computability theory, including the hyperarithmetical hierarchy, computable analysis, and

computable presentations. At the end of Chapter 3, previous results on limited versions of

effective completeness for continuous logic are also summarized. In Chapter 4, we introduce our
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first main result on generalized effective completeness (Theorem 8). We begin by contrasting the

result with previous results, and then move to building up the result by proving model-theoretic

and effective extension-based lemmas. Chapter 5 introduces the computable fragment of

continuous logic and proves Theorem 9 concerning hyperarithmetical numerals. Theorems 11, 12,

13, and 14, related to the complexity of the theory of a computably presented structure, are

proven in Chapter 6. Notably, in that chapter, we also introduce diagrams of metric structures

and prove an important combinatorial result (Theorem 10) which allows for the encoding of a

single quantifier via a series inequality. Lastly, Chapter 7 offers a conclusion, along with notes

about applications and further research.

The results presented in Chapters 2 and 3 are those of other mathematicians, while all the

work given in Chapters 4, 5, and 6 was completed by myself, with assistance from Drs. Timothy

McNicholl and Isaac Goldbring. Each theorem is labeled with all those who contributed to its

proof.

This manuscript includes exercises which are folklore results but nonetheless useful for the

reader to prove for an adequate understanding of the material. Solutions to selected exercises can

be found in the appendix.

At certain points, largely in Chapter 3, heuristics are given in the place of formal definitions

and notations. These are given for ease of understanding on the reader’s part, as formal

definitions and notations can often get in the way of a useful and flexible view of the material.

For more formal definitions concerning computability-theoretic concepts, the reader is directed

toward Cooper (12) and Weihrauch (34).
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CHAPTER 2. PRELIMINARIES ON CONTINUOUS LOGIC

2.1 Continuous Logic

Every logic begins with a language. Some philosophers take symbols to be brutely given. On

the other hand, symbols may just be considered as distinguished sets. In our case, we begin with

the alphabet {0, 1} = {∅, {∅}} and freely generate all finite strings. We then take each of the

following symbols to formally correspond to some designated such string, though we proceed to

give them näıvely.

Definition 1. The logical symbols of continuous logic (CL) consist of the following.

• ( and ) are the parentheses.

• x, y, z, ... are the variable symbols (V).

• ¬, 1
2 , and .− are the connectives.

• sup and inf are the quantifiers.

Remark 1. In some versions of continuous logic, the set of connectives contains a distinguished

symbol u for each continuous map u : [0, 1]η(u) → [0, 1]. The resulting set of well-formed formulas

of such a logic, however, is uncountable and thus fails to operate effectively. Our choice of ¬, 1
2 ,

and .− as the connectives was made for four reasons.

1. ¬ plays precisely the role of classical negation (¬) and .− of reverse implication (←)1. The

interpretation of the 1
2 operator is similarly intuitive.

2. Ben Yaacov and Usyatsov (6) showed that, after interpretation, combinations of ¬, 1
2 , and .−

are dense in the set of all continuous maps on [0, 1]. Thus finitary well-formed formulas in

1That this corresponds to reverse and not standard implication will become clear after we have introduced the
interpretation of the connective.
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these connectives can approximate those in the wider set of connectives arbitrarily well.

Such an approximation is sufficient even for completeness (as seen in Ben Yaacov and

Pedersen (5)).

3. When a signature (Definition 2) is effectively numbered (Definition 48), the sentences and

well-formed formulas of that signature may be effectively enumerated.

4. Because of 1, 2, and 3, ¬, 1
2 , and .− have become a somewhat canonical set of connectives

for continuous logic.

Definition 2. A signature is a quintuple L =
(
P,F , C,∆, η

)
such that each of the following hold.

• P, F , and C are mutually disjoint, and contain no logical symbols.

• ∆ : P ∪ F → NN.

• η : P ∪ F → N \ {0}.

• There is some d ∈ P such that ∆(d) = idN and η(d) = 2.

P is the set of predicate symbols, F the set of function symbols, and C the set of constant symbols.

∆ is the modulus map and η the arity map. Each predicate (or function) symbol F is an η(F )-ary

predicate (or function) symbol.

For the remainder of this chapter, unless stated otherwise, we will assume we have a fixed

signature L. We proceed to generate the terms.

Definition 3. The terms of L are generated recursively as follows.

• Every constant symbol and variable symbol is a term.

• If f is a function symbol and t0, ..., tη(f)−1 are terms, then f(t0, ..., tη(f)−1) is a term.

As an example, if one considers the language of arithmetic, terms include phrases like “0+1”,

“9× 8”, “x− 7”, and “4, 100, 323”. For the remainder of this manuscript, we will leave out the

use of quotations as syntactic designators. We now generate the well-formed formulas.
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Definition 4. The well-formed formulas (wffs) of L are generated recursively as follows.

• If P is a predicate symbol and t0, ..., tη(P )−1 are terms, then P (t0, ..., tη(P )−1) is a wff.

• If φ is a wff then both ¬φ and 1
2φ are wffs.

• If φ and ψ are wffs then φ .− ψ is a wff.

• If φ is a wff and x is a variable symbol then both supx φ and infx φ are wffs.

Free and bound variables are defined as in classical logic. Correct substitution is also given as in

the classical case, where [t/x] means t is substituted for x.

Again, if we work in the language of arithmetic but use d in the place of ̸=, we find that each

of d(0, x), d(1 + 1, 2), and supx d(12178, 6× x) are wffs of this signature. Notably, x is free in

d(0, x), while it is bound in supx d(12178, 6× x).

Heuristic 1. The following syntax maps are used as shorthand.

Shorthand String

φ ∨ ψ ¬
(
(¬φ) .− ψ

)
φ ∧ ψ φ .− (φ .− ψ)

φ↔ ψ (φ .− ψ) ∨ (ψ .− φ)

x⃗ (x0, ..., xn)

supx0,...,xn
φ supx0

. . . supxn
φ

infx0,...,xn φ infx0 . . . infxn φ

0 supx d(x, x)

1 ¬ 0

φ∔ ψ ¬
(
(1 .− φ) .− ψ)

)
mφ

(
...(φ∔ φ)∔ · · ·∔ φ

)︸ ︷︷ ︸
m-many

2−k 1

2
. . .

1

2︸ ︷︷ ︸
k-many

1

ℓ
2k

(
...(2−k ∔ 2−k)∔ · · ·∔ 2−k)︸ ︷︷ ︸

ℓ-many



12

Some of the above syntax may seem loaded; this is for good reason. Exercise 1 explains why.

Once the well-formed formulas of a logic are given, one needs to know how theorems are

proven. Generally speaking, the provable theorems are given via axioms and rules of inference.

Continuous logic follows this general format.

Definition 5. The axiom schemata of continuous logic are as follows. In each of the following, φ,

ψ, and θ range over arbitrary wffs. The first four schemata correspond to the classical

propositional axioms.

I. (φ .− ψ) .− φ.

II.
(
(θ .− φ) .− (θ .− ψ)

) .− (ψ .− φ).

III.
(
φ .− (φ .− ψ)

) .−
(
ψ .− (ψ .− φ)

)
IV. (φ .− ψ) .− (¬φ .− ¬φ).

The next four correspond to the classical first-order axiom schemata. For every x ∈ V and term t,

V. (supx ψ
.− supx φ) .− supx(ψ .− φ).

VI. φ[t/x] .− supx φ, when this substitution is correct.

VII. supx φ
.− φ, when x is not free in φ.

VIII. infx φ↔ ¬(supx ¬φ).

These two define the 1
2 connective.

IX. 1
2φ

.− (φ .− 1
2φ).

X. (φ .− 1
2φ) .− 1

2φ.

The following define the predicate symbol d. For every x, y ∈ V,

XI. d(x, x).
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XII. d(x, y) .− d(y, x).

XIII.
(
d(x, z) .− d(x, y)

) .− d(y, z).

The next schema defines interaction between d and function symbols. For every f ∈ F , n ∈ N,

(possibly empty) tuples of terms t⃗0, t⃗1, and x, y ∈ V,

XIV.
(
2−∆(f ;n) .− d(x, y)

)
∧
(
d
(
f(t⃗0, x, t⃗1), f(t⃗0, y, t⃗1)

) .− 2−n
)
.

Lastly, the following defines interaction between d and other predicate symbols. For every P ∈ P,

n ∈ N, (possibly empty) tuples of terms t⃗0, t⃗1, and x, y ∈ V,

XV.
(
2−∆(P ;n) .− d(x, y)

)
∧
((
P (t⃗0, x, t⃗1)

.− P (t⃗0, y, t⃗1)
) .− 2−n

)
.

There is a slight discrepancy between how schemata XIV and XV are given here as opposed

to their presentation in (5). The above formulation is not only more parsimonious, but requires

no use of access to metric structure semantics (which is a bit circular). Moreover, the above

description lends itself nicely to effective constructions.

Definition 6. The rules of inference of continuous logic are as follows, where φ and ψ are wffs

and x is a variable symbol.

• Modus ponens

φ, ψ .− φ
ψ

• Generalization

φ

supx φ

As in classical logic, once the axioms and rules of inference are given, we may define the

provable wffs.

Definition 7. The set of provable wffs (⊢) is defined as in the classical case; it is the smallest

subset of wffs that contains all the axioms and is closed under modus ponens and generalization.

As is convention, when φ is a wff, we write ⊢ φ when φ ∈ ⊢ and ⊬ φ when φ /∈ ⊢.
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Definition 8. Let Γ be a set of wffs. Γ is inconsistent if there is some finite set {φ0, ..., φn} ⊆ Γ

such that for some k ∈ N,

⊢ 2−k .− (φ0 ∨ ... ∨ φn).

Γ is consistent if it is not inconsistent. A consistent set of sentences is called a theory.

The set of consequences of Γ (Γ ⊢) is the smallest subset of wffs that includes Γ ∪ ⊢ and is

closed under modus ponens. Again, as is convention, we write Γ ⊢ φ when φ ∈ Γ ⊢ and Γ ⊬ φ

when φ /∈ Γ ⊢.

We will soon see that the set of consequences of a set of wffs does not act in the same way as

it does in classical logic. This has to do with the continuous nature of the space of truth values.

2.2 Metric Structures

There is, arguably, no structure more important to mathematical analysis and spatial

reasoning than a (pseudo)metric space.2 These are the structures continuous logic was developed

to represent. Importantly, however, a signature must be able to speak about the continuity of

maps on such structures.

Definition 9. Let (|M|, d) and (|M′|, d′) be pseudometric spaces of diameter 1 and let

f : |M| → |M′|. A map ∆(f) : N→ N is called a modulus of continuity for f if for every

a, b ∈ |M|, d(a, b) < 2−∆(f ;n) implies that d′
(
f(a), f(b)

)
≤ 2−n.

We are now able to define our semantics.

Definition 10. An interpretation of a signature L is a map ·M with domain P ∪ F ∪ C such that

for some set |M|, each of the following hold.

• For every predicate symbol P , PM : |M|η(P ) → [0, 1].

• For every function symbol f , fM : |M|η(f) → |M|.

• For every constant symbol c, cM ∈ |M|.
2An argument can be made for more general topological spaces.
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·M is a continuous interpretation if, moreover, each of the following hold.

• dM := d is a pseudometric.

• For every predicate symbol P , ∆(P ) is a modulus of continuity for P .3

• For every function symbol f , ∆(f) is a modulus of continuity for f .

When ·M is an interpretation, the quintuple

M =
(
|M|, d,

{
PM : P ∈ P \ {d}

}
,
{
fM : f ∈ F

}
,
{
cM : c ∈ C

})
is an L-pre-structure. Moreover, if ·M is a continuous interpretation, M is a continuous

L-pre-structure. Lastly, if ·M is a continuous interpretation and
(
|M|, d

)
is a complete metric

space, then M is an L-structure. If |M| is countable, M is called weak.

When M is an L-pre-structure, PM is the set of predicates of M, FM the set of functions of

M, and CM the set of distinguished points of M.

At times, the language of non-continuous pre-structures is dropped, and every pre-structure is

assumed to be continuous. We find it useful for certain examples, however, to retain access to

pre-structures which can interpret the symbols of a signature without satisfying the requirements

placed by the moduli of continuity. Also what were given here as “L-structures” are often

designated as “metric L-structures”. In this manuscript, however, we will assume every structure

is interpreting a continuous signature, so we drop the prefix “metric”.

Example 1. The following are examples of structures (for some related signature).

• A complete metric space of diameter 1 with no additional structure.

• The natural numbers with the discrete metric and addition and multiplication as binary

functions.

3Here the domain of PM is considered as the standard product pseudometric space
(
|M|η(P ), (dM)η(P )

)
and the

range the metric space
(
[0, 1], | · |

)
.
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• The unit ball of a Banach space over R or C, the metric induced by the norm of that

Banach space, as functions all binary maps of the form

fα,β(x, y) = αx+ βy

where |α|+ |β| ≤ 1 as scalars, and the additive identity 0 is a distinguished point.

• The unit ball of a C∗-algebra with the standard norm as the metric, and multiplication and

the ∗-map included as functions.

• When (Ω,B, µ) is a probability space, let M be its measure algebra and d the measure of

symmetric difference. Then (M,d) along with µ as a predicate, ∩, ∪, and ·c as functions,

and 0 and 1 as distinguished points is a structure.

We now define when a structure satisfies a given wff. But to do so, we must first define

variable assignments.

Definition 11. Let M be an L-pre-structure. An assignment (on M) is a map σ : V → |M|.

When σ is an assignment, x ∈ V, and a ∈ |M|, the assignment σ(x 7→ a) is defined as follows.

σ(x 7→ a; y) :=


a if y = x,

σ(y) otherwise.

Given a term t, the interpretation of t in M with σ (tM,σ) is defined recursively as follows.

• If t ∈ C, then tM,σ := tM.

• If t ∈ V, then tM,σ := σ(t).

• If t = f(t0, ..., tn), then tM,σ := fM
(
tM,σ
0 , ..., tM,σ

n

)
.

Definition 12. For every L-pre-structure M, assignment σ, and wff φ, the value (or truth value)

of φ in M with σ (φM,σ) is defined recursively as follows.

•
(
P (t0, ..., tn)

)M,σ
:= PM

(
tM,σ
0 , ..., tM,σ

n

)
.
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• (¬φ)M,σ := 1− φM,σ.

•
(
1
2φ

)M,σ
:= 1

2 · φ
M,σ.

• (φ .− ψ)M,σ := max
{
φM,σ − ψM,σ, 0

}
.

•
(

supx φ
)M,σ

:= supa∈|M| φ
M,σ(x 7→a).

•
(

infx φ
)M,σ

:= infa∈|M| φ
M,σ(x 7→a).

When φM,σ = 0, M with σ satisfies φ (M, σ ⊨ φ). If, moreover, φM,σ = 0 for every assignment σ,

then M satisfies φ (M ⊨ φ). Notably, when φ is a sentence, M ⊨ φ if and only if there exists some

assignment σ such that M, σ ⊨ φ. If every continuous L-pre-structure satisfies φ, it is valid. The

set of all valid wffs is denoted ⊨. We write ⊨ φ when φ ∈ ⊨ and ⊭ φ when φ /∈ ⊨.

It is clear, now, that the space of truth values is [0, 1] and is, itself, a complete metric space of

diameter 1. This provides even the most trivial structures with nontrivial complexity, as will be

shown in Chapter 5.

Heuristic 2. When φ is a wff with free variables x⃗ and M an L-structure, φM(⃗a) means

φM,σ(x⃗7→a⃗) for any assignment σ.

Definition 13. Let Γ be a set of wffs. An L-structure M models Γ (M ⊨ Γ) if for every φ ∈ Γ,

M ⊨ φ. A wff φ follows from Γ (Γ ⊨ φ) if for every continuous L-pre-structure M, if M ⊨ Γ, then

M ⊨ φ.

The clever reader may already notice subtle differences between the syntactic consequence

relation and the semantic following relation. These subtleties will become apparent when we

discuss completeness.

The reader may also now be wondering what signatures the structures in Example 1 are

actually structures over. We present the basic idea for how to generate a signature from a

structure.
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Example 2. Consider a metric structure

M =
(
|M|, d, {Pi : i ∈ I}, {fj : j ∈ J}, {ck : k ∈ K}

)
.

Let LM contain the predicate symbol d and predicate symbols Pi, function symbols fj , and

constant symbols ck, and define η to agree with the arities of each Pi and fj , and ∆ to agree with

their uniform continuity. The result is that M is an LM-structure under the natural

interpretation.

Exercise 1. Let M be an L-pre-structure, φ and ψ be sentences, and ℓ, k ∈ N. Prove the

following.

(a) (φ ∨ ψ)M = max
{
φM, ψM

}
.

(b) (φ ∧ ψ)M = min
{
φM, ψM

}
.

(c) (φ↔ ψ)M =
∣∣φM − ψM

∣∣.
(d) 0M = 0.

(e) 1M = 1.

(f) φ∔ ψ = min
{
φM + ψM, 1

}
.

(g) mφ = min
{
m · φM, 1

}
.

(h)
(
ℓ
2k

)M
= ℓ

2k
.

Note that all of the above hold for wffs when interpreted along with an assignment.

Exercise 2 (Soundness of I – X). Let M be an L-pre-structure. Prove that M satisfies axiom

schemata I through X.

Exercise 3 (Canonicity of CL for continuous L-pre-structures). Let M be an L-pre-structure.

Prove the following.

(a) M satisfies axiom schemata XI, XII, and XIII if and only if dM is a pseudometric.
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(b) M satisfies axiom schema XIV if and only if for every function fM, ∆(f) is a modulus of

continuity for fM.

(c) M satisfies axiom schema XV if and only if for every predicate PM, ∆(P ) is a modulus of

continuity for PM.

Deduce that an L-pre-structure satisfies CL if and only if it is a continuous L-pre-structure.

It is well-known that some (pseudo)metric spaces embed into others. There is a similar notion

for embeddings of pre-structures.

Definition 14. Let M and N be continuous L-pre-structures. E : |M| → |N| is an L-morphism if

each of the following hold.

• For every f ∈ F and a0, ..., aη(f)−1 ∈ |M|,

E
(
fM(a0, ..., aη(f)−1)

)
= fN

(
E(a0), ..., E(aη(f)−1)

)
.

• For every P ∈ P and a0, ..., aη(P )−1 ∈ |M|,

E
(
PM(a0, ..., aη(P )−1)

)
= PN

(
E(a0), ..., E(aη(P )−1)

)
.

E is an elementary L-morphism if, moreover, for every M-assignment σ, φM,σ = φN,E◦σ.

