The roles of aldehyde dehydrogenases (ALDHs) in acetyl-CoA biosynthesis and root elongation in Arabidopsis

by

Yanling Wei

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Genetics

Program of Study:
Patrick S. Schnable, Major Professor
Basil J. Nikolau
David J. Oliver

Iowa State University

Ames, Iowa

2006

© Copyright by Yanling Wei, 2006. All rights reserved.
TABLE OF CONTENTS

CHAPTER 1. GENERAL INTRODUCTION

- Introduction ... 1
- Dissertation Organization .. 2
- References ... 2

CHAPTER 2. THE ROLES OF ALDEHYDE DEHYDROGENASES (ALDHs) IN ACETYL-COA BIOSYNTHESIS AND ROOT ELONGATION IN ARABIDOPSIS

- Abstract .. 5
- Introduction ... 6
- Results ... 9
 - Identification of null mutants of the three Family 2 ALDH genes 9
 - Direct evidence for the presence of PDH bypass for acetyl-CoA biosynthesis 9
 - Expression analyses of Family 2 ALDH genes ... 10
 - Mitochondrial Family 2 ALDH double mutant grow shorter roots than wild type ... 11
- Discussion ... 12
 - The presence of PDH bypass for acetyl-CoA biosynthesis in Arabidopsis 12
 - Physiological functions of mitochondrial Family 2 ALDHs in Arabidopsis 14
- Materials and Methods .. 15
 - Growth of plants .. 15
 - Identification and Genotyping of T-DNA knockout lines 15
 - Generation of double and triple mutants .. 16
 - Polymerase Chain Reaction (PCR) ... 16
 - 14C feeding and isolation of fatty acids .. 17
 - Tissue collection, RNA isolation and Reverse-Transcriptase PCR 17
 - Quantitative Real-Time PCR .. 18
 - Root length measurement and statistical analysis ... 19
- Acknowledgements ... 19
- Literature Cited ... 20
- Figure Legends ... 22
- Supplementary Materials ... 28

APPENDIX. THE MUTANT SCREENINGS FOR PYRUVATE DECARBOXYLASE (PDC) GENES IN ARABIDOPSIS

- Acknowledgements ... 34
CHAPTER 1. GENERAL INTRODUCTION

Introduction

Aldehydes are usually deleterious to biological systems and can be oxidized by aldehyde dehydrogenases (ALDHs, EC 1.2.1) into carboxylic acids. Over 550 ALDH genes have been identified across virtually all species, and those from eukaryotes were classified into more than 20 families (Sophos and Vasiliou, 2003). Family 2 ALDHs are mitochondrial or cytosolic homotetrameric enzymes. Their physiological functions remain to be addressed. Studies from maize and rice (Liu and Schnable, 2002; Nakazono et al., 2000; Tsuji et al., 2003) suggested a role of Family 2 ALDHs during ethanolic fermentation, which is catalyzed by pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) and generates acetaldehyde and ethanol. The detoxification of acetaldehyde by ALDH produces acetate, which can serve as the substrate for acetyl-CoA synthetase (ACS) to synthesize acetyl-CoA.

In yeast, the PDC-ALDH-ACS pathway is termed the pyruvate dehydrogenase (PDH) bypass (Boubekeur et al., 2001). Studies conducted in the Kuhlemeier lab (Mellema et al., 2002; op den Camp and Kuhlemeier, 1997; Tadege and Kuhlemeier, 1997) demonstrated that ethanol could be used for lipid production in tobacco pollen and thus suggested, but did not prove, the presence of PDC-ALDH-ACS pathway for generating acetyl-CoA to be used in de novo fatty acid synthesis in plastids. Genetic evidence is needed to establish the presence of the PDH bypass in plants. This study uses a reverse genetics approach to compare the incorporation rates of 14C-ethanol into fatty acids in aldh mutants versus their wild type controls. It thereby provides the first
direct evidence for the presence the PDH bypass in plants by showing lower
incorporation rates in \textit{aldh} mutants as compared to wild type.

Additionally, by demonstrating that the \textit{aldh2B4;aldh2B7} double mutant grew shorter roots than wild type, this study expands our understanding of the physiological functions of Family 2 ALDHs in plants.

\textbf{Dissertation organization}

This dissertation contains a manuscript prepared for journal publication (Chapter 2) and an Appendix. They were all written by Yanling Wei with the advice of Dr. Schnable’s.

Chapter 2 describes 14C-ethanol feeding experiments that provide direct genetic evidence for the presence of PDH bypass in plants, and a novel finding that mitochondrial Family 2 ALDHs play a role in root elongation. The 14C-ethanol feeding experiments were conducted in Dr. David Oliver’s lab under his supervision and with Dr. Ming Lin’s invaluable help. Most of the other experimental work was performed by Yanling Wei. The process of screening for T-DNA insertion lines from the University of Wisconsin was, however, already well underway before Yanling Wei joined the project.

The Appendix serves as a summary of results screening T-DNA insertion lines for the PDC genes in Arabidopsis.

\textbf{References}

 The ethanolic fermentation pathway supports respiration and lipid biosynthesis in
 tobacco pollen. Plant J 30: 329-336
 Expression of a gene encoding mitochondrial aldehyde dehydrogenase in rice
 increases under submerged conditions. Plant Physiol 124: 587-598
 Plant Mol Biol 35: 355-365
 update. Chem Biol Interact 143-144: 5-22
Tadege M, Kuhlemeier C (1997) Aerobic fermentation during tobacco pollen
 development. Plant Mol Biol 35: 343-354
 mitochondrial aldehyde dehydrogenase by submergence facilitates oxidation of
 acetaldehyde during re-aeration in rice. FEBS Lett 546: 369-373
CHAPTER 2. THE ROLES OF ALDEHYDE DEHYDROGENASES (ALDHS) IN ACETYL-COA BIOSYNTHESIS AND ROOT ELONGATION IN ARABIDOPSIS

Yanling Weia,b, Ming Lina, David J. Olivera,b,c and Patrick S. Schnablea,b,d,e,1

a Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
b Interdepartmental Genetics Program, Iowa State University, Ames, Iowa 50011
c Department of Botany, Iowa State University, Ames, Iowa 50011
d Department of Agronomy, Iowa State University, Ames, Iowa 50011
e Center for Plant Genomics, Iowa State University, Ames, Iowa 50011

Footnotes:

This research was funded by grants from the USDA (NRI 00-0347 and 02-01419) and the DOE (DE-FG02-01ER15170).

