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Abstract. The objective of this research was to develop a building thermal analysis and air quality 
predictive (BTA-AQP) model to predict indoor climate and long-term air quality (NH3, H2S and CO2 
concentrations and emissions) for swine deep-pit buildings. The paper presents the development of 
the BTA-AQP model using a building thermal transient model, artificial neural networks, and typical 
meteorological year (TMY3) data in predicting long-term air quality trends. The good model 
performance ratings (MSE/S.D.<0.5, CRM≈0; IoA≈1; and Nash-Sutcliffe EF > 0.5 for all the predicted 
parameters) and the graphical presentations reveal that the BTA-AQP model was able to accurately 
forecast indoor climate and gas concentrations and emissions for swine deep-pit buildings. By 
comparing the air quality results simulated by the BTA-AQP model using the TMY3 data set with 
those from a five-year local weather data set, it was found that the TMY3-based predictions followed 
the long-term mean patterns well, which indicates that the TMY3 data could be used to represent the 
long-term expectations of source air quality. Future work is needed to improve the accuracy of the 
BTA-AQP model in terms of four main sources of error: (1) Uncertainties in air quality data; (2) 
Prediction errors of the BTA model; (3) Prediction errors of the AQP model, and (4) Bias errors of the 
TMY3 and its limited application.  

Keywords. Air quality, Typical meteorological year, Modeling, Long-term mean. 
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Introduction 
Due to the absence of a nationwide monitoring network for quantifying long-term air emission 
inventories of livestock production facilities, state and federal regulatory agencies in the United 
States have identified a need for air quality predictive (AQP) models to assess the impact of annual 
airborne pollutants on human health, the ecological environment, and global warming. Moreover, 
with the increasing number of complaints and lawsuits against the livestock industry, state planners, 
environment scientists and livestock producers also need AQP models to determine science-based 
setback distances between animal feeding operations and neighboring residences as well as 
evaluate relevant emission abatement strategies. Most of the AQP models proposed so far use mass 
balance equations to describe the mechanisms of gaseous emissions, estimate their characteristic 
and amount at each transformation stage, and forecast gas release from animal production sites 
(Aarnink et al., 1998; Ni et al., 2000; Kai et al., 2006). Source odor and gas concentrations and 
emission rates are very difficult to model because they are highly variable with time of day, season, 
weather conditions, building characteristics, ventilation rate, animal growth cycle, and manure 
handling method. Thus, the whole modeling process can be regarded as a complicated dynamic 
system with many nonlinear governing relationships. Also, there still exist some circumstances of 
gaseous emissions that cannot be explained with our current limited scientific understanding. On the 
contrary, neural network modeling techniques, unlike the traditional methods based on physical 
principles and detailed prior knowledge of the modeling structure, are able to capture the interactions 
of numerous multivariate parameters, learn the relationships between input and output variables, and 
give quite satisfying prediction results. Sun et al. (2008a) developed backpropagation and 
generalized regression neural network models to predict diurnal and seasonal gas and PM10 
concentrations and emissions from swine deep-pit finishing buildings. It was found that the obtained 
forecasting results of the neural network models were in good agreement with actual field 
measurements, with coefficient of determination values between 81.2% and 99.5% and very low 
values of systemic performance indices. The promising results from this work indicated that artificial 
neural network technologies were capable of accurately modeling source air quality within and 
emissions from these livestock production facilities.  

Although AQP models can be used as a useful tool to forecast air quality over a time period that are 
beyond an actual monitoring period, the main input variables for the model must be known which 
requires field measurements. These variables include indoor environment (indoor, inlet and exhaust 
temperature and relative humidity), outdoor climate conditions (outdoor temperature, relative 
humidity, wind speed, wind direction, solar energy and barometric pressure), pig size and density 
(animal units), building ventilation rate, animal activity, overall management practices, and properties 
of the stored manure, to name a few. Sun et al. (2008b) performed a multivariate statistical analysis 
and identified four significant contributors to the AQP models: outdoor temperature, animal units, 
total building ventilation rate, and indoor temperature. The purpose of introducing fewer uncorrelated 
variables to the models is to reduce model structure complexity, eliminate model over-fitting 
problems, and minimize field monitoring costs without sacrificing model predictive accuracy. 
Conducting long-term field measurements of the identified four variables using current engineering 
approaches are still time consuming and expensive. Therefore, making use of simulation programs is 
a good alternative to obtain the required significant input variables for AQP models.  