It is important to note that any classical structure can be considered as a metric structure.

The following definitions and exercise illustrate this consideration.

Definition 15. A classical structure is a quadruple

A = (|A|,PA,FA, CA)

with the following properties.

• For every R ∈ PA, R ⊆ |A|η(R).

• For every f ∈ FA, f : |A|η(f) → |A|.
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• For every c ∈ CA, c ∈ |A|.

Similarly to the continuous signature constructed in Example 2, A interprets some first-order

language LA = (P,F , C, η), with the relevant symbols denoted R ∈ P, f ∈ F , and c ∈ C.

Heuristic 3. If PA, FA, or CA is empty or a singleton, it is common to simplify the notation of

the structure. E.g., (|A|, <A) denotes the structure (|A|, {<A}, ∅, ∅).

Definition 16. Let A be a classical structure and LA the language of that structure. The terms

of LA are defined as in Definition 3. The well-formed formulas (wffs) of LA are generated in the

classical manner, with connectives → and ¬ and quantifiers ∃ and ∀. A wff with no variable

symbols is a sentence. A wff is atomic (or quantifier-free) if it contains no quantifiers.

Satisfaction (⊨FOL) is defined classically.

Definition 17. Fix a classical LA-structure

A =
(
|A|,PA,FA, CA

)
.

Define a signature LMT(A) in the following manner.

• The predicate symbols consist of P along with a new predicate symbol d.

• The function symbols are just F .

• The constant symbols are just C.

• ∆ : P ∪ F → NN, where ∆(d) := idN and for every other predicate and function symbol F

and n ∈ N, ∆(F ;n) := 1.

• η : P ∪F → N, where η(d) := 2 and for every other predicate and function symbol, the arity

is the same as in LFOL.

Then define the metric transformation of A (MT(A)) as follows.

MT(A) =
(
|A|, d,PMT(A),FMT(A), CMT(A)

)
,
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where

d(a, b) :=


0 if a = b,

1 otherwise,

for every predicate symbol P ∈ P,

PMT(A)(t0, ..., tη(P )−1) := 1− χPA(t0, ..., tη(P )−1),

where χ is the standard indicator map, for every function symbol f ∈ F , fMT(A) := fA, and for

every constant symbol c ∈ C, cMT(A) := cA.

Definition 18. Consider all classical wffs written using only the connectives ¬ and → and only

the quantifier ∀ (by well-known results any classical wff is provably equivalent in first-order logic

to a wff of this form). Define the continuous translation (CT) map from this set into the set of

wffs of continuous logic recursively as follows.

• If φ = ¬ψ, then CT(φ) := ¬CT(ψ).

• If φ = ψ → θ, then CT(φ) := CT(θ) .− CT(ψ).

• If φ = ∀x ψ, then CT(φ) := supx CT(ψ).

When considered together, the metric transformation of a classical structure and continuous

translation of classical wffs show the conservativity of continuous logic over classical logic.

Exercise 4. Let A be a classical LA-structure. Prove that

A ⊨FOL φ ⇐⇒ MT(A) ⊨ CT(φ).

Hint: Applying the Completeness Theorem (Theorem 1) may simplify the proof.

2.3 Completeness Results

We now recall many results related to completeness which were proven by Ben Yaacov and

Pedersen in (5). We have altered some of the notation in order to make these results more
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applicable to our work, but the results proven remain the same. Important to this work is the

introduction of the formal notion of dyadic numerals.

Definition 19. The dyadic numerals (Dyad) are all sentences of the form ℓ
2k

for ℓ, k ∈ N. When

p ∈ Dyad, by p we mean the real number such that for every L-pre-structure M, pM = p.

Maximal consistency is defined similarly to the classical case, but with an extra condition

concerning limiting behavior.

Definition 20. A set of wffs Γ is maximally consistent if for every pair of wffs φ and ψ, the

following hold.

(i) If Γ ⊢ φ .− 2−k for every k ∈ N, then φ ∈ Γ.

(ii) Either φ .− ψ ∈ Γ or ψ .− φ ∈ Γ.

Notably, without the limiting behavior condition, we would not gain the intuitive property

that if Γ is maximally consistent, then for every φ /∈ Γ, Γ ∪ {φ} is inconsistent. Ben Yaacov and

Pedersen implement a continuous version of a Henkin construction to prove their completeness

theorem. To accomplish this, Henkin witnesses must be added to the signature.

Definition 21. Given a signature L, the Henkin extended signature of L (L+) is the smallest

signature that extends L and that, for every combination of L+-wff φ, variable symbol x, and

p, q ∈ Dyad, contains a unique constant symbol cφ,x,p,q.

When Γ is a set of L+-wffs, we say it is Henkin complete if for every L+-wff φ, every variable

symbol x, and every p, q ∈ Dyad,

(
sup
x
φ .− q

)
∧
(
p .− φ[cφ,x,p,q/x]

)
∈ Γ.

We now note a relevant lemma and theorem from Ben Yaacov and Pedersen. We also assume

that we have a fixed signature L and Henkin extended signature L+ for the remainder of this

section.
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Lemma 1 ((ii) of Lemma 8.5, Ben Yaacov and Pedersen, 2010). Let T be an L-theory. Then for

every pair of L-wffs φ and ψ, either T ∪ {φ .− ψ} or T ∪ {ψ .− φ} is consistent.

Theorem 1 (From Theorem 8.10 and Proposition 9.2, Ben Yaacov and Pedersen, 2010). Let T be

an L-theory. Then there exists a maximally consistent, Henkin complete set of L+-wffs which

extends T .

In what follows, the original Henkin model created will be a continuous L+-pre-structure. To

make the move to a genuine L+-structure, the following theorem is needed.

Theorem 2 (Theorem 6.9, Ben Yaacov and Pedersen, 2010). Let M′ be a continuous

L-pre-structure. Then there is an L-structure M and an elementary L-morphism of M′ into M.

We now summarize the construction of the Henkin model in (5). Completeness follows.

Definition 22. Let Γ be a maximally consistent, Henkin complete set of L+-wffs. Define the

Henkin continuous L+-pre-structure over Γ (M′
Γ) as follows.

• |M′
Γ| is the set of all terms of L+.

• For every constant symbol c of L+, cM
′
Γ := c.

• For every function symbol f of L+, define fM
′
Γ for each t0, ..., tη(f)−1 ∈ |M′

Γ| as

fM
′
Γ
(
t0, ..., tη(f)−1

)
:= f(t0, ..., tη(f)−1).

• For every predicate symbol P of L+, define PM′
Γ for each t0, ..., tη(P )−1 ∈ |M′

Γ| as

PM′
Γ
(
t0, ..., tη(P )−1

)
:= sup

{
p ∈ [0, 1] : p ∈ Dyad and p .− P (t0, ..., tη(P )−1) ∈ Γ

}
.

The basic assignment on M′
Γ is defined as σ(x) := x for every variable symbol x of L+. By a

slight abuse of notation, when M′
Γ is a Henkin continuous L+-pre-structure, by φM′

Γ we mean

φM′
Γ,σ, and by M′

Γ ⊨ φ we mean M′
Γ, σ ⊨ φ, where σ is the basic assignment.

The Henkin L+-structure over Γ (MΓ) is the structure induced by the metric completion of(
|M′

Γ|, d
M′

Γ
)

and the elementary morphism given in Theorem 2.
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Theorem 3 (Theorem 9.4, Ben Yaacov and Pedersen, 2010). Let Γ be a maximally consistent,

Henkin complete set of L+-wffs. Then MΓ ⊨ Γ.

Corollary 1 (Completeness of Continuous Logic, Theorem 9.5, Ben Yaacov and Pedersen, 2010).

A set of L-wffs is consistent if and only if it is (completely) satisfiable.

Ben Yaacov and Pedersen then introduce important maps from sets of L-wffs into [0, 1].

These maps serve as upper bounds on relative provability and interpretation of sentences

following from those sets of L-wffs.

Definition 23. Let Γ be a set of L-wffs. The degree of truth with respect to Γ ( · ◦Γ) is a map

from wffs to [0, 1], defined as

φ◦
Γ := sup

{
φM,σ : M, σ ⊨ Γ

}
.

The degree of provability with respect to Γ ( · ⊚Γ ) is a similar map, defined as

φ⊚
Γ := inf

{
p ∈ [0, 1] : p ∈ Dyad and Γ ⊢ φ .− p

}
.

The Completeness Theorem implies that these maps are the same.

Corollary 2 (Corollary 9.8, Ben Yaacov and Pedersen, 2010). For any L+-wff φ and set of

L-wffs Γ, φ◦
Γ = φ⊚

Γ .

A theory is then considered complete if and only if its related degree of truth map is precisely

witnessed by interpretation in a structure.

Definition 24. A set of L-wffs Γ is complete if there is a structure M and assignment σ such

that for every L-wff φ,

φ◦
T = φM,σ.

Γ is incomplete if it is not complete.

In contrast to the classical case, even if a theory is complete, its set of consequences may not

be maximally consistent. This is due to the limiting behavior condition discussed in Definition 20.

The Deduction Theorem for continuous logic encounters a similar issue.
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Theorem 4 (Deduction Theorem, Theorem 8.1, Ben Yaacov and Pedersen, 2010). Let Γ be a set

of L-wffs. Then for every L-wff ψ, Γ ∪ {ψ} ⊢ φ if and only if Γ ⊢ φ .−mψ, for some m ∈ N.

Lastly, we note the Generalization Theorem, which will be useful in future work.

Lemma 2 (Generalization Theorem, Lemma 8.2, Ben Yaacov and Pedersen, 2010). Let Γ be a set

of L+-wffs and φ an L+-wffs. If x does not appear freely in Γ and Γ ⊢ φ, then Γ ⊢ supx φ.

2.4 Infinitary Continuous Logic

Infinitary continuous logic was first developed by Ben Yaacov and Iovino (4) using the

language LCω1ω which extends a signature L.4 To define the infinitary well-formed formulas,

moduli of continuity are extended to all terms and finitary wffs, and allowed to take a variable

symbol as a second argument.

Definition 25. For every variable symbol x, let ∆(·, x; 0) := 0. The following definitions hold for

k ∈ N \ {0}.

• When y is a constant or variable symbol, define ∆(y, x; k) := k when y = x and

∆(y, x; k) := 0 when y ̸= x.

• For every term of the form t = f(t0, ..., tη(f)−1), define

∆(t, x; k) := max
{

∆
(
ti, x; (∆(f ; k)

)
: 0 ≤ i < η(f)

}
.

• For every wff of the form φ = P (t0, ..., tη(P )−1), define

∆(φ, x; k) := max
{

∆
(
ti, x; ∆(P ; k)

)
: 0 ≤ i < η(P )

}
.

Then also define

∆(¬φ, x; k) := ∆(φ, x; k),

∆
(1

2
φ, x; k

)
:= ∆(φ, x; k + 1),

4 The language LC
ω1ω was previously denoted Lω1ω but was distinguished by Eagle (14) in order to highlight its

preservation of a modulus of continuity.
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and

∆(φ .− ψ, x; k) := max
{

∆(φ, x; k),∆(ψ, x; k)
}
.

• For every wff of the form φ = infy ψ or φ = supy ψ, define ∆(φ, x; k) := 0 when y = x and

∆(φ, x; k) := ∆(ψ, x; k) when y ̸= x.

∆(φ, x) is a modulus of continuity of φ in x.

Exercise 5. Let φ be a finitary wff with a single free variable x. Prove that for every L-structure

M, if d(a, b) < 2−∆(φ,x;k), then |φM(a)− φM(b)| ≤ 2−k.

As noted in Footnote 4, one may consider the infinitary extension of a signature L without

enforcing the retention of moduli of continuity. This extension was given by Eagle (14) as Lω1ω,

and we consider its “formulas” to be infinitary pseudowffs.

Definition 26. The infinitary pseudowffs are defined recursively as follows.

• Every finitary wff is an infinitary pseudowff.

• If (φn)n∈N is a sequence of infinitary pseudowffs which share free variables from a finite

tuple x⃗, both ∧∧
n∈N

φn and
∨∨
n∈N

φn

are infinitary pseudowffs.5

• If φ and ψ are infintary pseudowffs and x a variable symbol, each of ¬φ, 1
2φ, φ .− ψ, supx φ,

and infx φ are infinitary pseudowffs.

Pseudosentences generalize similarly.

We now introduce the language of equicontinuity to distinguish genuine infinitary wffs from

pseudowffs.

5The overlapping connectives
∨∨

and
∧∧

are used to indicate the distinction of these as infinite disjunctions and
conjunctions.
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Definition 27. Let (φn)n∈N be a sequence of infinitary pseudowffs in a finite tuple of free

variables x⃗. If for every k ∈ N and x ∈ x⃗, supn∈N ∆(φn, x; k) exists (as a natural number, i.e. is

bounded), the sequence (φn)n∈N is called uniformly equicontinuous.

Definition 28. The infinitary wffs are defined recursively as follows.

• Every finitary wff is an infinitary wff.

• When (φn)n∈N is a uniformly equicontinuous sequence of infinitary pseudowffs, both

∧∧
n∈N

φn and
∨∨
n∈N

φn

are infinitary wffs, with

∆
(∨∨
n∈N

φn, x; k
)

= ∆
(∧∧
n∈N

φn, x; k
)

:= sup
n∈N

∆(φn, x; k).

• The wffs are also closed under the continuous connectives and quantifiers, with their

respective moduli of continuity in each variable symbol given in Definition 25.

The infinitary sentences relativize similarly.

Exercise 6. Show that every infinitary pseudosentence is an infinitary sentence.

The interpretation of infinitary formulas is defined similarly to the classical case, but with
∨∨

corresponding to infinite conjunction and
∧∧

to infinite disjunction.

Definition 29. The value of a wff in a structure is defined as in the finitary case, along with

(∧∧
n∈N

φn

)M
:= inf

n∈N
φM
n and

(∨∨
n∈N

φn

)M
:= sup

n∈N
φM
n .

Because of the continuous nature of L-structures, infinitary conjunction and disjunction do

not perform as in the classical case. This is illustrated by the following exercise.

Exercise 7. Give an example of an L-structure M and an infinitary wff
∧∧
n∈N φn such that

M ⊭ φn for every n ∈ N, but M ⊨
∧∧
n∈N φn.
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CHAPTER 3. PRELIMINARIES ON COMPUTABILITY THEORY

3.1 Effective Procedures

There is no concept more central to computability theory than that of an effective procedure.

Heuristic 4 (Church-Turing Thesis). A procedure is effective (also computable or recursive) if it

is an algorithm of finite length (in a finite language) such that for any input, if it produces an

output, then it will do so within a finite number of steps.

Example 3. There is an effective procedure which determines if a given natural number is prime.

Given n ∈ N, check if any of { nm : m = 2, ..., n− 1} is a whole number. If none are, n is prime.

Heuristic 5. For any m ∈ N, Nm is effectively the same as N. Hence in the following heuristics

and definitions, A ⊆ N means A ⊆ Nm, for some m ∈ N.

Example 4 (Gödel Numbering). For every (n0, ..., nm−1) ∈ Nm, define

⟨n0, ..., nm−1⟩ := 2n0+1 · 3n1+1 · · · · · pnm−1+1
m−1 , where pi is the ith prime number. This is an effective

encoding of every Nm into N.

Turing machines are special sorts of effective procedures, often defined on programs given via

tuples, and considered to work on long tapes of 0s and 1s. While such machines (like the figure

below the heuristic) can be useful for visualization purposes, we prefer to think of Turing

machines in the following sense.

Heuristic 6. A Turing machine is an effective procedure whose inputs and outputs are natural

numbers. When Φ is a Turing machine, we write Φ(n) ↓ if n ∈ dom(Φ) and say Φ halts on n.
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READ-WRITE TURING MACHINE

Heuristic 7. Any Turing machine may be coded by a natural number, called an index of that

Turing machine. The Turing machine with index e ∈ N is denoted Φe and its domain denoted We.

Example 5. Suppose the instructions for a Turing machine are given via a finite tuple of natural

numbers. Use the encoding from Example 4 to assign those instructions to a unique natural

number. This natural number is an index of that machine.

We’ve presented effective procedures and Turing machines as algorithms, which are just a

special sort of well-defined map. Effectivity is then extended to sets if their respective

characteristic (indicator) functions are given by effective procedures.

Definition 30. Let A ⊆ N. A is computable if there is an Turing machine which, on input k ∈ N,

outputs a 1 if k ∈ A and a 0 if k /∈ A.

A is computably enumerable (c.e.) if there is a Turing machine whose range is exactly A.

A is co-computably enumerable (co-c.e.) if Ac is computably enumerable.

Exercise 8. Prove that a set of natural numbers is computable if and only if it is c.e. and co-c.e.

Exercise 9. Prove that the halting set

K := {k ∈ N : k ∈Wk}

is c.e. but not computable.
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Certain subsets of the natural numbers look effectively identical to other subsets of the

naturals. Consider {2k : k ∈ N} and {4k : k ∈ N}. These sets carry with them the same amount

of effective information, since we can simply multiply the first by two to get the second, or divide

the second by two to get the first. The ordering of many-one reducibility on subsets of the natural

numbers formalizes this notion.

Definition 31. Let A,B ⊆ N. A is many-one reducible to B (A ≤m B) if there is a Turing

machine Φ with domain N such that

k ∈ A ⇐⇒ Φ(k) ∈ B.

A and B are many-one equivalent (A ≡m B) if A ≤m B and B ≤m A.

Let S ⊆P(N). A set A ∈ S is S-complete if for every B ∈ S, B ≤m A.

In this sense, a single S-complete set carries within it all the effective information of every set in

S.

As was briefly discussed in the introduction, computers (and humans) are able to query the

external world to attempt to answer their internal questions. The act of querying an external

object is formalized by relative computation.

Heuristic 8 (Relativized Church-Turing Thesis). Let X be a countable set. A procedure is

X-effective (also X-computable or X-recursive) if it is an algorithm of finite length (in a finite

language) such that for any input, the procedure can check finitely many elements of X and if it

produces an output, then it will do so within a finite number of steps. In such cases, X is called

an oracle.

There is a similar notion for oracle Turing machines.

Heuristic 9. An oracle Turing machine with access to X is an X-effective procedure, where

X ⊆ N, whose inputs and outputs are natural numbers.

Any oracle Turing machine with access to X may be coded by a natural number, again called

an index of that Turing machine. The Turing machine with access to X with index e ∈ N is

denoted ΦX
e and its domain denoted WX

e .
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Certain sets can be computed by an oracle Turing machine with access to another set. This is

the notion of Turing reducibility.