1 Correspondence author: 515-294-5256 (fax), schnable@iastate.edu (e-mail)
Abstract

Aldehyde dehydrogenases (ALDHs, EC 1.2.1) oxidize aldehydes into carboxylic acids, and thus are important in regulating the level of toxic aldehydes. ALDHs from eukaryotes were classified into more than 20 families. In mammals Family 2 ALDHs detoxify acetaldehyde and a similar function has been suggested in plants. Specifically, it has been hypothesized that plant Family 2 ALDHs oxidize acetaldehyde generated via ethanolic fermentation and produce acetate for acetyl-CoA biosynthesis through acetyl-CoA synthetase (ACS) in plastids, similar to the yeast pathway termed the “pyruvate dehydrogenase (PDH) bypass”. *Arabidopsis thaliana* contains three Family 2 ALDHs, two of which are mitochondrial and the other cytosolic. To test for the presence of the PDH bypass in plants, plants homozygous for T-DNA insertion alleles of the three encoding genes were fed with \(^{14}\text{C}-\text{ethanol}\) along with wild type controls. The comparisons between the mutant and wild type in their incorporation rates of \(^{14}\text{C}-\text{ethanol}\) into fatty acids provided direct evidence for the presence of PDH bypass in plants, which may only involve one of the mitochondrial Family 2 ALDHs rather than the other two. Although none of the single, double or triple mutants exhibited novel phenotypes when grown on soil, seedlings of the double mitochondrial *aldh* mutants grew shorter roots than wild type on MS media, suggesting a role for mitochondrial Family 2 ALDHs during root elongation.
Introduction

Aldehydes vary in length and in characteristics of their alkyl chains and are all usually deleterious to biological systems due to their chemical reactivity. Aldehyde dehydrogenases (ALDHs, EC 1.2.1) oxidize aldehydes into carboxylic acids, using NAD\(^+\) or NADP\(^+\) as a co-factor. As such ALDHs play an important role in detoxifying aldehydes that are generated endogenously or introduced from the environment. ALDHs are very diverse in that some only use either NAD\(^+\) or NADP\(^+\) as the co-factor, while others can use both, some oxidize only a limited number of aldehydes, while others have broader substrate spectra, and ALDHs exist in various subcellular compartments, including the cytosol, mitochondria, plastids and microsomes.

Over 550 ALDH genes have been identified across virtually all species, and those from eukaryotes were classified into more than 20 families (Sophos and Vasiliou, 2003). Family 2 ALDHs are mitochondrial or cytosolic homotetrameric enzymes. A human mitochondrial Family 2 ALDH, ALDH2, has been well studied and it detoxifies acetaldehyde generated via alcohol intake (Li et al., 2004). Family 2 ALDHs in plants have gained attention since the cloning of rf2a gene, a nuclear restorer gene for cytoplasm male sterility in maize, which encodes a mitochondrial Family 2 ALDH, RF2A (Cui et al., 1996). Although the molecular mechanisms associated with the restorer function of rf2a gene remains to be resolved, substantial studies on plant Family 2 ALDHs, particularly in maize, have provided clues as to the physiological functions of Family 2 ALDHs in plants.

Consistent with the physiological function of human Family 2 ALDH in detoxifying acetaldehyde, Liu and Schnable (2002) demonstrated that acetaldehyde is one
of the best substrates in vitro for RF2A, based on the ratio of K_{cat} to K_m. In addition, one of the mitochondrial Family 2 ALDHs in rice may be responsible for efficient detoxification of acetaldehyde during re-aeration after submergence of rice plants (Nakazono et al., 2000; Tsuji et al., 2003). These studies all suggest a role of Family 2 ALDHs during ethanolic fermentation, which is catalyzed by pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) and generates acetaldehyde and ethanol. The detoxification of acetaldehyde by ALDH produces acetate. In yeast and mammals, it has been established that acetyl-CoA synthetase (ACS) can utilize acetate to synthesize acetyl-CoA, both in the mitochondria (Klein and Jahnke, 1979; Yamashita et al., 2002) and in the cytosol (Akamatsu et al., 2000; Loikkanen et al., 2002).

The Arabidopsis thaliana ACS is targeted to the plastid and is encoded by a single gene (Behal et al., 2002; Ke et al., 2000; Lin et al., 2003). In plastids acetyl-CoA is utilized for de novo fatty acid biosynthesis. Although the acetyl-CoA pool generated by ACS from acetate seems redundant for fatty acid biosynthesis, ACS is hypothesized to play a specialized role in certain cells and tissues (Behal et al., 2002; Ke et al., 2000). Besides, the redundancy of acetyl-CoA pool from ACS observed above might be due to the low concentration of acetate, probably 0.05 mM (less than one third the K_m of this enzyme) (Bao et al., 2000; Behal et al., 2002). Indeed, the feeding of radio-labeled acetate indicates that isolated plastids can use exogenous acetate for fatty acid synthesis (Kang and Rawsthorne, 1994). To understand how and when plant ACS contributes to the acetyl-CoA pool in plastids, the study of acetate biosynthesis would be the key, which is readily diffusible across membranes. One potential pathway would be through
ALDH utilizing acetaldehyde generated via ethanolic fermentation by PDC from pyruvate or by ADH from ethanol.