The objective of this research is to predict indoor climate and long-term air quality (NH3, H2S and 
CO2 concentrations and emissions) for swine deep-pit finishing buildings using a transient building 
thermal analysis and air quality predictive (BTA-AQP) model and a typical meteorological year data 
base.  
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Materials and Methods 

Long-term Air Quality Prediction Method 

Long-term air quality predictions can be separated into three components as shown in Figure 1: the 
building thermal analysis (BTA) model, the air quality predictive (AQP) model, and a typical 
meteorological year (TMY3) database (NSRDB, 2008). Specifically, a lumped capacitance model 
was developed to study the transient behavior of indoor air temperature and ventilation rate 
according to the thermo-physical properties of a typical Iowa swine building, a typical set-point 
temperature scheme, a typical fan staging scheme, transient outside temperature, and the heat 
fluxes from pigs and supplemental heaters. The obtained indoor room temperature and ventilation 
rate combined with animal growth cycle, in-house manure storage level, and typical meteorological 
year (TMY3) data were fed into the generalized regression neural network (GRNN) air quality 
predictive model to calculate average yearly ammonia, hydrogen sulfide and carbon dioxide 
concentrations and emission rates. The TMY3 data used for this research project consists of 
representative hourly solar radiation and meteorological values for a 1-year period in Des Moines, 
Iowa, about 100 kilometers away from the swine deep-pit finishing facility where field data was 
collected (calendar year 2003 data collection). Animal growth cycle includes pig number and average 
pig weight in the room, which were used to estimate total animal units (AU). The total AU was 
obtained by dividing the total pig weight by 500 kg animal live weight. In-house manure storage level 
was considered as an additional input variable representing a deep-pit system for the AQP model.   

 
 
 
 
  
 

 

 

 

Figure 1. Scheme of the BTA-GRNN-AQP model (Tin: indoor temperature (oC); VR: ventilation rate 
(m3s-1); AU: animal unit; Tout: outside temperature (oC), Level: in-house manure storage level (m)). 

 

Description of field measurements 

Two identical deep-pit swine finishing buildings located in central Iowa were monitored for a 15-
month sampling period in order to obtain long-term gas concentrations and emissions (Jan 2003 – 
March 2004). Each building was 60 m long and 13 m wide, which can house 960 finishing pigs from 
~20 to 120kg. Slurry was collected in a 2.4-m-deep pit below a fully slatted floor and was stored for 
one year. Once a year in the fall, the under-floor deep pit was emptied and the slurry was injected to 
nearby cropland as a fertilizer source.  

The real-time gas concentrations and emission rates, environmental data, and building ventilation 
rate were measured by a mobile emission laboratory (MEL) that included a gas sampling system 
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(GSS), a computer-based data acquisition system, gas analyzers, environmental instrumentation, 
standard gas calibration cylinders, and other supplies. Gas concentrations from multiple sampling 
locations within the swine building were quantified with a chemiluminescence NH3 analyzer (Model 
17C, Thermal Environment Instruments, Franklin, MA), a pulsed fluorescence SO2 detector (Model 
45C, Thermal Environment Instruments, Franklin, MA), and two photoacoustic infrared CO2 
analyzers in the range from 0 to 2,000 and 10,000 ppm (Model 3600, Mine Safety Appliances CO., 
Pittsburg, PA). A three-way solenoid system was used to automatically switch between 12 measuring 
locations with 10-min sampling intervals and sequentially delivered gas from each location to the gas 
analyzers. Therefore, gas samples were taken during twelve, 120-min measurement cycles per day. 
Details of the monitoring method and QA/QC can be found in Heber et al. (2006). Climate 
parameters (temperature, relative humidity, and static pressure) and total building ventilation rate 
were also simultaneously monitored. The total ventilation rate was measured by recording the on/off 
status of four single-speed tunnel fans and the on/off status along with fan rpm levels for all variable 
speed fans. The ventilation rate of each fan was obtained in situ using a FANS unit where calibration 
equations were developed as a function of static pressure and fan rpm levels for variable speed fans. 
Gas emission rates were determined by multiplying fan airflow rate by representative gas 
concentration differences between inlet and outlet for all fans operating at any given time.  