Definition 32. Let A,B ⊆ N. A is Turing reducible to B (A ≤T B) if there is an oracle Turing

machine with access to B which, on input k ∈ N, outputs a 1 if k ∈ A and a 0 if k /∈ A. In this

case, A is also called B-computable, or computable in B.

A is computably enumerable in B (c.e. in B) if there is an oracle Turing machine with access

to B whose range is exactly A.

A is co-computably enumerable in B (co-c.e. in B) if Ac is B-computably enumerable.

A and B are Turing equivalent (A ≡T B) if A ≤T B and B ≤T A.

It may seem at first glance that Turing reducibility and many-one reducibility are identical

orderings, but a simple exercise reveals this not to be the case.

Exercise 10. Prove that Kc ≤T K but Kc ≰m K.

This is because K does not contain the effective information stored in Kc, but rather the

complement of that effective information. It follows that Turing reducibility is more general than

many-one reducibility.

Exercise 11. Prove that for any A,B ⊆ N, if A ≤m B, then A ≤T B.

We can then consider the set of all subsets which are Turing equivalent to a given subset of

the naturals.

Definition 33. Let A ⊆ N. The Turing degree of A is

deg(A) := {X ⊆ N : X ≡T A}.

The set of all Turing degrees is denoted D and is ordered as

deg(B) ≤ deg(A) ⇐⇒ B ≤T A.

The Turing degrees have an incredibly rich structure, and many surprising properties.

Lastly, it is sometimes important to discuss effectivity on uncountable sets. The two most

useful such sets are Cantor space and Baire space.
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Definition 34. Cantor space (2N) is the set of all characteristic (indicator) functions on subsets

of natural numbers. It can heuristically be considered as the powerset of the natural numbers (see

Exercise 12).

Baire space (NN) is the set of all functions from the natural numbers into themselves. It can

heuristically be considered as the set of all sequences of natural numbers. Notably, every Turing

machine is a point in Baire space.

Exercise 12. Construct a bijection between 2N and P(N).

Exercise 13. Construct an injection from NN into P(N).

We consider the Turing degrees of these sets through use of the following.

Definition 35. Graph : NN →P(N) is the map from the solution to Exercise 13. Notably,

2N ⊆ NN. When X ∈ NN, by a slight abuse of notation, the Turing degree of X is

deg(X) := deg(Graph(X)).

3.2 The Arithmetical Hierarchy

We saw in the previous section how many-one reducibility and the oracle computation can

classify the computational complexity of subsets of natural numbers. Another way to classify this

complexity is the arithmetical hierarchy. Moreover, there is a deep relationship between this

hierarchy and oracle computation.

Definition 36. The Σ0
n, Π0

n, and ∆0
n sets are defined recursively for every n ∈ N \ {0}. A set

A ⊆ N is

• Σ0
1 if there is some computable binary relation R ⊆ N2 such that

k ∈ A ⇐⇒ ∃s ∈ N R(s, k);

• Π0
1 if there is some computable binary relation R ⊆ N2 such that

k ∈ A ⇐⇒ ∀s ∈ N R(s, k);
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• Σ0
n if there is some Π0

n−1 binary relation R ⊆ N2 such that

k ∈ A ⇐⇒ ∃s ∈ N R(s, k);

• Π0
n if there is some Σ0

n−1 binary relation R ⊆ N2 such that

k ∈ A ⇐⇒ ∀s ∈ N R(s, k);

• ∆0
n if it is both Σ0

n and Π0
n.

A set A ⊆ N is arithmetical if it is Σ0
n for some n ∈ N.

In Exercise 9, we introduced one of the simplest non-computable sets. The following

generalizes that construction.

Definition 37. The jump of a set X ⊆ N is defined as

X ′ := {k ∈ N : k ∈WX
k }.

For any n ∈ N \ {0}, the nth-jump is recursively defined as

X(n) :=
(
X(n−1)

)′
.

The halting set is ∅′.

We can now state the deep relationship between the arithmetical hierarchy and oracle

computation, given by Post in (27).

Theorem 5 (Post, 1941). For every n ∈ N \ {0}, a set A ⊆ N is

(i) Σ0
n if and only if it is c.e. in ∅(n−1);

(ii) Π0
n if and only if it is co-c.e. in ∅(n−1);

(iii) ∆0
n if and only if it is computable in ∅(n−1).

Corollary 3 (Post, 1941). For every n ∈ N, there are sets A,B ⊆ N such that A ∈ Σ0
n \∆0

n and

B ∈ Π0
n \∆0

n.
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Exercise 14. Prove Corollary 3.

There is also a relation to many-one reducibility.

Corollary 4 (Post, 1941). For every n ∈ N \ {0}, ∅(n) is Σ0
n-complete.

From Corollary 3, we form the arithmetical hierarchy, which forms the following lattice.

...
...

∆0
n+1

Σ0
n Π0

n

∆0
n

...
...

∆0
3

Σ0
2 Π0

2

∆0
2

Σ0
1 Π0

1

∆0
1

3.3 Classical Computable Structures

Recall that classical structures have associated languages they interpret. To execute effective

constructions on these structures, we require that they have countable universes and effectively

numbered languages.
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Definition 38. A language is effectively numbered if there is an effective procedure which maps

the natural numbers onto every symbol of the language.

Exercise 15. Prove that if L is effectively numbered then the atomic sentences of L can be

effectively numbered.

We then discuss the computability of a given structure relative to computability on the subset

of natural numbers which code the (quantifier-free) sentences it satisfies.

Definition 39. Let A be a classical structure with an effectively numbered language LA such

that CA = |A|. Let (φn)n∈N be an effective numbering of the atomic sentences of LA. The atomic

diagram of A is {
n ∈ N : A ⊨FOL φn

}
.

A classical structure A is computable (c.e., co-c.e., ∆0
n, etc.) if its atomic diagram is.

3.4 The Hyperarithmetical Hierarchy

The clever reader may have noticed that the arithmetical sets do not include all subsets of the

natural numbers. Indeed there are only countably-many arithmetical sets. There are ways of

extending the arithmetical hierarchy, however. To construct the hyperarithmetical hierarchy, we

need to first discuss computable ordinals.

Definition 40. A computable well-ordering is a computable structure A = (|A|, <A) where <A is

a well-ordering on |A|. A computable ordinal is an ordinal which is order-isomorphic to some

computable well-ordering.

Exercise 16. Prove that the set of all computable ordinals form an initial segment of the

ordinals. Deduce that this set is the least non-computable ordinal.

Definition 41. The set of all computable ordinals is denoted ωCK
1 (where CK stands for

“Church-Kleene”).

Exercise 17. Prove that ωCK
1 is countable. Deduce that ωCK

1 < ω1.
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As is standard for effective constructions, we need to associate each computable ordinal with

some set of natural numbers.

Definition 42. Kleene’s O, the standard encoding of computable ordinals, is defined by

transfinite recursion as

O := {2a : a ∈ O} ∪

{3 · 5e : Φe maps N into O and for every n ∈ N, Φe(n) <O Φe(n+ 1)},

where a <O b means |a|O < |b|O, determined via the function | · |O : O→ ωCK
1 , which is also

defined via transfinite recursion as

• |2a|O := |a|O + 1,

• |3 · 5e|O := sup
{
|Φe(n)|O : n ∈ N

}
.

For every ordinal α ∈ ωCK
1 , define

⟨α⟩ := |α|−1
O = {a ∈ O : |a|O = α}.

We may now define jumps which go beyond ∅(n) for finite n.

Definition 43. For every a ∈ O, the set H(a) is defined via transfinite recursion as

• H(1) := ∅,

• H
(
2a
)

:= H(a)′,

• H
(
3 · 5e

)
:=

{
⟨a, b⟩ : a <O 3 · 5e and b ∈ H(a)

}
.

The hyperarithmetical hierarchy is then defined by a relativization of Post’s Theorem.

Definition 44. For every α ∈ ωCK
1 , a set A ⊆ N is

• Σ0
α if it is c.e. in H(a) for some a ∈ ⟨α⟩;

• Π0
α if it is co-c.e. in H(a) for some a ∈ ⟨α⟩;
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• ∆0
α if it is computable in H(a) for some a ∈ ⟨α⟩.

A set A is called hyperarithmetical if it is Σ0
α for some α ∈ ωCK

1 .

An index of a Σ0
α set A is a coded pair ⟨a, e⟩ such that A = W

H(a)
e . An index of a Π0

α set A is

similar but such that A =
(
W

H(a)
e

)c
.

This classifies the hyperarithmetical sets into a lattice of sets which extends the arithmetical

sets. There are still, however, only finitely many hyperarithmetical sets.

∆0

ωCK
1

.

.

.

.

.

.

∆0
α+1

Σ0
α Π0

α

∆0
α

.

.

.

.

.

.

∆0
ω+1

Σ0
ω Π0

ω

∆0
ω = ∆1

0

.

.

.

.

.

.

∆0
n+1

Σ0
n Π0

n

∆0
n

.

.

.

.

.

.

∆0
2

Σ0
1 Π0

1

∆0
1
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3.5 Computable Analysis

At the end of Section 3.1, we briefly mentioned how effectivity could be accomplished on

uncountable sets. We further formalize that construction here, largely relegated to computation

on the real numbers.

Definition 45. A real number r is computable if there is an effective procedure which, given

k ∈ N, outputs a rational q ∈ Q such that

|r − q| < 2−k.

A name of a real number r is a point in Baire space ν(r) ∈ NN such that for every k ∈ N, ν(r; k)

is a code of a rational q such that

|r − q| < 2−k.

Exercise 18. Prove that a real number is computable if and only if it is named by a Turing

machine.

We can now also consider computable maps on the real numbers.

Definition 46. A map f : R→ R is computable if there is an effective procedure which, given

access to ν(r) ∈ NN and input k ∈ N, outputs a rational q such that

|f(r)− q| < 2−k.

Definition 47. Let A be a countable set. A map f : A→ R is computable if there is an effective

procedure which, given a ∈ A and k ∈ N, outputs a rational q such that

|f(a)− q| < 2−k.

Remark 2. All of the above notions of computability relativize for any countable set X.

For more information on computable analysis, see Weihrauch (34).



39

3.6 Computable Presentations

Since metric structures often have uncountable domains, we need a way of discussing

effectivity on such structures. We generally follow the system introduced by Melnikov (23) and

recently utilized by Franklin and McNicholl (16).

Similar to the notion of an effectively numbered language for a classical structure, an

effectively numbered signature is necessary for effective constructions on structures.

Definition 48. A signature L is effectively numbered if there is an effective mapping of the

natural numbers onto P ∪ F ∪ C and, moreover, an effective procedure which, given the code of a

predicate or function symbol, outputs that symbol’s arity and an index of a Turing machine

which serves as a modulus of continuity for that symbol.

Definition 49. Given an L-structure M and A ⊆ |M|, the algebra generated by A is the smallest

subset of |M| containing A that is closed under every function of M.

A pair (M, g) is called a presentation of M if g : N→ |M| is a map such that the algebra

generated by ran(g) (the range of g) is dense. A presentation of M is denoted M♯. Every point in

ran(g) is called a distinguished point of the presentation, and each point in the algebra generated

by the distinguished points is called a rational point of the presentation (Q(M♯)).

Notably, ran(g) need not be dense, but the algebra it generates does.

Definition 50. A presentation M♯ is computable if the predicates of M are uniformly

computable on the rational points of M♯.1

An index of a computable presentation M♯ is an index of a Turing machine which, given a

code of P ∈ P, codes of a0, ..., aη(P )−1 ∈ Q(M♯), and k ∈ N, outputs a code of a rational q such

that ∣∣PM(a0, ..., aη(P )−1)− q
∣∣ < 2−k.

Notions of computability also relativize to any X ⊆ N.

1Since the metric is a binary predicate on M, this entails that the distance between any two rational points is
uniformly computable.
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Example 6. Consider a finite-dimensional Banach space of R with basis {e0, ..., eN−1}. Let X be

the metric structure consisting of the unit ball of this Banach space, the metric induced by the

norm, as functions all binary maps of the form

fp,q(x, y) = px+ qy

where p, q ∈ Q and |p|+ |q| ≤ 1, and 0 as the only distinguished point. Then define g : N→ |X| as

g(n) = en for every n ≤ N − 1 and g(n) = eN−1 for every n ≥ N . Clearly the algebra generated

by ran(g) is dense in |X|. Moreover, with a bit of careful calculation, one may see that this

presentation is computable.

Definition 51. Let M♯ = (M, g) be a presentation. A rational ball of M♯ is a ball B(a, q) ⊆ |M|

such that a ∈ Q(M♯) and q ∈ Q.

A tuple of pairs
(
(a0, q0), ..., (aN , qN )

)
∈
(
Q(M♯)×Q

)<N
is a rational open cover of M♯ if

|M| ⊆
N⋃
n=0

B(an, qn).

M♯ is computably compact if the set of all rational open covers of M is c.e.

3.7 Previous Effective Completeness Results

To remain as charitable as possible, we want to briefly review two previous results concerning

the effective completeness of continuous logic. The first was given in (8) and relates theories to

probabilistically decidable structures.

Probabilistic decidability is a form of computation that allows a probability of halting within

[0, 1] to be associated with each natural number. First a probability measure is defined on

P(P(N)).

Definition 52. Let E : P(N)→ [0, 1] be such that

E(X) =
∑
n∈N

χX(n) 2−(n+1).
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Notably, E is a bijection. The sequence of partial sums which in the limit yield E(X) is

sometimes called a Specker sequence.

The Lebesgue probability measure µ on P(P(N)) is defined as

µ(C ) := µR
(
{E(X) ∈ [0, 1] : X ∈ C }

)
,

where µR is the standard Lebesgue measure on R.

Definition 53. A probabilistic Turing machine is an oracle Turing machine with range {0, 1}

whose oracle is left free as an additional input. A probabilistic Turing machine Φ accepts n with

probability p if µ
(
{X ∈P(N) : ΦX(n) ↓ = 1}

)
= p and rejects n with probability p if

µ
(
{X ∈P(N) : ΦX(n) ↓ = 0}

)
= p.

Let L be an effectively numbered signature and (φn)n∈N an effective enumeration of the

L-sentences.

Definition 54. A continuous L-pre-structure M is probabilistically decidable if there is a

probabilistic Turing machine Φ such that φM
n = p if and only if Φ rejects n with probability p.

Definition 55. An L-theory T is decidable if ·◦T is a computable map from (φn)n∈N into [0, 1].

Calvert then proved the following lemma and theorem.

Lemma 3 (Lemma 4.6, Calvert, 2011). There is an effective procedure which extends L to its

Henkin extended signature L+.

Theorem 6 (Theorem 4.5, Calvert, 2011). Let T be a complete, decidable L-theory. Then there

is a probabilistically decidable weak L+-structure M such that M ⊨ T .

The second version of effective completeness was given by Didehvar, Ghasemloo, and

Pourmahdian in (13). It was implicitly proven with respect to computable presentations, but

restricted the class of computably axiomatizable theories to be linear-complete. (Notably, in (5) it

was shown that any computably axiomatizable theory is decidable.)
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Definition 56. An L-theory T is linear-complete if for every pair of L-wffs φ and ψ, either

T ⊢ φ .− ψ or T ⊢ ψ .− φ.

Theorem 7 (Theorem 3.5, Didehvar, Ghasemloo, Pourmahdian, 2010). Let T be a

linear-complete, computably axiomatizable L+-theory. Then there is a computably presentable2

L+-structure M such that M ⊨ T .

2In (13), they prove the result for a decidable structure, which is a structure whose open theory under a given
presentation is Σ0

1. Notably, any such structure is computably presentable.
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CHAPTER 4. GENERALIZED EFFECTIVE COMPLETENESS

4.1 Motivation

For this entire chapter, we assume that we are working in an effectively numbered signature

L, with (φn)n∈N an effective enumeration of the L-wffs. The main result of this chapter has four

major upshots in comparison to the effective completeness theorems found in (8) and (13).

1. The given (name of a) continuous theory need be neither complete nor linear-complete.

Through the process described in Lemma 4, any continuous theory may be effectively

extended to a complete theory (though, as a caveat, this extension is not unique).

2. The given (name of a) continuous theory need not be decidable. The generalized effective

completeness theorem given applies to general names of continuous theories, and produces

presentations of the same degree.

3. The effective completeness theorem given relates continuous theories to presentations of

metric structures, which have become the norm for the study of effectivity on metric

structures, rather than probabilistic decidability.

4. The effective completeness theorem given relates continuous theories to presentations of

genuine metric structures, rather than weak structures, so the assumption of a countable

universe may be dropped.

The result is a generalized effective completeness theorem which performs intuitively similarly to

effective completeness in the classical setting, only with computable presentations rather than

computable copies of structures.
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4.2 Model-Theoretic Results

There are four important model-theoretic propositions which extend the results of (5) and are

useful for the construction of the effective completeness theorem.

Proposition 1. Let Γ be a set of L-wffs and B a finite set of L-wffs. Then for every L-wff φ,

φ◦
Γ∪B ≤

(
φ .−

∨
θ∈B

θ
)◦

Γ
.

Proof. Fix an L-wff φ. If φ◦
Γ∪B = 0, the result follows trivially. Thus suppose φ◦

Γ∪B > 0. Notably,

this implies that Γ ∪B is consistent. Fix p ∈ Dyad such that p < φ◦
Γ∪B. Then there is some

L-structure M and assignment σ such that M, σ ⊨ Γ ∪B while φM,σ > p. But, clearly, since

M, σ ⊨ B,
(∨

θ∈B θ
)M,σ

= 0. Hence,
(
φ .−

∨
θ∈B θ

)M,σ
> p. Then since M, σ ⊨ Γ, this implies

that
(
φ .−

∨
θ∈B θ

)◦

Γ
> p. Since this is true for every p < φ◦

Γ∪B, we have that

φ◦
Γ∪B ≤

(
φ .−

∨
θ∈B θ

)◦

Γ
.

Proposition 2. Let Γ be a set of L-wffs and B a finite set of L-wffs such that Γ ∪B is

consistent. Then there are infinitely many L-wffs φ such that

(
φ .−

∨
θ∈B

θ
)◦

Γ
= 1.

Proof. Recall that Γ ∪B is consistent only if there is some L-wff φ such that Γ ∪B ⊬ φ. By

Corollary 2, φ◦
Γ∪B > 1

M , for some M ∈ N. It follows that for every m ≥M , (mφ)◦Γ∪B = 1. Hence,

by Proposition 1,
(
mφ .−

∨
θ∈B θ

)◦

Γ
= 1, for every m ≥M .