In yeast, the PDC-ALDH-ACS pathway is termed the pyruvate dehydrogenase (PDH) bypass and used to generate acetyl-CoA involving both cytosolic and mitochondrial ALDHs (Boubekeur et al., 2001), predominantly when PDH is mutated (Pronk et al., 1994). In plants, studies conducted in the Kuhlemeier lab have demonstrated that high expression levels of PDC (Tadege and Kuhlemeier, 1997) and ALDH (op den Camp and Kuhlemeier, 1997) coincide with high rates of ethanolic fermentation in tobacco pollen (Tadege and Kuhlemeier, 1997). They supplied growing pollen tubes with 14C-ethanol and found part of the label was incorporated into fatty acids, indicating that ethanol can be used for fatty acid biosynthesis (Mellema et al., 2002), presumably via the ADH-ALDH-ACS pathway. In order to provide direct evidence for the presence of PDH bypass in plants, this study utilizes a reverse genetics approach in Arabidopsis to prove the involvement of the ALDHs during the flux from ethanol into fatty acids.

There are three Family 2 ALDHs in Arabidopsis (Kirch et al., 2004), one of which, ALDH2C4, is localized to the cytosol. One physiological function of ALDH2C4 is the production of ferulic acid and sinapic acid during lignin biosynthesis (Nair et al., 2004). The other two ALDHs, ALDH2B4 (Millar et al., 2001; Heazlewood et al., 2004) and ALDH2B7 (Skibbe et al., 2002), are targeted to mitochondria. Their physiological functions have not yet been described.

In addition to demonstrating the presence of the PDH bypass in plants, this study expands our understanding of the physiological functions of Family 2 ALDHs in plants.
Results

Identification of null mutants of the three Family 2 ALDH genes

aldh2B4-l and *aldh2B7-l* T-DNA knockout lines were identified from the Arabidopsis Knockout Facility at the University of Wisconsin. *aldh2C4-l, aldh2C4-2*, and *aldh2B4-2* T-DNA knockout lines were identified from the Salk Institute T-DNA insertion library database.

PCR screening of plants from each line with a T-DNA left border primer coupled with a gene specific primer, either upstream or downstream of the insertion, revealed the structures and insertion sites of the causative T-DNA insertions (Table 1).

All of the above lines are null in that they do not accumulate transcripts detectable by RT-PCR applied to RNA isolated from whole plants, while wild type control give detectable transcripts (Figure 1).

Direct evidence for the presence of PDH bypass for acetyl-CoA biosynthesis

An ideal experiment to directly test for the presence in plants of the PDH bypass (the PDC-ALDH-ACS pathway) would be to compare the differences between wild type and mutants of involved genes in the incorporation of 14C-pyruvate or 14C-acetaldehyde into acetyl-CoA. However, because pyruvate is unstable and acetaldehyde is toxic, 14C-ethanol was used instead, which should be predominantly, if not all, oxidized to acetaldehyde via ADH. Because there are not established means to detect acetyl-CoA, flux through the PDH bypass was measured by determining the incorporation of 14C-ethanol in extracted saponifiable lipids, which should consist primarily of fatty acids (Behal et al., 2002).
14C-ethanol was fed to two to three tissues: whole seedlings, seedling leaves, and inflorescences. The incorporation rates were compared between single or double aldh mutants and their wild type siblings. No differences were detected in two examined tissues (whole seedlings or seedling leaves) between the aldh2C4 homozygous mutants from either allele (aldh2C4-1 and aldh2C4-2) and their wild type siblings. We, therefore, conclude that the cytosolic Family 2 ALDH is either not involved in the ADH-ALDH-ACS pathway, or can be compensated for by the mitochondrial paralog(s).

Comparisons were also made on all of the three tissues among aldh2B4 single mutant (aldh2B4;ALDH2B7), aldh2B7 single mutant (ALDH2B4;aldh2B7), aldh2B4;aldh2B7 double mutant and their wild type siblings (ALDH2B4;ALDH2B7), that are in a WS uniform genetic background (Methods).

Comparisons on whole seedlings and inflorescences (Figure 2) showed that the aldh2B4 single mutant and the aldh2B4;aldh2B7 double mutant both exhibited lower incorporation rates of 14C-ethanol into fatty acids than their wild type controls. In contrast the rate of incorporation for the aldh2B7 single mutant did not differ from wild type controls. No differences in rate of incorporation were observed in seedling leaves among any examined genotypes (data not shown).

Similar results were obtained when comparing Columbia wild type plants to the single and double mutant plants that had a mixed Columbia and WS background (Methods) (data not shown).

Expression analyses of Family 2 ALDH genes

To understand the expression patterns of the three Family 2 ALDH genes, quantitative Real-Time PCR (qRT-PCR) was conducted on RNA extracted from different
tissues from adult wild-type WS plants. These analyses indicate that \textit{ALDH2B4} and \textit{ALDH2C4} have similar expression patterns, i.e. they are both constitutively expressed in roots, rosette leaves, stems, cauline leaves, flowers and green siliques, with varying levels across tissues; \textit{ALDH2B7} has a different expression pattern, i.e., it is predominantly expressed in flower buds compared to other tissues (Figure 3). qRT-PCR from whole wild-type plants with three to four primer pairs for each gene showed that in both Columbia and WS ecotypes, \textit{ALDH2B4} has a much higher expression level than \textit{ALDH2C4} and \textit{ALDH2B7}, with \textit{ALDH2B7} the lowest (Figure 4).