Proposition 3. Let L be a signature, T an L-theory, and φ an L-wff with free variables x⃗. Then

φ◦
T =

(
sup
x⃗
φ
)◦
T
.

Proof. Fix a signature L, an L-theory T , and an L-wff φ with free variables x⃗. Notice that since

T contains only L-sentences, none of x⃗ appear freely in T . It follows via Corollary 2 and the
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Generalization Theorem that

φ◦
T = inf

{
p : p ∈ Dyad and T ⊢ φ .− p

}
= inf

{
p : p ∈ Dyad and T ⊢ sup

x⃗
φ .− p

}
=

(
sup
x⃗
φ
)◦
T
.

Proposition 4. Let T be an L-theory. Then for every L+-wff θ,

(
sup
x⃗
θ[x⃗/c⃗]

)◦
T

= θ◦T ,

where c⃗ is the tuple of all constants from L+, but not in L, appearing in θ.

Proof. Fix an L-theory T and an L+-wff θ. Recall that no variable from x⃗ appears freely in T ,

nor does any constant in c⃗ appear in T , since it is an L-theory. Hence for every L-structure M

such that M ⊨ T , and every tuple a⃗ ∈ |M|, there is an L+-structure M+
a⃗ such that c⃗M

+
a⃗ = a⃗ and

M+
a⃗ ↾L= M. Then

(
sup
x⃗
θ[x⃗/c⃗]

)◦
T

= sup
{(

sup
x⃗
θ[x⃗/c⃗]

)M
: M ⊨ T

}
= sup

{
sup

{σ(x⃗7→a⃗):⃗a∈|M|}

(
θ[x⃗/c⃗]

)M,σ(x⃗7→a⃗)
: M ⊨ T

}
= sup

{(
θ[x⃗/c⃗]

)M,σ(x⃗7→a⃗)
: M, σ(x⃗ 7→ a⃗) ⊨ T, a⃗ ∈ |M|

}
≤ sup

{(
θ[x⃗/c⃗]

)M+
a⃗
,σ(x⃗7→a⃗)

: M+
a⃗ , σ(x⃗ 7→ a⃗) ⊨ T, a⃗ ∈ |M|

}
= sup

{
θM

+
a⃗
,σ : M+

a⃗ , σ ⊨ T
}

≤ sup
{
θM

+,σ : M+, σ ⊨ T
}

= θ◦T .
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Now notice that for any L+-structure M+ and assignment σ, there is an assignment σ(x⃗ 7→ c⃗M
+
a⃗ ).

Then the L-structure M+ ↾L is such that θM
+,σ =

(
θ[x⃗/c⃗]

)M+↾L,σ(x⃗7→c⃗
M+

a⃗ )
. It follows that

θ◦T = sup
{
θM

+,σ : M+, σ ⊨ T
}

= sup
{(
θ[x⃗/c⃗]

)M+↾L,σ(x⃗7→c⃗
M+

a⃗ )
: M+ ↾L, σ(x⃗ 7→ c⃗M

+
a⃗ ) ⊨ T

}
≤ sup

{(
θ[x⃗/c⃗]

)M,σ
: M, σ ⊨ T

}
=

(
θ[x⃗/c⃗]

)◦
T
.

But by Proposition 3,
(
θ[x⃗/c⃗]

)◦
T

=
(

supx⃗ θ[x⃗/c⃗]
)◦
T

. Therefore, θ◦T ≤
(

supx⃗ θ[x⃗/c⃗]
)◦
T

. The claim

follows.

4.3 Effective Extensions of Theories

Recall that any L-theory T has an associated degree of truth map ·◦T . As in Definition 55,

then, to analyze the effectiveness of a theory, we will actually consider the effectiveness of the

related degree of truth map. Since there are uncountably-many such maps, we introduce a

naming system.

Definition 57. Given an L-theory T , we say that X ∈ NN is a name of T if the following hold.

• For every n, k ∈ N, there is some m ∈ N such that ⟨n, k,m⟩ ∈ ran(X).

• For every n, k,m ∈ N, if ⟨n, k,m⟩ ∈ ran(X), then qm ∈
[

(φn)◦T − 2−k , (φn)◦T + 2−k
]
.

Proposition 5. An L-theory is decidable if and only if it has a computable name.

Proof. For the forward direction, suppose ·◦T is computable. Fix a witness of this computability.

For every code of a pair, define X(⟨n, k⟩) := ⟨n, k,m⟩ where the witness outputs qm, given φn and

precision parameter k. On every natural number which doesn’t code a pair, let X be 0. For the

reverse direction, suppose X is a computable name. Given φn and a precision parameter k, begin

computing ran(X) until a code of a triple of the form ⟨n, k,m⟩ is output. It follows that

qm ∈
[

(φn)◦T − 2−k , (φn)◦T + 2−k
]
.
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Let L+ be the Henkin extended signature effectively given by Lemma 3, and let (θn)n∈N be an

effective enumeration of the L+-wffs. The next lemma we present is similar to Lemma 4.7 in (8).

However, in our case, the construction is with respect to any name of an L-theory, X ∈ NN.

Moreover, careful consideration is taken with respect to when two L+-sentences are provably

equivalent with respect to a given L+-theory.

Lemma 4. There is an effective procedure which given X, a name of an L-theory T , outputs

Φ(X) ⊆ N such that T ∪ {θn : n ∈ Φ(X)} is consistent, and for every pair of L+-wffs φ and ψ,

either φ and ψ are provably equivalent with respect to T ∪ {θn : n ∈ Φ(X)}, or exactly one of

φ .− ψ or ψ .− φ is in {θn : n ∈ Φ(X)}.

Proof. We proceed via partial effective recursion. First define Φ0(X) := ∅, for every X ∈ NN. As

the recursive assumption, we suppose that at stage s, if X is a name of an L-theory T , then

Φs(X) is defined, finite, and T ∪ {θn : n ∈ Φs(X)} is consistent. At stage s+ 1, the following

procedure attempts to construct Φs+1(X).

For every pair of L+-wffs φ and ψ, define the real number

rφ,ψ,f,s+1 :=
(

sup
x⃗,y⃗

sup
z⃗

((
(ψ .− φ) .−

( ∨
n∈Φs(X)

θn

))
[z⃗/c⃗]

))◦

T
,

where x⃗ and y⃗ are the free variables appearing in ψ .− φ and
∨
n∈Φs(X) θn, respectively, c⃗ is the

(possibly empty) tuple of constants from L+ and not in L appearing in (ψ .− φ) .−
(∨

n∈Φs(X) θn
)
,

and z⃗ is a |⃗c|-tuple of variable symbols distinct from x⃗ and y⃗. Notably, these real numbers are

computable in f , uniformly in φ, ψ, and s. To see this, notice that each recursively defined Φs(X)

is finite, each free variable becomes bound by the quantifier, and every constant from L+ not in L

is replaced by a variable and bound. Hence each formula checked above is actually an L-sentence,

so X can compute a rational approximation of rφ,ψ,X,s+1 within 2−(s+2). Call such a rational

qφ,ψ,X,s+1. Then search the pairs of L+-wffs for the first pair φ and ψ such that

φ .− ψ /∈ {θn : n ∈ Φs(X)} and qφ,ψ,X,s+1 ≥ 2−(s+1). By Proposition 2, there are infinitely many

L+-wffs ψ such that r0,ψ,X,s+1 = 1, and hence such that q0,ψ,X,s+1 ≥ 2−(s+1). Thus, when X is a

name of an L-theory, the procedure will halt. When such a pair φ and ψ is found, search the



48

effective enumeration of the L+-wffs for the index m of φ .− ψ and define

Φs+1(X) := Φs(X) ∪ {m}. Clearly, if Φs+1(X) is defined, it is also finite, by construction. We

now claim that this Φ witnesses the lemma. Fix a name of an L-theory X ∈ NN.

To see that T ∪ {θn : n ∈ Φ(X)} is consistent, we show that each T ∪ {θn : n ∈ Φs+1(X)} is

consistent, for every s ∈ N. We proceed inductively.

Suppose T ∪ {θn : n ∈ Φs(X)} is consistent and fix m ∈ Φs+1(X) \ Φs(X). By construction

this m is the index for φ .− ψ where qφ,ψ,X,s+1 ≥ 2−(s+1). It follows by the definition of qφ,ψ,X,s+1

and Propositions 3 and 4, Corollary 2, logical equivalence, and the Deduction Theorem, that we

have each of the following.(
(ψ .− φ) .−

( ∨
n∈Φs(X)

θn

))◦

T
≥ 2−(s+2)

=⇒
(

2−(s+2) .−
(

(ψ .− φ) .−
( ∨
n∈Φs(X)

θn

)))◦

T
= 0

=⇒ T ⊢
(

2−(s+2) .−
(

(ψ .− φ) .−
( ∨
n∈Φs(X)

θn

)))
.− 2−(s+3)

=⇒ T ∪ {θn : n ∈ Φs(X)} ∪ {ψ .− φ} ⊢ 2−(s+3).

Therefore, T ∪ {θn : n ∈ Φs(X)} ∪ {ψ .− φ} is inconsistent. It follows by Lemma 1 that φ .− ψ

is consistent with T ∪ {θn : n ∈ Φs(X)}.

We now need only show that for every pair of L+-wffs φ and ψ, either φ and ψ are provably

equivalent with respect to T ∪ {θn : n ∈ Φ(X)}, or exactly one of φ .− ψ or ψ .− φ is in

{θn : n ∈ Φ(X)}.

Note that a pair of L+-wffs φ and ψ is provably equivalent with respect to

T ∪ {θn : n ∈ Φ(X)} if and only if for every s ∈ N, there is some S ∈ N such that

T ∪ {θn : n ∈ ΦS(X)} ⊢ (φ .− ψ) .− 2−(s+2) and T ∪ {θn : n ∈ ΦS(X)} ⊢ (ψ .− φ) .− 2−(s+2).

Now fix a pair of L+-wffs φ and ψ that are not provably equivalent with respect to

T ∪ {θn : n ∈ Φ(X)}. Then there must be some s ∈ N such that for every S ∈ N, either

T ∪ {θn : n ∈ ΦS(X)} ⊬ (φ .− ψ) .− 2−(s+2) or T ∪ {θn : n ∈ ΦS(X)} ⊬ (ψ .− φ) .− 2−(s+2).
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At least one of these two cases must hold for infinitely many S ∈ N. Without loss of generality,

since the cases are symmetric, suppose it is the latter. It follows by Corollary 2 that for every

S ∈ N, (ψ .− φ)◦T∪{θn:n∈ΦS(X)} ≥ 2−(s+2). Hence by Proposition 1, for every S ∈ N,

(
(ψ .− φ) .−

( ∨
n∈ΦS(X)

θn

))◦

T
≥ 2−(s+2).

Then by Propositions 3 and 4, for every S ∈ N, rφ,ψ,X,S+1 ≥ 2−(s+2). Thus for some S ≥ s+ 2, φ

and ψ will have to be the first pair such that φ .− ψ /∈ {θn : n ∈ ΦS(X)} and

qφ,ψ,X,S+1 ≥ 2−(s+3) ≥ 2−(S+1). It follows that the procedure will place the code for φ .− ψ into

ΦS+1(X), so φ .− ψ ∈ {θn : n ∈ Φ(X)}.

It should be noted that, if T is not complete, a name of T does not specify a unique consistent

extension of T . The above procedure constructs a complete extension, which itself has a unique

maximally consistent extension, but the procedure is dependent on the enumeration of the

L+-wffs. When that enumeration changes, if T is not a complete theory, the above extension of T

may also change.

4.4 Generalized Effective Completeness

We now come to our main result.

Theorem 8 (Generalized Effective Completeness). There is an effective procedure which, given a

name X ∈ NN of an L-theory T , produces a presentation of an L+-structure M such that M ⊨ T .

Proof. Compute L+ as in Lemma 3. Given a name of an L-theory X ∈ NN, let Φ(X) be as in

Lemma 4. Then, by Theorem 1, extend T ∪ {θn : n ∈ Φ(X)} to a maximally consistent, Henkin

complete L+-theory Γ. By Proposition 3, MΓ ⊨ T .

Since L+ is effectively numbered, the set of constants of L+ is also effectively numbered,

which we may effectively join to an effective numbering of the variable symbols. Let g′ be such an

effective numbering. Then, for every n ∈ N, define g(n) := [g′(n)], the equivalence class of g′(n) in

|MΓ|. By construction, the algebra generated by ran(g) in MΓ is the set of all equivalence classes
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of terms of L+, that is, equivalence classes of the elements of |M′
Γ|. It follows that this algebra is

dense in |MΓ|, since by construction |MΓ| is the metric completion of |M′
Γ|. Thus

(
MΓ, g

)
is a

presentation of MΓ. We further claim that
(
MΓ, g

)
is an X-computable presentation.

Fix a code of an N -ary predicate symbol P , codes of rational points [t0], ..., [tN−1], and a

precision parameter k ∈ N. From these, use g′ to decode L+-terms t0, ..., tN−1 corresponding to

[t0], ..., [tN−1]. Then execute the following.

Compute the finite set D =
{
p ∈ Dyad : the denominator of p is less than 2k+2

}
. By the

construction of Φ(X), with access to an oracle that computes X, we may compute the least

M ≥ k + 2 such that for all but one p ∈ D, exactly one of p .− P (t0, ..., tN−1) or P (t0, ..., tN−1)
.− p

is in {θn : n ∈ ΦM+1(X)}.1 Then compute the finite set

E =
{
p ∈ D : p .− P (t0, ..., tN−1) ∈ {θn : n ∈ ΦM+1(X)}

}
. Notice, then, that by construction

maxp∈E p
.− P (t0, ..., tN−1) ∈ Γ and P (t0, ..., tN−1)

.−
(
minp∈D\E p∔ 2−(k+2)

)
∈ Γ. Therefore,

MΓ ⊨ max
p∈E

p .− P (t0, ..., tN−1) and MΓ ⊨ P (t0, ..., tN−1)
.−
(

min
p∈D\E

p∔ 2−(k+2)
)
.

It follows that

max
p∈E

p ≤
(
P (t0, ..., tN−1)

)MΓ ≤
(

min
p∈D\E

p+ 2−(k+2)
)
.

This implies that

(
P (t0, ..., tN−1)

)MΓ ∈
[ (

min
p∈D\E

p− 2−(k+1)
)
,
(

min
p∈D\E

p+ 2−(k+1)
) ]

.

Note lastly that this procedure was uniform in X ∈ NN.

Standard effective completeness comes as a corollary.

Corollary 5 (Effective Completeness of Continuous Logic). There is an effective procedure

which, given a computable name of an L-theory T , produces an index of a computable

presentation of an L+-structure M such that M ⊨ T .

1It may be that for some p ∈ D, for every M ∈ N,
(
P (t0, ..., tN−1)

.−
∨

n∈ΦM (X) θn
)◦
T

and p differ by less than

2−(M+2). This can only occur if P (t0, ..., tN−1) and p are provably equivalent with respect to T ∪ {θn : n ∈ Φ(X)},
which can happen for at most one p ∈ D, since T ∪ {θn : n ∈ Φ(X)} is consistent.
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CHAPTER 5. CONTINUOUS NUMERALS

5.1 Finitary Numerals

A numeral is a symbolic representation of a number. The common notions that come to mind

are the Arabic digits “0” through “9”, though also commonly used are the Roman “I”, “V”, “X”,

etc. In classical logic, the space of truth values includes only two numbers 0 and 1, with 0

normally interpreted as falsity and 1 as truth. As such, in classical logic, we can consider wffs

yielding contradictions as numerals for 0 and wffs giving tautologies as numerals for 1. That is,

for every first order structure A,

(∃x x ̸= x)A = 0 and (∀x x = x)A = 1.

But in continuous logic, the space of truth values is [0, 1]. A natural question arises: for which

r ∈ [0, 1] is there a wff φ such that for every structure M, φM = r? In other words, which

numbers have numerals?

We briefly touched on this topic all the way back in Exercise 1. Namely, (d), (e), and (h) show

that every dyadic in [0, 1] has a numeral. That is, for any dyadic number in p ∈ [0, 1], there is a

finitary sentence p such that for every structure M, pM = p. Indeed, the converse holds, as well.

Proposition 6. Let r ∈ [0, 1] and suppose there is some wff φ such that for every structure M,

φM = r. Then r is a dyadic number.

Proof. Fix r ∈ [0, 1] and wff φ such that for every structure M, φM = r. Then for the structure

A = ({0}, d), φA = r. We now proceed via structural induction to show that for every wff ψ, ψA is

a dyadic number.

(i) For the base case, suppose ψ = P (t0, ..., tη(P )−1). Then ψ is of the form d(x, y) for x, y ∈ V.

But notably there is only one variable assignment, which sends every variable to 0. It follows

that ψA = d(0, 0) = 0.
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(ii) Suppose ψ is of the form ¬θ, 1
2θ, or θ .− γ. By the inductive assumption, we may assume

both θA and γA are dyadic numbers. Hence since ψA is one of 1− θA, 1
2 · θ

A, or

max{θA − γA, 0}, ψA is also a dyadic number.

(iii) Suppose ψ is of the form supx θ or infx θ. Again, by the inductive assumption, we may

assume that θA is a dyadic number. But (supx θ)
A = supa∈|A| θ

A,σ(x 7→a) = θA,σ(x 7→0) = θA.

Similarly for (infx θ)
A. It follows that ψA = θA, which is a dyadic number.

Therefore φA = r is a dyadic number.

It is also important to note that we may get the codes of such dyadic numerals effectively.

The proof of this is simple, but a good exercise for the reader.

Exercise 19. Let L be an effectively numbered signature. Prove that there is an Turing machine

which on input ⟨ℓ, k⟩, produces the code of an L-wff φ such that for every L-structure M,

φM = ℓ
2−k .

Remark 3. In the interest of completeness, as was mentioned in Remark 1, some versions of

continuous logic include a connective u for every continuous mapping on [0, 1]. Such extended

versions of continuous logic have trivial numerals. Namely, for every r ∈ [0, 1], there is a

connective ur corresponding to the constant map ur : [0, 1]→ {r}. In this case, for every

structure M and sentence φ, (urφ)M = ur(φ
M) = r.

5.2 Infinitary Numerals

To discuss numerals encoded by infinitary sentences, we need to review Dedekind cuts.

Definition 58. Fix r ∈ R. The open right Dedekind cut of r is

D>(r) :=
{
q ∈ Q : q > r

}
.

The closed right Dedekind cut of r is

D≥(r) :=
{
q ∈ Q : q ≥ r

}
.
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By a right Dedekind cut of r, we mean either D>(r) or D≥(r).

We then arrive at a simple proposition.

Proposition 7. For every r ∈ [0, 1], there is an infinitary sentence φ such that for every

structure M, φM = r.

Proof. Actually, there are two very simple such sentences which are straightforward to describe.

Fix r ∈ [0, 1] and consider

∨∨
qm∈(Q∩[0,1])\D>(r)

(
⌊2mqm⌋ 2−m

)
and

∧∧
qm∈D>(r)

(
⌈2mqm⌉ 2−m

)
.

We refer the reader to the proof of Theorem 9 to see how these are both universally interpreted

with truth value r.

This is not very interesting. However, in the next section we introduce the computable

fragment of LCω1ω. Investigating which real numbers are representable by such sentences becomes

considerably more complicated.

5.3 Computable Infinitary Continuous Logic

Classical computable infinitary logic and its relation to computable structures is covered in

(1) and (25). Here we institute a similar program for continuous logic and computably presented

structures. We begin with an informal definition, for intuition’s sake.

Heuristic 10. The computable infinitary wffs are heuristically given as follows, where α ∈ ωCK
1 .

• The Σc
0 = Πc

0 sets include all quantifier-free, finitary wffs.

• A wff φ is Σc
α if it is of the form

φ =
∧∧
i∈I

inf
x⃗
ψi

where I ⊆ N is c.e., each ψi ∈ Πc
β, for some β < α, and a modulus of continuity for φ exists

and is computable from a code for φ.
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• A wff φ is Πc
α if it is of the form

φ =
∨∨
i∈I

sup
x⃗
ψi

where I ⊆ N is c.e., each ψi ∈ Σc
β, for some β < α, and a modulus of continuity for φ exists

and is computable from a code for φ.

To construct the computable fragment of LCω1ω formally, we need to first construct the

computable fragment of Lω1ω in the sense of (14).

Definition 59. The computable infinitary pseudowffs are formally defined as follows.

Let SΣ
1

:
= SΠ

1

:
be the set of codes of all quantifier free, finitary wffs, since {1} = ⟨0⟩. For every

a ∈ O \ {1}, let SΣ
a

:
be the set of codes of all quadruples of the form (Σ, a, x⃗, e), where x⃗ is a finite

tuple of variable symbols, and e ∈ N. Define SΠ
a

:
similarly.

For every a ∈ O and tuple of variable symbols x⃗, define P (Σ, a, x⃗) via effective transfinite

recursion as the set of all codes for pairs (j, z⃗), where j is a code for the quadruple (Σ, b, y⃗, e′), for

some b <O a, and z⃗ is a finite sequence of variable symbols of y⃗ not appearing in x⃗. Define

P (Π, a, x⃗) similarly.

The following effective procedure defines φi via effective transfinite recursion, for every

i ∈
⋃
a∈O S

Σ
a

:
∪ SΠ

a

:
.

• If i is the code of a quantifier-free, finitary wff, then φi is just that wff.

• If i is a code for the quadruple (Σ, a, x⃗, e), with a ∈ ⟨α⟩, then

φi :=
∧∧

⟨j,z⃗⟩∈We∩P (Π,a,x⃗)

inf
z⃗
ψj .

That is, if (j, z⃗) is one such pair coded in this intersection, then inf z⃗ ψ is a disjunct in φi,

where ψ is the computable infintary pseudowff given by the code j for a quadruple

(Π, b, y⃗, e′), for some b <O a and z⃗ a finite sequence of variable symbols of y⃗ not appearing

in x⃗.

• If i is a code for the quadruple (Π, a, x⃗, e), with a ∈ ⟨α⟩, then

φi =
∨∨

⟨j,z⃗⟩∈We∩P (Σ,a,x⃗)

sup
z⃗
ψj .
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That is, if (j, z⃗) is one such pair coded in this intersection, then supz⃗ ψ is a conjunct in φi,

where ψ is the computable infintary pseudowff given by the code j for a quadruple

(Σ, b, y⃗, e′), for some b <O a and z⃗ a finite sequence of variable symbols of y⃗ not appearing

in x⃗.

Then for every computable ordinal α, Σc
α

:
denotes the set of all pseudowffs φi where

i ∈
⋃
a∈⟨α⟩ S

Σ
a

:
, and Πc

α

:
denotes the set of all pseudowffs φi where i ∈

⋃
a∈⟨α⟩ S

Π
a

:
. Computable

infinitary pseudosentences relativize similarly.

Remark 4. Recall that in an effectively numbered signature, every modulus of continuity is a

computable function. It follows by Definition 25 that from the code of a finitary wff φ and tuple

of variable symbols x⃗, one may uniformly compute a modulus of continuity for φ in x⃗. The same

is not true, in general, from a code of an infinitary pseudowff. Thus we need to “hard code”

computable moduli of continuity into our computable infinitary wffs.

We can now define the computable fragment of LCω1ω.

Definition 60. The computable infinitary wffs are defined recursively as follows.

• If i′ is the code of a quantifier-free, finitary wff and Φk : N→ N is a computable modulus of

continuity for φi′ , then ⟨i′, k⟩ ∈ SΣ
1 ∪ SΠ

1 . When i = ⟨i′, k⟩, the above wff is φi.

• If ⟨Σ, a, x⃗, e⟩ ∈ SΣ
a

:
, (ψj)j∈We is a uniformly equicontinuous sequence of computable

infinitary wffs, and Φk : N→ N is a computable modulus of continuity for∧∧
⟨j,z⃗⟩∈We∩P (Π,a,x⃗)

inf
z⃗
ψj ,

then ⟨Σ, a, x⃗, e, k⟩ ∈ SΣ
a . When i = ⟨Σ, a, x⃗, e, k⟩, the above infinitary wff is φi.

• If ⟨Π, a, x⃗, e⟩ ∈ SΠ
a

:
, (ψj)j∈We is a uniformly equicontinuous sequence of computable

infinitary wffs, and Φk : N→ N is a computable modulus of continuity for∨∨
⟨j,z⃗⟩∈We∩P (Σ,a,x⃗)

sup
z⃗
ψj ,

then ⟨Π, a, x⃗, e, k⟩ ∈ SΣ
a . When i = ⟨Π, a, x⃗, e, k⟩, the above infinitary wff is φi.
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Then, for every computable ordinal α, Σc
α denotes the set of all wffs φi where i ∈

⋃
a∈⟨α⟩ S

Σ
a and

Πc
α denotes the set of all wffs φi where i ∈

⋃
a∈⟨α⟩ S

Π
a .

It is important to be able to effectively manipulate the codes of the computable infintary wffs

to perform all the finitary logical operations at each level. Luckily, this is possible.

Proposition 8. Fix a computable ordinal α. There is an effective procedure which performs the

following.

(i) Given a code for a Σc
α (or Πc

α) wff φ, outputs a code for a Πc
α (or Σc

α, respectively) wff

which is logically equivalent to ¬φ.

(ii) Given a code for a Σc
α (or Πc

α) wff φ, outputs a code for a Σc
α (or Πc

α, respectively) wff

which is logically equivalent to 1
2φ.

(iii) Given codes for a pair of Σc
α (or Πc

α) wffs φ and ψ, outputs a code for a Πc
α+1 (or Σc

α+1,

respectively) wff which is logically equivalent to φ ∨ ψ.

(iv) Given codes for a finite collection of Σc
β or Πc

β wffs, with β < α, for any possible logical

combination of such wffs, outputs a code for a Σc
α and Πc

α wff which is logically equivalent to

that combination.

(v) Given a code for a Σc
α wff φ and tuple of variable symbols x⃗, outputs a code for a Σc

α wff

which is logically equivalent to inf x⃗ φ, and a code for a Πc
α+1 wff which is logically equivalent

to supx⃗ φ. Similarly, given an index for a Πc
α wff φ and tuple of variable symbols x⃗, outputs

a code for a Σc
α+1 wff which is logically equivalent to inf x⃗ φ, and an index for a Πc

α wff which

is logically equivalent to supx⃗ φ.

There is a similar effective procedure which does the same for pseudowffs.

Proof. We proceed by effective transfinite recursion on a ∈ O, i.e. we suppose the following

claims hold for all b <O a.
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(i) If a = 1, define neg1(⟨φ⟩) = ⟨¬φ⟩. For a ∈ O \ {1}, given the code ⟨φ⟩ ∈ SΣ
a , which decodes

as (Σ, a, x⃗, e, k), find a c.e. index e′ for the set{
⟨negb(j), u⃗⟩ : ∃b <O a

(
j ∈ SΠ

b and ⟨j, u⃗⟩ ∈We ∩ P (Π, a, x⃗)
)}
.

Defining nega(⟨φ⟩) := ⟨Π, a, x⃗, e′, k⟩ satisfies the claim. The construction for ⟨φ⟩ ∈ SΠ
a is

similar.

(ii) If a = 1, define half1(⟨φ⟩) = ⟨12φ⟩. For a ∈ O \ {1}, given the code ⟨φ⟩ ∈ SΣ
a , which decodes

as (Σ, a, x⃗, e, k), find a c.e. index e′ for the set{
⟨halfb(j), u⃗⟩ : ∃b <O a

(
j ∈ SΠ

b and ⟨j, u⃗⟩ ∈We ∩ P (Π, a, x⃗)
)}
.

Moreover, find k′ such that for every n ∈ N, Φk′(n) = Φk(n+ 1). Then defining

halfa(⟨φ⟩) := ⟨Π, a, x⃗, e′, k′⟩ satisfies the claim. The construction for ⟨φ⟩ ∈ SΠ
a is similar.

(iii) If a = 1, define and1(⟨φ⟩, ⟨ψ⟩) = ⟨φ ∨ ψ⟩. For a ∈ O \ {1}, given codes ⟨φ(x⃗)⟩, ⟨ψ(y⃗)⟩ ∈ SΠ
a ,

decode them as (Π, a, x⃗, e1, k1) and (Π, a, y⃗, e2, k2), respectively. Force the two wffs to share

the same set of variables by c.e. recoding them as ⟨φ(x⃗∪ y⃗)⟩ and ⟨ψ(x⃗∪ y⃗)⟩. Then find a c.e.

index e′ for the set{
⟨andb(j, ℓ), u⃗ ∪ v⃗⟩ : ∃b1, b2 <O a

(
j ∈ SΣ

b1 and ⟨j, u⃗⟩ ∈We1 ∩ P (Σ, a, x⃗ ∪ y⃗)
)

and
(
ℓ ∈ SΣ

b2 and ⟨ℓ, v⃗⟩ ∈We2 ∩ P (Σ, a, x⃗ ∪ y⃗)
)}
.

Moreover, find k′ such that for every n ∈ N, Φk′(n) = max{Φk1(n),Φk2(n)}. Then defining

anda(⟨φ⟩, ⟨ψ⟩) := ⟨Π, a, x⃗ ∪ y⃗, e′, k′⟩ satisfies the claim. The construction for ⟨φ⟩, ⟨ψ⟩ ∈ SΣ
a is

similar.

(iv) Follows from structural induction with (i), (ii), and (iii), the effective translation of

φ .−ψ 7→ ¬(ψ ∨ (¬φ)), and the computable embeddings for any b <O a of SΣ
b and SΠ

b into SΣ
a

and SΠ
a .

(v) If a = 1, define inf y⃗,1(⟨φ⟩) = ⟨inf y⃗ φ⟩. For a ∈ O \ {1}, given the code ⟨φ⟩ ∈ SΣ
a , which

decodes as (Σ, a, x⃗, e, k), find a c.e. index e′ for the set

{
⟨inf y⃗,b(j), u⃗⟩ : ∃b <O aj ∈ SΠ

b and ⟨j, u⃗⟩ ∈We ∩ P (Π, a, x⃗)
}
.
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Defining inf y⃗,a(⟨φ⟩) := ⟨Σ, a, x⃗ ∪ y⃗, e′, k⟩ satisfies the first claim.

Again, if a = 1, define supy⃗,1(⟨φ⟩) = ⟨supy⃗ φ⟩. For a ∈ O \ {1}, given the code ⟨φ⟩ ∈ SΣ
a ,

which decodes as (Σ, a, x⃗, e, k), we let e′ be the index of the c.e. (singleton) set

{⟨⟨φ⟩, x⃗⟩} ⊆ P (Σ, a, y⃗ \ x⃗). Now let a′ ∈ ⟨|a|O + 1⟩. Then defining

supy⃗,a(⟨φ⟩) := ⟨Π, a′, y⃗ \ x⃗, e′, k⟩ satisfies the second claim. The construction for ⟨φ⟩ ∈ SΠ
a is

similar.

Note that the effective procedure for pseudowffs is similar but ignores the moduli of continuity

coordinates.

Moreover, we even gain some infinitary connectives, like bounded infinite summation.

Proposition 9. For any computable ordinal α and c.e. sequence of Πc
α wffs (γj)j∈We, we may

effectively find the code of a Πc
α wff ψ such that for every L-structure M and assignment σ,

ψM,σ = min
{ ∑
j∈We

γM,σ
j , 1

}
.

Proof. Let
(
Φe(n)

)
n∈N be the standard effective enumeration of We. By Proposition 8 and the

construction of SΠ
a , we may compute a code for a Πc

α wff ψ which is logically equivalent to∨∨
n∈N

(γΦe(1) ∔ · · ·∔ γΦe(n)).

The result follows by interpreting this wff in a structure with an assignment.

5.4 Hyperarithmetical Numerals

We will now investigate which real numbers may be represented by computable infinitary

sentences. To do this, we require the following definition, which generalizes the hyperarithmetic

degree of right Dedekind cuts of real numbers to sequences of real numbers.

Definition 61. Let (rn)n∈N be a sequence of real numbers and g : N→ ωCK
1 . We say (rn)n∈N is

weakly uniformly right Σ0
g (Π0

g) if there is a Turing machine Φ : N→ N such that for every n ∈ N,

Φ(n) is a Σ0
g(n) (Π0

g(n)) index of a right Dedekind cut of rn.
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But notably, there are certain Dedekind cuts we don’t need to consider in the following

constructions.

Proposition 10 (C., McNicholl, 2022+). There is an effective procedure which, given a Σ0
α index

of a right Dedekind cut of r, produces a Σ0
α index of D>(r). Similarly, there is an effective

procedure which, given a Π0
α index of a right Dedekind cut of r, produces a Π0

α index of D≥(r).

Proof. Fix ⟨a, e⟩, a Σ0
α index of a right Dedekind cut of r. Then compute e′ such that

W
H(a)
e′ =

{
m ∈WH(a)

e : ∃ℓ ∈WH(a)
e qℓ < qm

}
.

It follows that ⟨a, e′⟩ is a Σ0
α index of D>(r). Notably, this computation is uniform. The Π0

α result

follows by considering complements.

The following lemma then does the bulk of the work for our construction.

Lemma 5 (C., McNicholl, 2022+). Let α ∈ ωCK
1 and s ∈ R. Then the following hold uniformly.

1. If α = β + 1 and a right Dedekind cut of s is Σ0
α, then there is a sequence of real numbers

(rn)n∈N such that s = infn∈N rn and (rn)n∈N is weakly uniformly right Π0
β.

2. If α = β + 1 and a right Dedekind cut of s is Π0
α, then there is a sequence of real numbers

(rn)n∈N such that s = supn∈N rn and (rn)n∈N is weakly uniformly right Σ0
β.

3. If α is a limit ordinal and a right Dedekind cut of s is Σ0
α, then there is a computable map

h : N→ α and a sequence of real numbers (rn)n∈N such that s = infn∈N rn and (rn)n∈N is

weakly uniformly right Π0
h.

4. If α is a limit ordinal and a right Dedekind cut of s is Π0
α, then there is a computable map

h : N→ α and a sequence of real numbers (rn)n∈N such that s = supn∈N rn and (rn)n∈N is

weakly uniformly right Σ0
h.

Proof. Fix α ∈ ωCK
1 and s ∈ R. We proceed by effective transfinite recursion. By Proposition 10,

we only need to consider the cases where D>(s) is Σ0
α and D≥(s) is Π0

α.
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Case 1. α = 1.

(1) Suppose D>(s) is Σ0
1. Let (rn)n∈N be an effective enumeration of D>(s). Then

s = infn∈N rn.

(2) Suppose D≥(s) is Π0
1. Let (rn)n∈N be an effective enumeration of Q \D≥(s). Then

s = supn∈N rn.

Case 2. α = 2.

(1) Suppose D>(s) is Σ0
2. Then we may effectively find a computable R ⊆ N2 ×Q such that

for every q ∈ Q,

q > s ⇐⇒ ∃n ∈ N ∀k ∈ N R(n, k, q). (5.1)

It follows that

q ≤ s ⇐⇒ ∀n ∈ N ∃k ∈ N ¬R(n, k, q). (5.2)

For every n ∈ N, define the set

S(n) :=
{
q ∈ Q : ∀n′ ≤ n ∃k ∈ N ∃q′ ≥ q ¬R(n′, k, q′)

}
.

We now claim that each of the following hold.

(i) Each S(n) is nonempty.

(ii) Each S(n) is downward closed (as a subset of the rationals).

(iii) There is some N ∈ N such that for every n ≥ N , S(n) is bounded from above.

(iv) Each S(n) is Σ0
1, uniformly in n ∈ N.

(v) s = infn∈N supS(n)

To see (i), by way of contradiction, suppose some S(n) was empty. Then for some n′ ≤ n, for

every q ∈ Q, k ∈ N, and q′ ≥ q, R(n′, k, q′). It follows from 5.1 that for every q ∈ Q, q > s. →←

To see (ii), fix q ∈ S(n) and q′′ ≤ q. Since q ∈ S(n), for every n′ ≤ n, there must be some

k ∈ N and q′ ≥ q such that ¬R(n′, k, q′). Hence for every n′ ≤ n, for these k and q′ ≥ q ≥ q′′

values, ¬R(n′, k, q′). It follows that q′′ ∈ S(n).
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To see (iii), we first show that for some N ∈ N, S(N) is bounded from above. By way of

contradiction, suppose not, i.e., that every S(N) has no upper bound. But by (ii), each S(N) is

downward closed. Therefore, every S(N) = Q. It follows that for every q ∈ Q, for every n ∈ N,

there is some k ∈ N such that ¬R(n, k, q). Hence, by 5.2, for every q ∈ Q, q ≤ s. →←

Then notice that for every n > N , S(n) ⊆ S(N), by construction. It follows that for every

n ≥ N , S(n) is bounded from above.

To see (iv), notice the universal quantifier in the definition of S(n) is bounded by n, and recall

that ¬R is a computable relation.