\textbf{Mitochondrial Family 2 ALDH double mutant grow shorter roots than wild type}

There are no obvious phenotypes associated with any of the single, double or triple ALDH mutants when grown on soil. When planted on MS media, however, the double homozygous mutant (\textit{aldh2B4;aldh2B7}) seedlings produced shorter roots than their wild type siblings (\textit{ALDH2B4;ALDH2B7}). This comparison was conducted with F2:F3 plants that are in WS uniform background. Although not all families exhibited such deviations from the expected ratios, only a single double homozygous mutant was obtained after screening 144 F2 plants. Consequently, this comparison was made between progeny of the single F2 double homozygous mutant versus progeny of five of its wild type F2 siblings.

Each of the five wild type populations was paired with the double mutant population. Each pair was planted side by side on a same plate, with five plates as replicates for each comparison. Root length was measured for each individual six-day-old seedling and compared between the two genotypes. Statistical analyses showed that each wild type population had longer roots than the double mutant (Table 3).
Similar experiments were performed to compare all of the four genotypes,
aldh2B4 single mutant (*aldh2B4;ALDH2B7*), *aldh2B7* single mutant
(*ALDH2B4;aldh2B7*), *aldh2B4;aldh2B7* double mutant and their wild type siblings
(*ALDH2B4;ALDH2B7*) from a F2 segregation population obtained by selfing a F1 plant
heterozygous for both genes. Three populations all gave a least squares mean order of
wild type or *aldh2B7* single mutant, *aldh2B4* single mutant, and double mutant (long to
short). The comparison between the double mutant and each of the other three
genotypes was statistically significant but that among the other three genotypes was not.
Therefore, we do not have evidence to distinguish the performance of the two single
mutants.

Similar results were obtained when comparing *aldh2B4;aldh2B7* double mutant
plants in a mixed Columbia and WS genetic backgrounds to wild-type Columbia plants
(data not shown).

Discussion

The presence of PDH bypass for acetyl-CoA biosynthesis in Arabidopsis

The PDC-ALDH-ACS pathway is termed the PDH bypass in yeast (Boubekeur et
al., 2001). Studies conducted in the Kuhlemeier lab (Mellema et al., 2002; op den Camp
and Kuhlemeier, 1997; Tadege and Kuhlemeier, 1997) demonstrated that ethanol could
be used for fatty acid biosynthesis in tobacco pollen and thus suggested, but did not
prove, the presence of PDC-ALDH-ACS pathway for generating acetyl-CoA to be used
in *de novo* fatty acid synthesis. Genetic evidence is needed to establish the presence of
the PDH bypass in plants. This study uses a reverse genetics approach to compare the
incorporation rates of 14C-ethanol into fatty acids in *aldh* mutants versus their wild type
controls. It thereby provides the first direct evidence for the presence the PDH bypass in plants by showing lower incorporation rates in the *aldh2B4* single mutant and *aldh2B4;aldh2B7* double mutant as compared to wild type.

The *aldh2C4* and *aldh2B7* single mutants did not show differences relative to wild type. Because the ALDH2C4 and ALDH2B7 can both oxidize acetaldehyde, at least *in vitro* (Skibbe et al., 2002), this result suggests either the independence of ALDH2C4 and ALDH2B7 from the PDH bypass or that they are involved in the PDH bypass but their absence can be compensated for by the presence of ALDH2B4. This would be consistent with their much lower expression levels relative to *ALDH2B4* (Figure 3 and 4).

Our study established the presence of the PDH bypass in whole seedlings and inflorescences of plants at least under our experimental conditions. This suggests that the PDH bypass is not specifically present in pollen (Mellema et al., 2002) and may be functional in other tissues. This is supported by our qRT-PCR results, which show constitutive expression of the involved gene *ALDH2B4*. The reverse transcriptase PCR assay from the Kuhlemeier lab (op den Camp and Kuhlemeier, 1997), which was qualitative, also detected mitochondrial Family 2 ALDH expression in various tissues of tobacco. However, their quantitative Northern blot analyses gave different results than ours. While we are consistent in showing the high ALDH expression levels in stems, theirs did not detect expression of either TobAldh2A or TobAldh2B in leaf, while ours showed high *ALDH2B4* expression levels in both rosette leaves and cauline leaves comparable to stems. Nevertheless, the expression patterns of TobAldh2A and TobAldh2B look more similar to that of *ALDH2B7*, which is predominantly expressed in
flower buds that contain developing pollen. Despite the comparisons made above, due to the lack of full length sequence of *TobAldh2B* and thus lack of phylogenetic relationships among these genes, plus potential differences in sensitivity between the two different techniques, it is hard to make a conclusion yet.

Physiological functions of mitochondrial Family 2 ALDHs in Arabidopsis

Although there are no obvious phenotypes associated with any of the single, double or triple Family 2 ALDH mutants when grown on soil, *aldh2B4;aldh2B7* double mutant seedlings grown on MS media produce shorter roots than do similarly treated wild type siblings. This phenotype was observed on double mutants from either of two different *aldh2B4* mutant alleles in combination with a single *aldh2B7* mutant allele. It was also observed in two genetic backgrounds: a uniform WS genetic background and a mixed Col / WS background. Because we did not get evidence of single gene effect when comparing the single mutant versus the wild type, we conclude that both of the mitochondrial Family 2 ALDHs are involved in root elongation.

Because root elongation requires fatty acids for the synthesis of cell membranes, we first hypothesized that the *aldh2B4;aldh2B7* double mutant grew shorter roots because of the disruption of the PDH bypass caused by the absence of mitochondrial Family 2 ALDHs. To test this hypothesis, 14C-ethanol feeding studies were conducted on roots, but in preliminary experiments differences in incorporation rates were not observed among genotypes (data not shown). One possible explanation for this result is that the elongation zone is too small a portion of the whole roots to impact incorporation rates. However, the inconsistency between the 14C-ethanol feeding and the root length comparison experiments, i.e. the previous suggests *ALDH2B4* single gene effect while
the latter does not have evidence for that, suggests a possibility that the role of
mitochondrial Family 2 ALDHs in root elongation is not due to their involvement in the
PDH bypass. This is supported by the usually broad substrate spectra of Family 2
ALDHs (Liu and Schnable, 2002; Skibbe et al., 2002). Consequently, the mitochondrial
Family 2 ALDHs may contribute to root elongation via some other pathway than the
PDH bypass.

Materials and Methods

Growth of plants

Wild type and T-DNA insertion lines of Arabidopsis seeds were planted in soil or
on standard MS media (Murashige and Skoog, 1962) with addition of 1% sucrose after
surface-sterilization with 50% bleach plus 0.01% triton X-100. After planting, they
were allowed to imbibe for 2-4 days at 4°C before transfer to 24 hour light conditions in a
growth chamber at 22°C under a light intensity of 110 ± 5 μmol m⁻² S⁻¹.

Identification and Genotyping of T-DNA knockout lines

aldh2B4-1 (CSJ2971) and *aldh2B7-1* (CSJ989) T-DNA knockout lines were
identified in association with the Arabidopsis Knockout Facility at the University of
Wisconsin following their standard procedures
(http://www.biotech.wisc.edu/arabidopsis). *aldh2C4-1* (SALK_027911), *aldh2C4-2*
(SALK_024974), and *aldh2B4-2* (SALK_078568) T-DNA knockout lines were identified
in the Salk Institute T-DNA insertion library database (http://signal.salk.edu/cgi-
bin/tdnaexpress) by BLAST searches.

The T-DNA left border primers JL202 (5’-
CATTTTATAATAACGCTGCGGACATCTAC -3’) and LBA1 (5’-
TGGTTACGATGCTGGCCCATCG -3') were used in combination with gene specific primers to genotype lines from the University of Wisconsin and from the SALK Institute, respectively (Table 1). LBA1 was used instead of LBB1 (see SALK website) because under our PCR conditions LBB1 can self amplify a band of ~450 bp from Columbia and WS wild type plants. (This has already been included in the FAQs on SALK website. Seems that many people have the same issue. Should we still include that in the manuscript?)

Generation of double and triple mutants

To obtain double mutants, crosses were made between plants homozygous for different single mutants to generate a plant that was heterozygous for both. Progeny from this plant were then genotyped. The *aldh2B4;aldh2B7* double mutant in the uniform WS genetic background carried the *aldh2B4-l* and *aldh2B7-l* alleles, and that in a mixed Columbia and WS background carried the *aldh2B4-2* and *aldh2B7-l* alleles. The two types of triple mutants carried the *aldh2B4-l, aldh2B7-l* and one of the two *aldh2C4* alleles.

Polymerase Chain Reaction (PCR)

Each PCR reaction included 0.2 mM dNTP, 2.0 mM MgCl2, 0.5 μM of each primer, and Taq polymerase in a total volume of 20 μl. PCR reactions were conducted for 32 cycles, with each cycle conducted at 94° for 30 sec, followed by the appropriate annealing temperature for 45 sec, and then extended at 72° for 1 min.
An intact seedling removed from the soil with roots cleaned using a paper towel, one seedling leaf, or one apical portion of the inflorescence, was weighed, and placed into a 1.5 ml eppendorf tube containing 100 μl of carrier (20 mM ethanol) plus 1 μCi of \(^{14}\text{C}\)-ethanol (Sigma product # 312975). Tubes were incubated in a growth chamber with the lid open. After four hours plant tissues were dried with a paper towel and placed into 1 ml Hexane:Isopropanol (3:2) solution for short-term storage if needed. Fatty acids were isolated using the protocol of Behal et al. (2002).

Tissue collection, RNA isolation and Reverse-Transcriptase PCR

Tissues were collected from one month old adult plants growing on soil in the growth chamber as described above, harvested in the following order: green siliques, open flowers, flower buds, cauline leaves, stems, rosette leaves and roots (washed by water and dried with paper towel). After harvest, samples were immediately submerged in liquid nitrogen and stored at –80°C until RNA isolation was performed. Tissues were ground with a mortar and pestle in liquid nitrogen, and RNA was isolated with a modified “acid guanidinium thiocyanate-phenol-chloroform extraction” method (Chomczynski and Sacchi, 1987; Puissant and Houdebine, 1990) as described in Huang et al. (2005), except for a slightly different recipe for Trizol (38% phenol equilibrated pH 4.3, 1M guanidine thiocyanate, 1M ammonium thiocyanate, 0.1M sodium acetate pH5, 5% glycerol).

First strand cDNA was synthesized with poly dT primer using SuperScript II RNase H Reverse Transcriptase (Cat. No. 18064-014, Invitrogen, CA).
Two microliters of the first strand cDNA were used for PCR to test the transcription of the T-DNA insertion alleles. All primer pairs flank at least one intron.

The following pair of primers was used for *aldh2C4-1* and *aldh2C4-2*: 5'-AACCTTCTCCACAACCTTATCGTAT -3' (forward) and 5'-ACGGAGCCACGACGGTGAAGTTAC -3' (reverse).

The following pair of primers was used for *aldh2B4-1* and *aldh2B4-2*: 5'-CTACTGGATGTGCCTGAAGCATC -3' (forward) and 5'-CATGAGTCTTTTAGAGAACCACAAG -3' (reverse).

For *aldh2B7-1*, the primer sequences are 5'- AGTACCAATGCTTGCTAGGG -3' (forward) and 5'- AGCTTGTAATGTGGCTCCAG -3' (reverse).

The primer sequences used for the positive control actin2 (Accession number U37281) are the same as used by Sunkar et al. (2003).