To see (v), note that by (i), (ii), and (iii), for some N ∈ N, for every n ≥ N , S(n) is a left

Dedekind cut of supS(n). It follows that infn∈N supS(n) = sup
⋂
n∈N S(n). Then notice that

⋂
n∈N

S(n) =
{
q ∈ Q : ∀n ∈ N ∃k ∈ N ∃q′ ≥ q ¬R(n, k, q′)

}
.

Hence, by 5.2,
⋂
n∈N S(n) = {q ∈ Q : q ≤ s}. Therefore, s = infn∈N supS(n).

By considering complements, we now have the following.

(i) There is some N ∈ N such that for every n ≥ N , S(n)c is a right Dedekind cut of inf S(n)c.

(ii) Each S(n)c is Π0
1, uniformly in n ∈ N.

(iii) s = infn∈N inf S(n)c.

For every N ∈ N, define fN : N→ N by mapping n to the Π0
1 index of S(n+N)c. By

construction, each of these is a computable function. Moreover, by (i), for some N ∈ N, the

sequence of real numbers (inf S(n+N)c)n∈N is weakly uniformly right Π0
1, as witnessed by fN .

(2) Suppose D≥(s) is Π0
2. Then we may effectively find a computable R ⊆ N2 ×Q such that

for every q ∈ Q,

q ≥ s ⇐⇒ ∀n ∈ N ∃k ∈ N R(n, k, q). (5.3)

It follows that

q < s ⇐⇒ ∃n ∈ N ∀k ∈ N ¬R(n, k, q). (5.4)
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For every n ∈ N, define the set

S(n) :=
{
q ∈ Q : ∀n′ ≤ n ∃k ∈ N ∃q′ ≤ q R(n′, k, q′)

}
.

We now claim that each of the following hold.

(i) Each S(n) is nonempty.

(ii) Each S(n) is upward closed.

(iii) There is some N ∈ N such that for every n ≥ N , S(n) is bounded from below.

(iv) Each S(n) is Σ0
1, uniformly in n ∈ N.

(v) s = supn∈N inf S(n).

To see (i), by way of contradiction, suppose some S(n) was empty. Then for some n′ ≤ n, for

every q ∈ Q, k ∈ N, and q′ ≤ q, ¬R(n′, k, q′). It follows from 5.4 that for every q ∈ Q, q < s. →←

To see (ii), fix q ∈ S(n) and q′′ ≥ q. Since q ∈ S(n), for every n′ ≤ n, there must be some

k ∈ N and q′ ≤ q such that R(n′, k, q′). Hence for every n′ ≤ n, for these k and q′ ≤ q ≤ q′′ values,

R(n′, k, q′). It follows that q′′ ∈ S(n).

To see (iii), we first show that for some N ∈ N, S(N) is bounded from below. By way of

contradiction, suppose not, i.e., that every S(N) has no lower bound. But by (ii), each S(N) is

upward closed. Therefore, every S(N) = Q. It follows that for every q ∈ Q, for every n ∈ N, there

is some k ∈ N such that R(n, k, q). Hence, by 5.3, for every q ∈ Q, q ≥ s. →←

Then notice that for every n > N , S(n) ⊆ S(N), by construction. It follows that for every

n ≥ N , S(n) is bounded from below.

To see (iv), notice the universal quantifier in the definition of S(n) is bounded by n, and recall

that ¬R is a computable relation.

To see (v), notice that by (i), (ii), and (iii), for some N ∈ N and every n ≥ N , S(n) is a right

Dedekind cut of inf S(n). It follows that supn∈N inf S(n) = inf
⋂
n∈N S(n). Then notice that

⋂
n∈N

S(n) =
{
q ∈ Q : ∀n ∈ N ∃k ∈ N ∃q′ ≤ q R(n, k, q)

}
.



63

Hence, by 5.3,
⋂
n∈N S(n) = {q ∈ Q : q ≥ s}. Therefore, s = supn∈N inf S(n).

For every N ∈ N, define fN : N→ N which maps n to the Σ0
1 index of S(n+N). By

construction, each of these is a computable function. Moreover, by (iii), for some N ∈ N, the

sequence of real numbers (inf S(n+N))n∈N is weakly uniformly right Σ0
1, as witnessed by fN .

Case 3. α = k + 3 for some k ∈ N.

(1) Suppose D>(s) is Σ0
k+3. From case 2 and relativization, s = infn∈N rn where (rn)n∈N is

weakly uniformly right Π0
1(∅k+1). Hence (rn)n∈N is weakly uniformly right Π0

k+2.

(2) Suppose D≥(s) is Π0
k+3. From case 2 and relativization, s = supn∈N rn where (rn)n∈N is

weakly uniformly right Σ0
1(∅k+1). Hence (rn)n∈N is weakly uniformly right Σ0

k+2.

Case 4. α > 0 is a limit ordinal. Let h : N→ α be an effective enumeration of α.

(3) Suppose D>(s) is Σ0
α. By well-known techniques we may decompose

D>(s) =
⋃
n∈N

S(n)

where each S(n) is Π0
h, uniformly in n ∈ N. Moreover, by the same techniques as were used in

case 2, we may construct each S(n) to be upwardly closed. Then define rn := inf S(n) for every

n ∈ N. By construction, s = infn∈N rn.

(4) Suppose D≥(s) is Π0
α. Again, by well-known techniques, we may decompose

D≥(s) =
⋂
n∈N

S(n)

where each S(n) is Σ0
h, uniformly in n ∈ N. And again, by the same techniques as were used in

case 2, we may construct each S(n) to be upwardly closed. Then define rn := inf S(n) for every

n ∈ N. By construction, s = supn∈N rn.

Case 5. α = β + 1, for β infinite.

(1) Suppose D>(s) is Σ0
α. By definition, this means D>(s) is c.e. in ∅(β+1). It follows that

D>(s) is Σ0
2(∅(β)). Then by relativization and case 2, s = infn∈N rn, where (rn)n∈N is weakly

uniformly right Π0
1(∅(β)). Hence, (rn)n∈N is weakly uniformly right Π0

β.
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(2) Suppose D≥(s) is Π0
α. By definition, this means D≥(s) is co-c.e. in ∅(β+1). It follows that

D≥(s) is Π0
2(∅(β)). Again, by relativization and case 2, s = supn∈N rn where (rn)n∈N is weakly

uniformly right Σ0
1(∅(β)). Hence, (rn)n∈N is weakly uniformly right Σ0

β.

At last we are able to see that every hyperarithmetical real number is representable as a

numeral via a computable infinitary sentence of the same hyperarithmetical degree.

Theorem 9 (C., McNicholl, 2022+). Let L be an effective numbered signature. There are partial

computable functions f and g from (O \ {1})× N to the set of computable infinitary sentences

such that the following hold, for every 1 ≤ α < ωCK
1 .

• If ⟨a, i⟩ is a Π0
α index of a right Dedekind cut of a real number s, then f(a, i) is a code of a

Πc
α sentence φ such that for every L-structure M, φM = s.

• If ⟨a, i⟩ is a Σ0
α index of a right Dedekind cut of a real number s, then g(a, i) is a code of a

Σc
α sentence φ such that for every L-structure M, φM = s.

Proof. Fix an effectively numbered signature L. We proceed to prove the claim via effective

transfinite recursion on O \ {1}. That is, for every notation a ∈ O \ {1}, there is an uniform

effective procedure which constructs functions fa and ga, which halt with the desired properties

on inputs (c, i) for 1 <O c <O a and i ∈ N.

Case 0. a = 2.

Define f2 := ∅ and g2 := ∅, since there is no b ∈ O such that 1 <O b <O 2.

Case 1. a = 4.

Given a pair (2, i), define

f4(2, i) :=
∨∨

n∈WH(2)
i

(
⌊2nqn⌋ 2−n

)
.

Further define

g4(2, i) :=
∧∧

n∈WH(2)
i

(
⌈2nqn⌉ 2−n

)
.
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Notably, f4(2, i) is a Πc
1 sentence, while g4(2, i) is a Σc

1 sentence. Then notice that if (2, i) is a Π0
1

index of a right Dedekind cut of a real number s, then for any L-structure M,

s = sup
n∈WH(2)

i

qn − 2−n ≤
( ∨∨
n∈WH(2)

i

(
⌊2nqn⌋ 2−n

) )M
≤ sup

n∈WH(2)
i

qn = s.

Moreover, if (2, i) is a Σ0
1 index of a right Dedekind cut of a real number s, then for any

L-structure M,

s = inf
n∈WH(2)

i

qn ≤
( ∧∧
n∈WH(2)

i

(
⌈2nqn⌉ 2−n

) )M
≤ inf

n∈WH(2)
i

qn + 2−n = s.

For the recursive step, given a ∈ O \ {1}, we assume that we can uniformly compute, for any

1 <O b <O a, functions fb and gb such that, for any pair (c, i) with 1 <O c <O b, the following

hold.

• If (c, i) is an Π0
γ index of a right Dedekind cut of a real number s, then fb(c, i) is a code of a

Πc
γ sentence φ such that for every L-structure M, φM = s.

• If (c, i) is an Σ0
γ index of a right Dedekind cut of a real number s, then gb(c, i) is a code of a

Σc
γ sentence φ such that for every L-structure M, φM = s.

Case 2. a = 3 · 5e, for some e ∈ N.

Given input (c, i) such that 1 <O c <O a, notice that 1 <O c <O 2c <O a. Then define

fa(c, i) := f2c(c, i).

Case 3. a = 2b, for b ∈ O \ {1, 2}.

If input (c, i) is such that 1 <O c <O b, then define fa(c, i) := fb(c, i). If input (c, i) is such

that c =O b, we consider two subcases.

Subcase 3.1. c is a notation for a successor ordinal.

By Lemma 5, if (c, i) is a Π0
γ index of a right Dedekind cut of a real number s, we may

compute a sequence of indices
(
(log2(b), en)

)
n∈N for the right Dedekind cuts of (rn)n∈N, which is

weakly uniformly right Σ0
γ−1, and such that

s = sup
n∈N

rn.
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Then define

fa(c, i) :=
∨∨
n∈N

gc(log2(c), en).

By the recursive assumption, for every n ∈ N, gc(log2(c), en) is a Σc
γ−1 sentence such that for

every L-structure M,
(
gc(log2(c), en)

)M
= rn. It follows that fa(c, i) is a Πc

γ sentence such that

for every L-structure M,

(
fa(c, i)

)M
=

(∨∨
n∈N

gc(log2(c), en)
)M

= sup
n∈N

(
gc(log2(c), en)

)M
= sup

n∈N
rn = s.

Subcase 3.2. c is a notation for a nonzero limit ordinal.

By Lemma 5, if (c, i) is a Π0
γ index of right Dedekind cut of a real number s, we may compute

h : N→ γ and a sequence of indices
(
(cn, en)

)
n∈N for the right Dedekind cuts of (rn)n∈N which is

weakly uniformly right Σ0
h, and such that

s = sup
n∈N

rn.

Then define

fa(c, i) :=
∨∨
n∈N

g2cn (cn, en).

By the recursive assumption, for every n ∈ N, g2cn (cn, en) is a Σc
h(n) sentence such that for every

L-structure M,
(
g2cn (cn, en)

)M
= rn. It follows that fa(c, i) is a Πc

γ sentence such that for every

L-structure M,

(
fa(c, i)

)M
=

(∨∨
n∈N

g2cn (cn, en)
)M

= sup
n∈N

(
g2cn (cn, en)

)M
= sup

n∈N
rn = s.
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CHAPTER 6. DIAGRAM COMPLEXITY

6.1 Diagrams of Metric Structures

The following is joint work with McNicholl and Goldbring from (9). Recall the atomic

diagrams of classical structures, which are the subsets of natural number codes of quantifier-free

sentences they satisfy. A similar definition in the continuous case would leave out information,

only considering quantifier-free sentences which are interpreted as zero. Instead, we want to know

the truth-value as a real number of each quantifier-free sentence. Hence we formally define the

open and closed diagrams of a metric structure as follows.

Definition 62. Let M be an L-structure. In the following, φ ranges over sentences of L and q

ranges over [0, 1] ∩Q.

1. The closed (resp. open) quantifier-free diagram of M is the set of all pairs (φ, q) so that φ is

quantifier-free and φM ≤ q (resp. φM < q).

2. For every positive integer N , the closed (resp. open) ΠN diagram of M is the set of all pairs

(φ, q) so that φ is ΠN and φM ≤ q (resp. φM < q). The closed and open ΣN diagrams are

defined similarly.

Since we must restrict ourselves to countable diagrams, the above constructions code for

Dedekind cuts rather than the real number truth-value, itself. This leads to further arithmetical

complexity which is not found in the classical case.

6.2 Combinatorial Results

We introduce here some results that will support our demonstration of lower bounds. Among

these, our main combinatorial result (Theorem 10) is a principle for representing Σ0
N and Π0

N sets
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as solutions of inequalities involving infinite series. We also provide some relational notation

which will facilitate the statements of many of our results and their proofs.

Definition 63. Let N ∈ N, and suppose R ⊆ NN+1.

1. ¬R = NN+1 −R.

2. ∃⃗R = {n ∈ N : ∃x1∀x2 . . . QxN R(n, x1, . . . , xN )}.

3. ∀⃗R = {n ∈ N : ∀x1∃x2 . . . QxN R(n, x1, . . . , xN )}.

In Definition 63.2, Q denotes the quantifier ∀ if N is even and ∃ if N is odd. Similarly, in

Definition 63.3, Q denotes the quantifier ∀ if N is odd and ∃ if N is even. We will also use these

conventions in what follows.

Given R ⊆ NN+1, also set

R∗ = {(n, x1, . . . , xN ) ∈ NN+1 : ∀x′1 ≤ x1∃x′2 ≤ x2 . . . Qx′N ≤ xN R(n, x′1, . . . , x
′
N )}.

Notably, R ≡T R
∗.

Then fix a uniformly computable family (RN )N∈N of relations so that for each N ∈ N,

R2N ∪R2N+1 ⊆ NN+2, ∀⃗R2N is Π0
N+1-complete, and ∃⃗R2N+1 is Σ0

N+1-complete.

The following lemma is easily verified by simultaneous induction on N , where the suprema

and infima range over N.

Lemma 6 (C., Goldbring, McNicholl, 2021). For R ⊆ NN+1 and n ∈ N, we have:

1. n ∈ ∀⃗R if and only if infx1 supx2 . . . QxNχR(n, x1, . . . , xN ) = 1.

2. n ∈ ∃⃗R if and only if supx1 infx2 . . . QxNχR(n, x1, . . . , xN ) = 1.

We also require the following definition to state our main combinatorial result.

Definition 64. For K,N ∈ N and f : NN+1 → R a bounded function, set:

ΓK(f ;x1, . . . , xN ) =

K∑
x0=0

2−(x0+1)f(x0, . . . , xN )

Γ(f ;x1, . . . , xN ) =

∞∑
x0=0

2−(x0+1)f(x0, . . . , xN ).
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Define Γ(f) : NN → R by setting Γ(f)(x1, . . . , xN ) = Γ(f ;x1, . . . , xN ). Note that Γ(f) is

computable if f is computable and, moreover, an index of Γ(f) can be computed from an index of

f and a bound on f .

The following is our main combinatorial result, where elements of NN+2 are viewed in the

form (x0, x1, . . . , xN , n).

Theorem 10 (C., Goldbring, McNicholl, 2021). Let R ⊆ NN+2, and let n ∈ N.

1. n ∈ ∀⃗R if and only if

inf
x1

sup
x2

. . . QxN Γ
(

1− 1

2
χR∗ ;x1, . . . , xN , n

)
≤ 1

2
.

2. n ∈ ∃⃗R if and only if

sup
x1

inf
x2
. . . QxN Γ

(1

2
χ(¬R)∗ ;x1, . . . , xN , n

)
<

1

2
.

The proof of this theorem requires some additional lemmas. For the first, note that if

f : N→ R is a bounded function, then ΓK(f) is a single real number (i.e. a constant).

Lemma 7 (C., Goldbring, McNicholl, 2021). If f : N→ {12 , 1}, then for every K ∈ N, ΓK(f) ≤ 1
2

if and only if f(m) = 1
2 for all m < K.

Proof sketch. Fix K ∈ N. Consider the given sum in base 2. Any m < K for which f(m) = 1

leads to a “carry” operation so that the 1
2 -position becomes 1. Adding f(K) would then force the

value to be greater than 1
2 .

Lemma 8 (C., Goldbring, McNicholl, 2021). Suppose R ⊆ NN+1. Then ∀⃗(R∗) = ∀⃗R.

Proof sketch. The proof that ∀⃗(R∗) ⊆ ∀⃗R is straightforward. The other inclusion is demonstrated

via Skolemization.

Lemma 9 (C., Goldbring, McNicholl, 2021). Fix R ⊆ NN+2 and 1 ≤ J ≤ N . Then for every

x1, . . . , xJ−1, n ∈ N and every K ∈ N, we have:
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1. supxJ infxJ+1 . . . QxN ΓK(1− 1
2χR∗ ;x1, . . . , xN , n) ≤ 1

2 if and only if

ΓK(supxJ infxJ+1 . . . QxN (1− 1
2χR∗);x1, . . . , xJ−1, n) ≤ 1

2 .

2. infxJ supxJ+1
. . . QxN ΓK(1− 1

2χR∗ ;x1, . . . , xN , n) ≤ 1
2 if and only if

ΓK(infxJ supxJ+1
. . . QxN (1− 1

2χR∗ ;x1, . . . , xJ−1, n) ≤ 1
2 .

Proof. Set G = 1− 1
2χR∗ and note that ran(G) ⊆ {12 , 1}. Thus, in what follows, all suprema are

maxima and all infima are minima. Also, we may assume K > 0.

We proceed by induction on N − J . We begin with the base case for (1), that is, J = N − 1.

Without loss of generality, we may assume that one of the two quantities in (1) is no larger than

1
2 . Since ΓK(supxN G;x1, . . . , xN−1, n) ≥ supxN ΓK(G;x1, . . . , xN , n), we may assume

supxN ΓK(G;x1, . . . , xN , n) ≤ 1
2 . By Lemma 7, we have that G(x0, x1, . . . , xN , n) = 1

2 for all

xN ∈ N and all x0 < K. By Lemma 7 again, ΓK(supxN G;x1, . . . , xN−1, n) ≤ 1
2 .

We now consider the base case for (2). Again, we may assume one of the two quantities in (2)

is no larger than 1
2 . Since ΓK(infxN G;x1, . . . , xN−1, n) ≤ infxN ΓK(G;x1, . . . , xN , n), we assume

ΓK(infxN G;x1, . . . , xN−1, n) ≤ 1
2 . By Lemma 7, infxN G(x0, . . . , xN , n) = 1

2 for all x0 < K.