Quantitative Real-Time PCR

Procedures similar to those described in Swanson-Wagner et al. (2006) were used. The criteria for designing primers (Table 2) using Primer 3 (Rozen and Skaletsky, 2000) were as follows: Tm, 58°C to 61°C, no difference >2°C between the primers in a pair, primer length, 19–24 bp, GC content, 45–55%; amplicon length, 100–200 bp. Only primers yielding a single product in conventional PCR and qRT-PCR were used. qRT-PCR was conducted by using an Mx4000 multiplex quantitative PCR system (Stratagene). A human gene (GenBank accession no. AA418251) was spiked into each reaction as an external reference for data normalization.

qRT-PCR data were initially analyzed by using MX4000 analysis software. Ct values for each target gene and reference gene were calculated by using baseline-
corrected, ROX-normalized parameters. Three technical replicates were included in each plate, and the average Ct value for each gene of interest was normalized within a plate to the human reference gene by computing $2^{\Delta Ct}$ (reference – target) (Livak and Schmittgen, 2001) to indicate the relative amount of expression level compared to the reference gene. This was normalized again by the amount difference of starting RNA. The $2^{\Delta Ct}$ (reference – target) values from three biological replicates were used to calculate standard errors.

Root length measurement and statistical analysis

Photographs were taken of the plants grown on MS media and Image J software (http://rsb.info.nih.gov/ij/) was used to measure root lengths.

The PROC GLM procedure of the SAS statistical software package was used to compare root length among genotypes. Plate was considered a random factor.

Acknowledgements

This research is supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number # NRI 00-0347 and 02-01419, and the DOE (DE-FG02-01ER15170). We thank the Salk Institute Genomic Analysis Laboratory for providing the sequence-indexed Arabidopsis T-DNA insertion lines, the Arabidopsis Knockout Facility at the University of Wisconsin for the screening service of T-DNA insertion lines, and the Arabidopsis Biological Resource Center Stock Center (Ohio State University, Columbus) for providing seeds. We thank former lab members, Tsui-Jung Wen, Yongjie Yang, Marna D. Yandeu-Nelson and Chi-Hong Kuo, for participating in the initial screening for T-DNA mutants from University of Wisconsin.
Literature Cited

Figure Legends

Figure 1. Mutants used in this study do not accumulate detectable levels of ALDH transcripts. RNA samples extracted from whole plants were subjected to RT-PCR using primers specific for the indicated genes (Methods). m/m and +/+ designate RNA samples from plants homozygous for the mutant and wild type alleles, respectively, of the indicated genes. The actin2 gene serves as a positive control for RNA quality.

Figure 2. The incorporation rate of 14C-ethanol into fatty acids in whole seedlings (A) and inflorescences (B). Reported values are based on the averages of four biological replicates. Each replicate consisted of the indicated tissue from an individual plant.

Figure 3. Expression patterns of Family 2 ALDH genes in Arabidopsis across different tissues. Three biological replicates were included in the experiment for each tissue, each replicate from an individual plant.
Figure 4. Transcript levels of the three Family 2 ALDH genes in Arabidopsis whole adult plants of Columbia and WS wild type. The standard errors indicated by the error bars were calculated by taking three or four primer pairs as replicates for each gene, four for ALDH2C4, four for ALDH2B4 and 3 for ALDH2B7 (Table 2).

Table 1 Gene specific primers used along with T-DNA left border primer\(^1\) for genotyping by PCR

<table>
<thead>
<tr>
<th>Gene Specific Primers</th>
<th>Insertion feature(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-DNA location</td>
<td>Gene Specific Primers</td>
</tr>
<tr>
<td>Forward</td>
<td>Reverse</td>
</tr>
<tr>
<td>aldh2C4-1 (SALK_027911)</td>
<td>Exon 3</td>
</tr>
<tr>
<td>aldh2C4-2 (SALK_024974)</td>
<td>Exon 5</td>
</tr>
<tr>
<td>aldh2B4-1 (CSJ2971)</td>
<td>Intron 7</td>
</tr>
<tr>
<td>aldh2B4-2 (SALK_078568)</td>
<td>Intron 1</td>
</tr>
<tr>
<td>aldh2B7-1 (CSJ989)</td>
<td>Exon 7</td>
</tr>
</tbody>
</table>

To determine the insertion sites, the PCR products were sequenced. As a consequence of the imprecision of T-DNA integration (Mayerhofer et al., 1991) only exon / intron positions rather than exact insert sites are provided. \(^1\) JL202 was used for lines from the University of Wisconsin and LBal for those from the SALK institute. \(^2\) Two arrows facing against each other indicates that PCR was positive from the T-DNA left border primer in combination with both of the forward and reverse gene-specific primers. A single left facing arrow indicates that PCR was positive only when the T-DNA left border primer was paired with the forward primer. A single right facing arrow indicates that PCR was positive only when the T-DNA left border primer was paired with the reverse primer.
<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALDH2C4</td>
<td>5'-GATCAACACGGTTTCGAGGT-3'</td>
<td>5'-GCATAACGACGGATTTTGTT-3'</td>
</tr>
<tr>
<td></td>
<td>5'-GATCAACACGGTTTCGAGGT-3'</td>
<td>5'-ACATCCAAGGGGAATTGTTGA-3'</td>
</tr>
<tr>
<td></td>
<td>5'-GAAACCATGGAGTGGTTGG-3'</td>
<td>5'-GTTGAGACACCACATCAGGAAT-3'</td>
</tr>
<tr>
<td></td>
<td>5'-GAAACCATGGAGTGGTTGG-3'</td>
<td>5'-CCGCTTCTTTTGAGAGATGG-3'</td>
</tr>
<tr>
<td>ALDH2B4</td>
<td>5'-CCTTTTCAGCTTCCTCTCCC-3'</td>
<td>5'-TGATGAGGAGCTGTTGTTGAAG-3'</td>
</tr>
<tr>
<td></td>
<td>5'-TGACAGATCATAACCCTGGA-3'</td>
<td>5'-GCATAGAAAGCCGTAGAGG-3'</td>
</tr>
<tr>
<td></td>
<td>5'-TGACAGATCATAACCCTGGA-3'</td>
<td>5'-AGACCCGCTCTAAGAAAAG-3'</td>
</tr>
<tr>
<td></td>
<td>5'-AACAGGGTTCAAGGGTCTTT-3'</td>
<td>5'-GTGACGACTGCTTTGATCTG-3'</td>
</tr>
<tr>
<td>ALDH2B7</td>
<td>5'-ACCAGCTTTAGCTTCGCGTA-3'</td>
<td>5'-TAGCCCAAATCCAGAAACT-3'</td>
</tr>
<tr>
<td></td>
<td>5'-CGCTCTTTTCATGTCCTCCTC-3'</td>
<td>5'-CAACGAATCTTCCACCGATT-3'</td>
</tr>
<tr>
<td></td>
<td>5'-GGTACGGTTAGCTGCTGGA-3'</td>
<td>5'-CCCTCCAAATGGAAATTGATG-3'</td>
</tr>
</tbody>
</table>
Table 3 Root length comparisons between the progeny of an *aldh2B4;aldh2B7* double mutant and that of five of its wild type siblings

<table>
<thead>
<tr>
<th>Genotype pair number</th>
<th>ALDH2B4; ALDH2B7</th>
<th>aldh2B4; aldh2B7</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.4 ± 0.1</td>
<td>0.9 ± 0.1</td>
<td><0.0001</td>
</tr>
<tr>
<td>2</td>
<td>1.1 ± 0.1</td>
<td>0.7 ± 0.1</td>
<td>0.0002</td>
</tr>
<tr>
<td>3</td>
<td>1.5 ± 0.1</td>
<td>1.0 ± 0.1</td>
<td><0.0001</td>
</tr>
<tr>
<td>4</td>
<td>1.3 ± 0.1</td>
<td>0.9 ± 0.1</td>
<td>0.0002</td>
</tr>
<tr>
<td>5</td>
<td>1.4 ± 0.1</td>
<td>1.3 ± 0.1</td>
<td>0.0168</td>
</tr>
</tbody>
</table>

Each of the five wild type populations was paired with the double mutant population. Each pair was planted side by side on a same plate, with five plates as replicates for each comparison. Root length (cm) was obtained for 4-6 six-day-old seedlings for each genotype on each plate. An average was calculated out of them as a plate mean and the average of the five plate means are provided as least squares means for each genotype in each pair.
Figure 3 Wei et al.

Figure 4 Wei et al.
Supplementary materials

Despite the differences in root length difference between aldh2a, aldh2b double mutant and their wild type siblings on MS media, there were no physiological defects associated with the double mutant either growing on MS media or soil. From an evolutionary point of view, the ALDH genes themselves must be important under special conditions. To determine the conditions under which ALDH genes are of particular importance, the aldh2a, aldh2b double mutant and their wild type siblings were subject to various stress treatments. However, we did not find any stress condition under which that the double mutant is different from the wild type control. For the purpose of possible follow up on this, treatment methods are provided as follow.

4×10⁻⁵ M Rose Bengal (for oxidative stress treatment), 10⁻⁵ M ABA, 20 mM acetaldehyde (after autoclaving) or 0.5% ethanol (after autoclaving) were added to MS media for various treatments. For cold treatment, plants were placed at 4°C in the dark for 24 hours. For heat treatment, plants were placed put at 40°C in the dark for 12 hours. For hypoxia treatments, plates were filled with water covering plants and incubated in a sterile hood for 6 hours covered with foil to prevent photosynthesis.
APPENDIX. THE MUTANT SCREENINGS FOR PYRUVATE DECARBOXYLASE (PDC) GENES IN ARABIDOPSIS

Yanling Weia,b and Patrick S. Schnablea,b,c,d,1

a Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
b Interdepartmental Genetics Program, Iowa State University, Ames, Iowa 50011
c Department of Agronomy, Iowa State University, Ames, Iowa 50011
d Center for Plant Genomics, Iowa State University, Ames, Iowa 50011

Footnotes:

This research was funded by grants from the USDA (NRI 00-0347 and 02-01419) and the DOE (DE-FG02-01ER15170).

1 Correspondence author: 515-294-5256 (fax), schnable@iastate.edu (e-mail)
The study in this thesis showed direct evidence for the presence of an acetyl-CoA biosynthesis pathway in plants, sequentially characterized by pyruvate decarboxylase (PDC), aldehyde dehydrogenase (ALDH), and acetyl-CoA synthetase (ACS). However, the physiological significance of this pathway remains to be further addressed, in order for which we tried to obtain Arabidopsis mutants in \textit{PDC} genes also. There are four \textit{PDC} genes in Arabidopsis, \textit{PDC1}, \textit{PDC2}, \textit{PDC3} and \textit{PDC4}. Although no thorough characterization has been applied on the mutants, this Appendix serves as a summary of the current progress on the mutant screenings.

\textit{pdc1-CSJ4016} and \textit{pdc2-CSJ3667} T-DNA knockout lines were identified in association with the Arabidopsis Knockout Facility at the University of Wisconsin following their standard procedures (http://www.biotech.wisc.edu/arabidopsis). \textit{pdc1-SALK_018840}, \textit{pdc1-SALK_090204}, \textit{pdc2-SALK_053097}, \textit{pdc2-SALK_066678}, \textit{pdc3-SALK_087974}, and \textit{pdc3-SAIL_151_G05} T-DNA knockout lines were identified in the Salk Institute T-DNA insertion library database (http://signal.salk.edu/cgi-bin/tdnaexpress) by BLAST searches.