Consequently, for each x0 < K, there exists ξx0 ∈ N so that G(x0, . . . , xN−1, ξx0 , n) = 1
2 . Let

ξ =

 maxx0<K ξx0 if N odd

0 otherwise.

By the definition of R∗, it follows that G(x0, . . . , xN−1, ξ, n) = 1
2 for all x0 < K. By Lemma 7

again, infxN ΓK(G;x1, . . . , xN , n) ≤ 1
2 .

We now perform the inductive step for (1). Suppose that N − J > 1 and set

H = infxJ+1 . . . QxNG. By the inductive hypothesis, it suffices to show that

supxJ ΓK(H;x1, . . . , xJ , n) ≤ 1
2 if and only if ΓK(supxJ H;x1, . . . , xJ−1, n) ≤ 1

2 . Without loss of

generality, we assume supxJ ΓK(H;x1, . . . , xJ , n) ≤ 1
2 By Lemma 7, for all xJ ∈ N and all

x0 < K, H(x0, x1, . . . , xJ , n) = 1
2 . By Lemma 7 again, ΓK(supxJ H;x1, . . . , xJ−1, n) ≤ 1

2 .

We now carry out the inductive step for (2). In this case, consider the function

H = sup
xJ+1

. . . QxNG(x0, . . . , xN , n).
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It suffices to show that infxJ ΓK(H;x1, . . . , xJ , n) ≤ 1
2 if and only if

ΓK(infxJ H;x1, . . . , xJ−1, n) ≤ 1
2 . Without loss of generality, we assume

ΓK(infxJ H;x1, . . . , xJ−1, n) ≤ 1
2 . By Lemma 7, for every x0 < K, infxJ H(x0, . . . , xJ , n) = 1

2 ,

whence, for every x0 < K, there exists ξx0 ∈ N so that H(x0, . . . , xJ−1, ξx0 , n) = 1
2 . Let

ξ =

 maxx0<K ξx0 J odd

0 otherwise.

By the definition of R∗, H(x0, x1, . . . , xJ−1, ξ, n) = 1
2 for all x0 < K. By Lemma 7,

ΓK(infxJ H;x0, . . . , xJ−1, n) = 1
2 .

Though Lemma 9 is not the primary combinatorial result, it is, nonetheless, somewhat

surprising. Notably, one does not usually expect to be able to interchange summation with sup or

inf. But here R∗ allows us to come to a weaker conclusion but one that is just strong enough

complete the main proof.

Proof of Theorem 10. It suffices to prove (1); part (2) follows by considering complements. Once

again, set G = 1− 1
2χR∗ .

Suppose n ∈ ∀⃗R. It follows from Lemmas 6 and 8 that

sup
x0

inf
x1
. . . QxNG(x0, . . . , xN , n) =

1

2
.

Thus, by Lemma 7, ΓK(infx1 . . . QxNG;n) ≤ 1
2 . By Lemma 9, we have that

inf
x1
. . . QxN ΓK(G;x1, . . . , xN , n) ≤ 1

2
.

Since G ≤ 1, it follows that

inf
x1
. . . QxN Γ(G;x1, . . . , xN , n) ≤ 1

2
+ 2−(K+1)

for all K ∈ N. Hence, infx1 . . . QxN Γ(G;x1, . . . , xN , n) ≤ 1
2 .

Conversely, suppose infx1 supx2 . . . QxN Γ(G;x1, . . . , xN , n) ≤ 1
2 . Since G > 0, for every K ∈ N,

infx1 supx2 . . . QxN ΓK(G;x1, . . . , xN , n) ≤ 1
2 . By Lemmas 7 and 9, for every x0 < K,

infx1 supx2 . . . QxNG(x0, . . . , xN , n) = 1
2 . Thus, supx0 infx1 supx2 . . . QxNG(x0, . . . , xN , n) = 1

2 .

It follows from Lemma 6 that n ∈ ∀⃗R∗. Thus, by Lemma 8, n ∈ ∀⃗R.
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6.3 Fintary Diagram Results

We are now ready to pin down the complexity of the diagrams of a computably presented

metric structure. We first consider the quantifier-free diagrams.

Proposition 11 (C., Goldbring, McNicholl, 2021). If M is a computably presentable L-structure,

then the closed quantifier-free diagram of M is Π0
1 and the open quantifier-free diagram of M is

Σ0
1.

Proof. The proposition follows from the observation that if M is computably presentable, then

the map φ 7→ φM is computable on the set of quantifier-free sentences of L.

We note that the proof of Proposition 11 is uniform; that is, from an index of a presentation

of M, it is possible to compute a Π0
1 index of the closed quantifier-free diagram of M and a Σ0

1

index of the open quantifier-free diagram of M.

We now consider the higher-level diagrams.

Theorem 11 (C., Goldbring, McNicholl, 2021). Let M be a computably presentable L-structure,

and let N be a positive integer.

1. The closed ΠN diagram of M is Π0
N , and the open ΠN diagram of M is Σ0

N+1.

2. The closed ΣN diagram of M is Π0
N+1, and the open ΣN diagram of M is Σ0

N .

Moreover, the results of (1) and (2) hold uniformly in the sense that from N and an index for a

computable presentation for M, one can compute an index for any of the above diagrams.

Proof. Throughout this proof, we fix a computable presentation M♯ of M. We proceed by

induction on N , the base case being true by Proposition 11. We now fix a positive integer N and

assume that (1) and (2) hold uniformly for every M < N .

Fix a ΠN sentence φ and a rational number q. Note that φ has the form supx ψ, where ψ is a

ΣN−1 wff of L and x is a tuple of variables. Since the rational points of M♯ are dense,

supa∈Q(M♯) ψ
M(a) = supa∈|M| ψ

M(a). Thus,

φM ≤ q ⇐⇒ (∀k ∈ N) (∀a ∈ Q(M♯)) ψM(a) ≤ q + 2−k.
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If N = 1, then by the uniformity of Proposition 11, the statement ψM(a) ≤ q + 2−k is a Π0
1

condition on φ, a, k. If N > 1, then this statement is a Π0
N condition since (2) is assumed to hold

uniformly for M < N . In either case it then follows that φM ≤ q is a Π0
N condition on φ, q.

Furthermore,

φM < q ⇐⇒ (∃k ∈ N) (∀a ∈ Q(M♯)) ψM(a) ≤ q − 2−k.

As before, if N = 1, then the statement ψM(a) ≤ q − 2−k is a Π0
1 condition on φ, a, k. If

N > 1, then this statement is a Π0
N condition since (2) is assumed to hold uniformly for M < N .

In either case, it follows that φM < q is a Σ0
N+1 condition on φ, q.

Now fix a ΣN sentence φ and a rational number q. Then φ has the form infx ψ, where ψ is a

ΠN−1 wff of L and x is a tuple of variables. Again, since the rational points of M♯ are dense,

infa∈Q(M♯) ψ
M(a) = infa∈|M| ψ

M(a). Thus,

φM ≤ q ⇐⇒ (∀k ∈ N) (∃a ∈ Q(M♯)) ψM(a) < q + 2−k.

If N = 1, then the statement ψM(a) < q + 2−k is a Σ0
1 condition on φ, a, k. If N > 1, then this

statement is a Σ0
N condition since (1) is assumed to hold uniformly for M < N . In either case, it

then follows that φM ≤ q is a Π0
N+1 condition on φ, q.

Finally,

φM < q ⇐⇒ (∃k ∈ N) (∃a ∈ Q(M♯)) ψM(a) < q − 2−k.

If N = 1, then the statement ψM(a) < q − 2−k is a Σ0
1 condition on φ, a, k. If N > 1, then this

statement is a Σ0
N condition since (1) is assumed to hold uniformly for M < N . In either case, it

then follows that φM < q is a Σ0
N condition on φ, q.

Finally, we note that these arguments are uniform in the sense described above.

We will now show that these results are the best possible, which is not as trivial as intuition

may grant. Since structures in continuous logic must be bounded, it might seem that the unit

interval is a natural setting in which to construct these lower bounds. The following, however,

prevents this from being the case.
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Proposition 12 (C., Goldbring, McNicholl, 2021). Let M♯ be a computably compact computable

presentation of an L-structure M. Then the open diagram of M is Σ0
1 and the closed diagram of

M is Π0
1.

Proof. Since M is computably presentable, the map (a0, ..., aN ) 7→ θM(a0, ..., aN ) is computable,

uniformly in a predicate θ. It now follows from a standard result in computable analysis (see (31)

and Corollary 6.2.5 of (34)) that since M♯ is computably compact, the map θ 7→
(
Qx0 ...QxN θ

)M
is

also computable. The result follows.

On the other hand, one may notice that true arithmetic, translated into continuous logic via

the discrete metric, would provide some lower bounds. While this is the case, it fails to capture

the lower bounds on the open ΠN diagrams and closed ΣN diagrams. We thus attain our optimal

bounds by constructing a nontrivial structure which extends the natural numbers under the

discrete metric, applying our combinatorial results.

Theorem 12 (C., Goldbring, McNicholl, 2021). There is a language L′ and a computably

presentable L′-structure M with the following properties:

1. The closed quantifier-free diagram of M is Π0
1-complete, and the open quantifier-free

diagram of M is Σ0
1-complete.

2. For every positive integer N , the closed ΠN diagram of M is Π0
N -complete, and the open ΠN

diagram of M is Σ0
N+1-complete.

3. For every positive integer N , the closed ΣN diagram of M is Π0
N+1-complete, and the open

Σ0
N diagram of M is Σ0

N -complete.

Proof. Let L′ be the metric language that consists of the following.

1. A constant symbol 0.

2. A family of unary predicate symbols (Cn)n∈N.

3. A family of predicate symbols (PN,n)N,n∈N, where P2N,n and P2N+1,n are (N + 1)-ary.
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Here, each predicate symbol is assumed to have modulus of continuity equal to the constant

function 1.

We now define our L′-structure M. The underlying metric space of M is the set N of natural

numbers equipped with its discrete metric. We also set 0M = 0. In order to define the

interpretations of the other symbols, we first set

fN =

 Γ(1− 1
2χR∗

N
) N even

Γ(12χ(¬RN )∗) otherwise.

Also, for every a ∈ N, set

CM
n (a) =

 f0(n/2) n even

f1((n− 1)/2) otherwise.

That is, for every n ∈ N, CM
n is a constant unary predicate of the given truth value. Finally, set

PM
2N,n(a0, . . . , aN ) = f2N+2(a0, . . . , aN , n), and let PM

2N+1,n(a0, . . . , aN ) = f2N+3(a0, . . . , aN , n).

It is clear that M has a computable presentation. In fact, one may simply take the n-th

distinguished point to be n.

We first note that the closed atomic diagram of M is Π0
1-complete. To see this, let φn be the

sentence C2n(0). Then, by Theorem 10, φM
n ≤ 1

2 if and only if n ∈ ∀⃗R0.

Similarly, the open atomic diagram of M is Σ0
1-complete. This time, let φn be the sentence

C2n+1(0). Then, by Theorem 10, φM
n < 1

2 if and only if n ∈ ∃⃗R0.

Next fix a positive integer N . For each n ∈ N, let φn be the sentence

inf
x1
. . . QxNP2N,n(x1, . . . , xN ),

and let ψn be the sentence

sup
x1

. . . QxNP2N+1,n(x1, . . . , xN ).

By Theorem 10, φM
n ≤ 1

2 if and only if n ∈ ∀⃗R2N . Thus, the closed ΣN diagram of M is

Π0
N+1-complete. Also by Theorem 10, ψM

n < 1
2 if and only if n ∈ ∃⃗R2N+1. Thus, the open ΠN

diagram of M is Σ0
N+1-complete.

Since the open ΠN−1 diagram of M is Σ0
N -complete, it follows that the open ΣN diagram of

M is Σ0
N -complete. It similarly follows that the closed ΠN diagram of M is Π0

N -complete.
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6.4 Infinitary Diagram Results

When formulating our diagram complexity results for infinitary logic, we actually must give

up the terminology of “diagrams”. This is because the coding of the computable infinitary wffs

would make the actual diagrams capable of computing O, which itself is Π1
1-complete. In order to

avoid this pitfall, we focus on the complexity of the right Dedekind cuts of reals of the form φM

where φ is infinitary.

We first prove our infinitary upper bound result which generalizes our bounds in the finitary

case.

Theorem 13 (C., Goldbring, McNicholl, 2021). Let M be a computably presentable L-structure

and let φ be a computable infinitary sentence of L.

1. If φ is Πc
α, then D

>(φM) is Σ0
α+1 uniformly in a code of φ, and D≥(φM) is Π0

α uniformly in

a code of φ.

2. If φ is Σc
α, then D

>(φM) is Σ0
α uniformly in a code of φ, and D≥(φM) is Π0

α+1 uniformly in

a code of φ.

Proof. Fix a computable presentation M♯ of M. Let φ be a computable infinitary sentence of L.

Suppose φ ∈ Σc
α ∪Πc

α. A code for φ yields a notation a for α. In the following, all other

ordinals considered are less than α. For ease of exposition, we identify each β ≤ α with its unique

notation in {b : b ≤O a}.

We proceed by effective transfinite recursion. Thus, we assume the following hold uniformly in

an index of M#.

1. From a β < α and a code of a Πc
β sentence ψ, it is possible to compute a Π0

β index of

D≥(ψM) and a Σ0
β+1-index of D>(ψM).

2. From a β < α and a code of a Σc
β sentence ψ, it is possible to compute a Π0

β+1-index of

D≥(ψ) and a Σ0
β-index of D>(ψi).
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First suppose that φ is a Πc
α sentence. Thus, φ has the form

∧∧
i∈I supx⃗i ψi where I is c.e. and

ψi is Σc
βi

for some βi < α. Furthermore, we may assume (βi)i∈I is computable. For q ∈ Q, we have

q ∈ D≥(φM)⇔ (∀k ∈ N)(∀i ∈ I)(∀r⃗ ∈ Q(M#)) q + 2−k ∈ D>(ψM
i (r⃗)).

As ∅(α) computes D>(ψM
i (r⃗)) uniformly in i, D≥(φM) is co-c.e. in ∅(α), that is, D≥(φM) is Π0

α.

At the same time,

q ∈ D>(φM) ⇐⇒ (∃k ∈ N)(∀i ∈ I)(∀r⃗ ∈ Q(M#)) q − 2−k ̸∈ D>(ψM
i (r⃗)).

Thus, D>(φM) is Σ0
2(∅(α)) = Σ0

α+1.

Now suppose φ is a Σc
α sentence. Thus, φ has the form

∨∨
i∈I inf x⃗i ψi where I is c.e. and ψi is

Πc
βi

for some βi < α uniformly in i. Let q ∈ Q. Then,

q ∈ D≥(φM) ⇐⇒ (∀k ∈ N)(∃i ∈ I)(∃r⃗ ∈ Q(M#))q + 2−k ∈ D>(ψM
i (r⃗)).

Thus, D≥(φM) is Σ0
2(∅(α)) = Σ0

α+1. In addition,

q ∈ D>(ψM
i0 ) ⇐⇒ (∃k ∈ N)(∃i ∈ I)(∃r⃗ ∈ Q(M#)) q − 2−k ̸∈ D>(ψM

i (r⃗)).

Thus, D>(φM) is Σ0
1(∅(α)) = Σ0

α.

As these arguments are all uniform in an index of M# and a code for φ, the theorem is

proven.

We now demonstrate the optimality of Theorem 13 by means of the following.

Theorem 14 (C., Goldbring, McNicholl, 2021). There is a language L′′ and an L′′-structure M

so that the following hold for every computable ordinal α.

1. There is a computable sequence (ψi)i∈N of Πc
α sentences of L′′ so that {i : 1

2 ∈ D
≥(ψM

i )} is

Π0
α-complete.

2. There is a computable sequence (ψi)i∈N of Σc
α sentences of L′′ so that {i : 1

2 ∈ D
>(ψM

i )} is

Σ0
α-complete.
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3. There is a computable sequence (ψi)i∈N of Πc
α sentences of L′′ so that {i : 1

2 ∈ D
>(ψM

i )} is

Σ0
α+1-complete.

4. There is a computable sequence (ψi)i∈N of Σc
α sentences of L′′ so that {i : 1

2 ∈ D
≥(ψM

i )} is

Π0
α+1-complete.

The remainder of this section is dedicated to the proof of Theorem 14. We begin with the

construction of L′′ and M ′′.

Let L0 be a language consisting of one constant symbol q for every q ∈ Q ∩ [0, 1] and let M0

be the L0-structure whose underlying metric space is [0, 1] with its usual metric and which

interprets each q as q. Let L′′ be the expansion of L0 obtained by adding a family

(cN,n,x1,...,xN+1
)N,n,x1,...,xN+1∈N of constant symbols.

Let M be the expansion of M0 obtained by setting

cMN,n,x1,...,xN+1
= 1

2(1− χR2N+1
(n, x1, . . . , xN+1)). Since (RN )N∈N is computable, it follows that M

is computably presentable.

We now verify that L′′ and M satisfy the conclusions of Theorem 14. We will need a little

additional terminology and two lemmas.

Suppose (ψi)i∈N is a sequence of Πc
α sentences of L′′. We say that a set S is encoded by

(ψi)i∈N if ψM
i = 1− 1

2χS(i) for all i.

Similarly, if (ψi)i∈N is a sequence of Σc
α sentences of L′′, we say that a set S is encoded by

(ψi)i∈N if ψM
i = 1

2(1− χS(i)) for all i.

Lemma 10 (C., Goldbring, McNicholl, 2021). Let α be a computable ordinal.

1. Every Σ0
α set is encoded by a computable sequence of Σc

α sentences.

2. Every Π0
α set is encoded by a computable sequence of Πc

α sentences.

Proof. We prove (1). Part (2) then follows by considering complements. Suppose S is Σ0
α.

If α = 0, then we let

ψi =

 d(0, 0) i ∈ S

d
(
0, 12

)
otherwise.
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Next suppose α = N + 1 where N ∈ N. Let

ψn =
∨∨
x1

∧∧
x2

. . . CxN+1d(cN,n,x1,...,xN+1
, 0).

Here, C is
∨∨

if N is even and
∧∧

if N is odd.

It follows from Lemma 6 that (ψn)n∈N encodes ∃⃗R2N+1. Since ∃⃗R2N+1 is Σ0
N+1-complete, it

follows that every Σ0
N+1 set is encoded by a sequence of computable Σc

N+1 sentences.

Furthermore, the construction of such a sequence from a Σ0
N+1 index is uniform.

Suppose α ≥ ω. Similar to the proof of Theorem 7.9 of (1), we construct a sequence (φn)n∈N

of Σ0
α sentences so that φM

n = 1− χS(n). In particular, we replace ⊤ and ⊥ with d(0, 0) and

d(0, 1) respectively. Setting ψn = 1
2φn yields the desired formulae.

Lemma 11 (C., Goldbring, McNicholl, 2021). If (ψn)n∈N is a computable sequence of Πc
α

sentences of L′′, then there is a computable Πc
α sentence φ of L′′ so that

φM =
∞∑
n=0

2−(n+1)ψM
n .

Furthermore, a code of φ can be computed from an index of (ψn)n∈N.

Proof. Follows directly from Proposition 9.

Proof of Theorem 14. Parts (1) and (2) follow directly from Lemma 10.

Now suppose S is Σ0
α+1 complete. Take a Π0

α binary relation R so that S = ∃⃗R. By Lemma

10, there is a computable family (ψn,x1)n,x1∈N of Πc
α sentences so that for all n, x1 ∈ N,

ψM
n,x1 = 1− 1

2χR(n, x1). By Lemma 11, there is a computable sequence (φn)n∈N of Πc
α sentences

so that

φM
n =

∞∑
x1=0

2−(x1+2)ψM
n,x1 .

It then follows that n ∈ S if and only if 1
2 ∈ D

>(φM
n ), establishing (3). Part (4) follows by

considering complements.
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Returning to an earlier point, we note that the closed and open quantifier-free diagrams of M

are Π0
1-complete and Σ0

1-complete, respectively. To see this, fix a Σ0
1 complete set C, and let

(cs)
∞
s=0 be an effective enumeration of C. Since C is infinite, we may assume this enumeration is

one-to-one. Let

pn =


1
2 − 2−s if n = cs

1
2 otherwise.

It is fairly straightforward to show that (pn)n∈N is computable as a sequence of reals.

Furthermore, pn <
1
2 if and only if n ∈ C. Since L′′ contains a constant symbol for each rational

number, it follows that the open quantifier-free diagram of M is Σ0
1-complete. The

Π0
1-completeness of the closed quantifier-free diagram follows by considering complements.

We also note that while computably compact domains are insufficient for demonstrating lower

bounds in the finitary case, [0, 1] works extremely well in the infinitary case. This is because we

can build up all the required infinitary sentences without variables, so the computability of

extrema plays no role.
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CHAPTER 7. CONCLUSION

7.1 Summary

We briefly recall and summarize our three main results.

Theorem 8. There is an effective procedure which, given a name X ∈ NN of an L-theory T ,

produces a presentation of an L+-structure M such that M ⊨ T .

This theorem generalized and extended the results of (8) and (13), taking in any name of an

L-theory and outputting a presentation of an L+-structure of the same degree. It was proven

using four model-theoretic propositions and a lemma which allows one to effectively extend a

theory to a complete theory.

Theorem 9. (C., McNicholl, 2022+) There are partial computable functions f and g from

(O \ {1})× N to the set of computable infinitary sentences such that the following hold, for every

1 ≤ α < ωCK
1 .

• If ⟨a, i⟩ is a Π0
α index of a right Dedekind cut of a real number s, then f(a, i) is a code of a

Πc
α sentence φ such that for every L-structure M, φM = s.

• If ⟨a, i⟩ is a Σ0
α index of a right Dedekind cut of a real number s, then g(a, i) is a code of a

Σc
α sentence φ such that for every L-structure M, φM = s.

That is, while every real number is trivially represented by an infinitary sentence, the

computable infinitary sentences are still strong enough to represent any hyperarithmetical number

as a numeral. This implies that a large amount of complexity is carried in every continuous

structure from the connectives and the space of truth values, alone. The result was proven via a

lemma applying effective transfinite recursion and properties of Dedekind cuts.

Theorems 11, 12, 13, and 14. (C., Goldbring, McNicholl, 2021) Let M be a computably

presentable L-structure, and let N be a positive integer.
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1. The closed ΠN diagram of M is Π0
N , and the open ΠN diagram of M is Σ0

N+1.

2. The closed ΣN diagram of M is Π0
N+1, and the open ΣN diagram of M is Σ0

N .

These results hold uniformly in the sense that from N and an index for a computable

presentation for M, one can compute an index for any of the above diagrams. Moreover, there is

an L-structure in which these bounds are optimal, and similar correlates hold in the infinitary

case.

The finitary optimal bound cannot be realized on computably compact spaces. Because of

this, it was proven through a structure over the natural numbers along with a novel combinatorial

result, which allows for the encoding of a quantifier via a series inequality. The infinitary optimal

bound is easier to realize, as the infinite connectives allow one to quantify over indexed sentences.

Let us know examine some applications of these results.

7.2 Applications and Future Research

First note that the theory of a metric structure may be thought of not as a set (as is it in the

discrete setting), but as a map into [0, 1]. We gain two immediate corollaries from the results in

Chapter 6.

Corollary 6 (C., Goldbring, McNicholl, 2021). Let M be an L-structure with a computably

compact computable presentation. Then the theory of M is ∆0
2.

Corollary 7 (C., Goldbring, McNicholl, 2021). Let M be an L-structure with a hyperarithmetic

presentation. Then the theory of M is also hyperarithmetic.

Corollary 6 follows directly from Proposition 12 and Corollary 7 from Theorem 11. An

application of the former may be made to computable Stone spaces. Notably, in (22), it was

shown that any computable Stone space has a computably compact presentation. We thus attain

the following.

Corollary 8 (C., Goldbring, McNicholl, 2021). Let X be a computable Stone space. Then the

(continuous) theory of X is ∆0
2.
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Meanwhile, Corollary 7 has already been applied in (19) in the proof of the following.

Theorem 15 (Theorem 1.1, Goldbring, Hart, 2020). The following operator algebras have

hyperarithmetic theory.

1. The hyperfinite II1 factor R.

2. L(Γ) for Γ a finitely generated group with solvable word problem.

3. C∗(Γ) for Γ a finitely presented group.

4. C∗
λ(Γ) for Γ a finitely generated group with solvable word problem.

In their manuscript, Goldbring and Hart show, via the results of (17), that each of the above

have hyperarithmetic presentations. They then apply Corollary 7 to conclude that each of the

above have hyperarithmetic theory. Through a careful analysis of the complexity of

model-theoretic forcing in continuous logic, they also show that the Cuntz algebra has an

arithmetic presentation and hence a hyperarithmetic presentation.

We see two main avenues for further research. The first concerns the hyperfinite II1 factor R.

As it stands, the structure used in the proof of Theorem 12 was somewhat contrived. But in (20),

the authors prove that the open Π1 diagram of R is not computable. This lends credence to the

conjecture that R is a natural structure which realizes the optimal bounds of Theorem 12.

The second avenue for further research considers the translation of notion of a predicate

(relation) on a metric structure being relatively intrinsically computably enumerable (r.i.c.e.) into

the continuous setting. Similarly, a notion of being Σc
1 definable in a structure with parameters

could also be translated. The ultimate goal of this project would be to find a continuous correlate

of the result of (10) and (2) that a relation is r.i.c.e. if and only if it is Σc
1 definable with

parameters. The issues arising concerning this avenue include the continuous nature of

definability and the extra complexity which can be carried with parameters from spaces with

uncountably many points.
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[3] Itäı Ben Yaacov, Alexander Berenstein, C. Ward Henson, and Alexander Usvyatsov, Model
theory for metric structures, Model theory with applications to algebra and analysis. Vol. 2,
London Math. Soc. Lecture Note Ser., vol. 350, Cambridge Univ. Press, Cambridge, 2008,
pp. 315–427.
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[24] Alexander G. Melnikov and André Nies, The classification problem for compact computable
metric spaces, CiE, 2013.

[25] Antonio Montalbán, Computable structure theory: Within the arithmetic, Cambridge
University Press, 2021.

[26] James Gardner Moody, Computable continuous structure theory, ProQuest LLC, Ann Arbor,
MI, 2019, Thesis (Ph.D.)–University of California, Berkeley.

[27] Emil L. Post, The two-valued iterative systems of mathematical logic, Princeton University
Press, Princeton, NJ, 1941, Annals of Mathematics Series #5.



86

[28] Masoud Pourmahdian, Nazanin R. Tavana, and Farzad Didehvar, Effective metric model
theory, Mathematical Structures in Computer Science 25 (2015), no. 8, 1779–1798.

[29] Gerald E. Sacks, Higher recursion theory, Springer-Verlag, 1990.

[30] R.I. Soare, Recursively enumerable sets and degrees, Springer-Verlag, Berling, Heidelberg,
1987.

[31] Ernst Specker, Der satz vom maximum in der rekursiven analysis, Ernst Specker Selecta,
Springer, 1990, pp. 148–159.

[32] Alfred Tarski, The concept of truth in the languages of the deductive sciences (polish), Prace
Towarzystwa Naukowego Warszawskiego, Wydzial III Nauk Matematyczno–Fizycznych 34
(1933), 13–172.

[33] Alan Turing, On computable numbers, with an application to the entscheidungsproblem,
Proceedings of the London Mathematical Society 42 (1936), no. 1, 230–265.

[34] Klaus Weihrauch, Computable analysis, Springer-Verlag, 2000.



87

APPENDIX. SOLUTIONS TO SELECTED EXERCISES

Solution (Exercise 3). Let M be an L-pre-structure and σ any assignment. We only sketch

canonicity (the forward direction) and leave soundness to the reader.

(a) Suppose M satisfies schemata XI, XII, and XIII. For notational simplicity, let d := dM. That

d : |M|2 → [0, 1] is given. Then fix a, b, c ∈ |M|.

Since M satisfies XI,

d(a, a) =
(
d(x, x)

)M,σ(x 7→a)
= 0.

Thus d is reflexive.

Now notice

d(a, b) =
(
d(x, y)

)M,σ((x,y)7→(a,b))
and d(b, a) =

(
d(y, x)

)M,σ((x,y)7→(a,b))
.

But since M satisfies XII, (
d(x, y) .− d(y, x)

)M,σ((x,y)7→(a,b))
= 0

which implies

d(a, b) ≤ d(b, a).

The argument works symmetrically under the assignment σ((x, y) 7→ (b, a)), implying

d(b, a) ≤ d(a, b).

It follows that d(a, b) = d(b, a). Thus d is symmetric.

Notice, lastly, that

d(a, c) =
(
d(x, z)

)M,σ((x,y,z)7→(a,b,c))
, d(a, b) =

(
d(x, y)

)M,σ((x,y,z)7→(a,b,c))
,

and d(b, c) =
(
d(y, z)

)M,σ((x,y,z) 7→(a,b,c))
.
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And since M satisfies XIII,

((
d(x, z) .− d(x, y)

) .− d(y, z)
)M,σ((x,y,z)7→(a,b,c))

= 0

which implies (literally) that

max
{
d(a, b)− d(b, c), 0

}
≤ d(a, c).

But notably, this also implies that

d(a, b)− d(b, c) ≤ d(a, c)

and hence by addition and the symmetry of d,

d(a, b) ≤ d(a, c) + d(c, b).

Thus d satisfies the triangle inequality. Therefore, d is a pseudometric.

(b) Fix f ∈ F , n ∈ N, and a, b ∈ |M| such that fM(a, b) < 2−∆(f ;n). This means that its not the

case that 2−∆(f ;n) ≤ fM(a, b). Hence

M, σ((x, y)→ (a, b)) ⊭ 2−∆(f ;n) .− d(x, y).

But since M satisfies XIV, for every pair of tuples of terms t⃗0 and t⃗1, we have

M, σ((x, y)→ (a, b)) ⊨
(
2−∆(f ;n) .− d(x, y)

)
∧
(
d
(
f(t⃗0, x, t⃗1), f(t⃗0, y, t⃗1)

) .− 2−n
)
.

So it must be that

M, σ((x, y)→ (a, b)) ⊨ d
(
f(t⃗0, x, t⃗1), f(t⃗0, y, t⃗1)

) .− 2−n.

It follows via interpretation that

d
(
fM(t⃗0

M
, a, t⃗1

M
), fM(t⃗0

M
, b, t⃗1

M
)
)
≤ 2−n.

Since this holds for every pair of tuples of terms, and every n ∈ N, it follows that ∆(f) is a

modulus of continuity for fM.

(c) Similar to (b), mutatis mutandis.
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Solution (Exercise 4). Let A be a classical structure and MT(A) its metric transformation. We

proceed by structural induction on classical wffs.

First suppose φ = P (t0, ..., tη(P )−1). Then

A ⊨FOL φ ⇐⇒ (tA0 , ..., t
A
η(P )−1) ∈ P

A

⇐⇒ 1− χPA(tA0 , ..., t
A
η(P )−1) = 0

⇐⇒ MT(A) ⊨ P (t0, ..., tη(P )−1)

⇐⇒ MT(A) ⊨ CT(φ).

Now suppose φ = ¬ψ. Then

A ⊨FOL φ ⇐⇒ A ⊨FOL ¬ψ

⇐⇒ A ⊭FOL ψ

⇐⇒ MT(A) ⊭ CT(ψ)

⇐⇒ MT(A) ⊨ ¬CT(ψ)

⇐⇒ MT(A) ⊨ CT(φ).

Then suppose φ = ψ → θ. It follows that

A ⊨FOL φ ⇐⇒ A ⊨FOL ψ → θ

⇐⇒
(
A ⊨FOL ψ =⇒ A ⊨FOL θ

)
⇐⇒

(
MT(A) ⊨ CT(ψ) =⇒ MT(A) ⊨ CT(θ)

)
∗ ⇐⇒ MT(A) ⊨ CT(θ) .− CT(ψ)

⇐⇒ MT(A) ⊨ CT(φ).

Notably, the reverse direction of the biconditional with an asterisk follows from the Completeness

Theorem (Theorem 2).
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Lastly, suppose φ = ∀x ψ(x). Then

A ⊨FOL φ ⇐⇒ A ⊨FOL ∀x ψ(x)

⇐⇒ ∀a ∈ |A| A ⊨FOL ψ(a)

⇐⇒ ∀a ∈ |A| MT(A) ⊨ CT(ψ(a))

⇐⇒ ∀a ∈ |A| MT(A), σ(x 7→ a) ⊨ CT(ψ(x))

⇐⇒ MT(A) ⊨ sup
x

CT(ψ(x))

⇐⇒ MT(A) ⊨ CT(φ).

The result follows.

Solution (Exercise 8). The forward direction is clear. To see the reverse, let A ⊆ N be c.e. and

co-c.e. Given k ∈ N, begin enumerating A and Ac. Because A ∩Ac = ∅ and A ∪Ac = N, at some

step, k will be enumerated into exactly one of A or Ac. If it was enumerated into A, output a 1.

If it was enumerated into Ac, output a 0. It follows that A is computable.

Solution (Exercise 9). To see that K is c.e., at stage s ∈ N, run the computations Φ0(0), Φ1(1),

..., and Φs(s) for s-many steps. For every computation which halts in s-many steps, enumerate

the index of that computation into K.

To see that K is not computable, we proceed by way of contradiction, i.e., suppose K is

computable. It follows that Kc is computable, and hence c.e. Therefore, there is some Turing

machine Φe such that Φe(k) ↓ if and only if k ∈ Kc. Then consider Φe(e). If Φe(e) ↓, then e ∈ Kc

by the above. But by definition, then, e ∈We, so e ∈ K. →←.

On the other hand, if Φe(e) does not halt, then e /∈ Kc, by the above. But this implies that

e ∈ K, so e ∈We, and hence Φe(e) ↓! →←

Therefore, K is not computable.

Solution (Exercise 10). To see that Kc ≤T K, notice we may perform the following oracle

computation with access to K. Given k ∈ N, check if k ∈ K. If it is, output a 0. If not, output a

1. This K-effective procedure computes Kc.
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To see that Kc ≰m K, by way of contradiction, suppose it was. Then there is some Turing

machine Φ with domain N such that

k ∈ Kc ⇐⇒ Φ(k) ∈ K.

We proceed to effectively enumerate the members of Kc. At stage s ∈ N, compute Φ(0), ...,Φ(s).

Then check if any of these has been enumerated into K after s computation steps. For each one

that has, enumerate its argument into Kc. This implies Kc is c.e. But by the solution to Exercise

9, we know that Kc is not c.e. →←

Therefore, Kc ≰m K.

Solution (Exercise 13). Define E : NN →P(N) as

E(X) :=
{

2n · 3X(n) : n ∈ N
}
.

To see that E is injective, suppose E(X) = E(Y ). By the Fundemental Theorem of Arithmetic,

this implies that for every n ∈ N, X(n) = Y (n). Therefore, X = Y .

Solution (Exercise 14). (Sketch) Relativize the proof of Exercise 9 by proving the following.

(i) ∅(n) is c.e. in ∅(n−1).

(ii) ∅(n) is not computable in ∅(n−1).

Solution (Exercise 16). Let α be a computable ordinal. By definition, there is a computable

well-ordering
(
|A|, <A

)
of order type α. Let g be an effective numbering of |A|. Then, for every

n ∈ N, define |A| ↾n= {a ∈ |A| : a <A g(n)} and let <A↾n be <A restricted to this set. It follows

that for every n ∈ N,
(
|A| ↾n, <A↾n

)
is a computable structure. Now let β < α. Since the order

type of
(
|A|, <A

)
is α, there is some substructure

(
|B|, <A↾B

)
⊆

(
|A|, <A

)
with order type β.

Moreover, since |A| is well-ordered, there is some least a ∈ |A| such that for every b ∈ |B|, b <A a.

And since g is an effective numbering of |A|, there is some N ∈ N such that g(N) = a. It follows

that
(
|A| ↾N , <A↾N

)
=

(
|B|, <A↾B

)
, and thus is a computable well-ordering of order type β.

Therefore, β is a computable ordinal. The result follows.



92

Solution (Exercise 17). Since every computably well-ordering is witnessed by an effective

procedure, and there are only countably-many effective procedures, there are only

countably-many computable well-orderings. It follows that there are only countably-many

computable ordinals. The result follows.

Solution (Exercise 18). For the forward direction, suppose r is a computable real number. Then

there is an effective procedure such that, given k ∈ N, outputs a rational q such that

|r − q| ≤ 2−k.

Then for every k ∈ N, define Φ(k) to be the least code of that q. It follows that Φ is a Turing

machine and name of r.

The reverse direction is trivial.

Solution (Exercise 19). (Sketch) Follows from the strings for ℓ
2−k given in Heuristic 1.
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