For genotyping the above lines, T-DNA left border primer JL202 (5’-CATTTTATAAATAACGCTGGACATCTAC -3’) was used in pair with gene specific primers for genotyping those lines from University of Wisconsin, LBa1 (5’-TGGTTACGTAGTGCCATCG -3’) for genotyping those from SALK institute, and LB1 (5’-TGGTTACGTAGTGCCATCG -3’) for the line from Syngenta Arabidopsis Insertion Library (SAIL), \textit{pdc3-SAIL_151_G05} (Table 1).
Reverse-Transcriptase PCR applied on RNA isolated from whole plants revealed that \textit{pdc1-CSJ4016}, \textit{pdc1-SALK_018840}, \textit{pdc1-SALK_090204} and \textit{pdc2-CSJ3667} did not give detectable transcripts (Figure 1), while \textit{pdc2-SALK_053097} gave wild type size transcripts. Other lines have not been determined yet.
Table 1 Gene specific primers used along with T-DNA left border primer\(^1\) for genotyping

<table>
<thead>
<tr>
<th>Genotype</th>
<th>T-DNA location</th>
<th>Forward Primer flanking T-DNA insertion</th>
<th>Reverse Primer flanking T-DNA insertion</th>
<th>Insertion feature(^2)</th>
<th>Transcription characterization(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pdc1)-CSJ4016</td>
<td>1 bp downstream of 3' UTR</td>
<td>5'-GATTAAGA ACTGGAACT ACAAATGTC-3'</td>
<td>5'-CGTTCACT GTCAAAATCA TCTCTGTTT AA-3'</td>
<td>(\leftrightarrow) Null</td>
<td></td>
</tr>
<tr>
<td>(pdc1)-SALK_018840</td>
<td>Exon 2</td>
<td>5'-TCCTTCCT CCGCTATCA CCATCAACT-3'</td>
<td>5'-TTCACACT TCAATGGCT TACCTTCAG-3'</td>
<td>(\leftrightarrow) Null</td>
<td></td>
</tr>
<tr>
<td>(pdc1)-SALK_090204</td>
<td>Exon 2</td>
<td>5'-TCCTTCCT CCGCTATCA CCATCAACT-3'</td>
<td>5'-TTCACACT TCAATGGCT TACCTTCAG-3'</td>
<td>(\leftrightarrow) Null</td>
<td></td>
</tr>
<tr>
<td>(pdc1)-SALK 125892</td>
<td>Exon 3</td>
<td>Same as (pdc1)-SALK_018840</td>
<td></td>
<td>(\rightarrow) ND</td>
<td></td>
</tr>
<tr>
<td>(pdc1)-SALK 128445</td>
<td>Intron 2</td>
<td>Same as (pdc1)-SALK_018840</td>
<td></td>
<td>(\leftrightarrow) ND</td>
<td></td>
</tr>
<tr>
<td>(pdc2)-SALK 053097</td>
<td>~250 bp upstream of 5' UTR</td>
<td>5'-AATCTATA GTCAAAATCC AAATCGTAA-3'</td>
<td>5'-AGGAACG GAGAAGACA TCGGTGACG C-3'</td>
<td>(\rightarrow) WT</td>
<td></td>
</tr>
<tr>
<td>(pdc2)-SALK 066678</td>
<td>~40 bp upstream of 5' UTR</td>
<td>Same as (pdc2)-SALK 053097</td>
<td></td>
<td>(\leftrightarrow) ND</td>
<td></td>
</tr>
<tr>
<td>(pdc2)-CSJ3667</td>
<td>Exon</td>
<td>5'-TCTAGTCC TCATCCTGTG CGTTCAT-3'</td>
<td>5'-AGGCCAG CATTCTTCTT TCCATTGT-3'</td>
<td>(\leftrightarrow) Null</td>
<td></td>
</tr>
<tr>
<td>(pdc3)-SALK 087974</td>
<td>Exon 3</td>
<td>5'-CGCACAAG GGATAGCA ACAGC-3'</td>
<td>5'-CCCACAT CCTTTAGGC AGCTT-3'</td>
<td>(\leftrightarrow) ND</td>
<td></td>
</tr>
<tr>
<td>(pdc3)-SAIL 151 G05</td>
<td>~300 bp upstream of 5' UTR</td>
<td>5'-AAACGGA AAACCTCA ATCGCCTAA A-3'</td>
<td>5'-CCCACATC CTAAAAAGCA GCT T-3'</td>
<td>(\leftrightarrow) ND</td>
<td></td>
</tr>
</tbody>
</table>
1 JL202 was used for lines from the University of Wisconsin and LBa1 for those from the SALK institute.

2 Two arrows facing against each other indicates that PCR was positive from the T-DNA left border primer using both of the forward and reverse gene-specific primers. A single left facing arrow indicates that PCR was positive only when the T-DNA left border primer was paired with the forward primer. A single right facing arrow indicates that PCR was positive only when the T-DNA left border primer was paired with the reverse primer.

3 “Null” and “WT” indicate that homozygous mutant plants did not give detectable transcripts or gave wild type size transcripts, respectively, by Reverse-Transcriptase PCR. “ND” stands for “Not Determined”.
ACKNOWLEDGEMENTS

I would like to thank all those people who have helped me, encouraged me and cared for me through my study at ISU. My first special thanks go to Dr. Patrick S. Schnable, my major professor, for his guidance in my research and encouragement in my career development. My second special thanks go to my POS committee members: Dr. Basil J. Nikolau and Dr. David J. Oliver for their advice and help in my research, especially Dr. Oliver for giving me permission to work in his lab for 14C feeding experiments, and also Dr. Thomas Peterson and Dr. Steve Whitham for serving on an earlier version of my POS committee. My third special thanks go to Dr. Ming Lin for his help and discussion with the 14C feeding experiments and the acetyl-CoA project.

My other thanks are given to all members of Schnable Lab for their friendship and the work environment they make that has nursed me to a better person and a more mature scientist.

Finally, I would like to give my appreciation to my husband Xuehui Li for his continuous love and support, my daughter Amanda Xin-Ran Li for bringing me the most wonderful happiness as a mother, my parents for their most generous love and care, and all of my other family members for always being there for me.