Transient BTA model development 

A generalized lumped-capacity model (Sun and Hoff, 2009) was used to predict inside barn 
temperature changes as a function of outdoor temperature, animal unit, supplemental heat, the 
building envelope thermal characteristics, and the ventilation staging system for the monitored barn 
described above.  In general, this model was developed from the following; 

outin EnergyEnergy
dt
dU

−=                          (1) 

where 

U = internal energy of the air mass inside the barn, J. 

    = m Cp,air Tin,i 

m= mass of air inside barn, kg. 

   = ρairV 

ρair= inside air density (an assumed constant of 1.20 kg/m3). 

V= volume of airspace in barn, m3. 

Cp,air= specific heat of air (an assumed constant of 1006 J/kg-oC). 

Tin,i= predicted inside barn temperature at current time i, oC. 

t= time, s. 

Assuming that the mass (m) and specific heat (Cp,air) are constant results in; 

airpair

outiniin

VC
EnergyEnergy

dt
dT

ρ
}{, −

=                                                                                        (2) 

The energy inputs (Energyin) considered with this BTA model include sensible heat gained from the 
animals (qanimals) and any supplemental heat input (qheater) required to maintain a desired set-point 
temperature inside the barn.  The losses (Energyout) considered with this BTA model include net 
envelope losses (BHLF(Tinside-Tout)) and net enthalpy losses from the ventilation air (VRρairCp,air(Tinside-
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Tout).  Integrating equation 2 results in the following generalized lumped-capacity BTA model used for 
this research; 

][ }{
βρ

ρ

airpair

outiinoutiinairpairheateranimals
iiniin VC

tTTBHLFTTCVRqq
TT

∆−+−−+
+= −−

−

*)()( 1,1,
1,,                 (3)

           

where; 

Tin,i-1= predicted inside barn temperature at previous time i-1 (=t-∆t), oC. 

qanimals= sensible heat produced by the pigs, J/s. 

qheater= sensible heat produced by supplemental heaters, J/s. 

VR= current ventilation rate, m3/s. 

Tout= outside air temperature, oC. 

BHLF= building heat loss factor, J/s-oC. 

∆t= time increment used in transient analysis, s, which was fixed at 360 s. 

β= a building dampening factor (dimensionless). 

The building dampening factor β was required to dampen erratic and unrealistic changes between 
inside barn temperature predictions with adjacent time steps.  After several iterations by trial and 
error, a dampening factor of β=5 was chosen for this project.  Other barn styles that differ in overall 
heat capacity would be expected to have a different dampening factor although in general most 
animal production housing systems have similar thermal properties. 

The lumped capacitance BTA model was able to determine the time dependence of indoor 
temperature within a negative-pressure, mechanically ventilated building and take into account the 
heat transfer through the components of the building structure and the ventilation system, set point 
temperature, transients of outdoor climate, the presence of different sensible heat sources inside the 
building, and the inertia of the transient system. To simply the modeling process, the following 
assumptions were introduced: 

 The thermal stratification of indoor air has been neglected, i.e., the indoor temperature is uniform 
at any location inside the building.   

 Radiation exchange between the pigs and the surroundings is included within the overall pig 
sensible heat production available from published data. 

 The heat fluxes across the structure have been considered unidirectional. 

 Constant thermal properties have been considered. 

 The heating medium is not compressible. 

Table 1 gives the approximate building heat loss factor (BHLF) for the deep-pit swine building used 
for the field measurements. Each end wall has one 0.9x2.1 m steel insulated door. The lower 0.9 m 
wall consists of 203 mm thick concrete with the balance 38x90 mm wood stud construction 0.4 m on-
center, 19 mm thick plywood interior, steel outer siding and the cavity filled with fiberglass batt 
insulation. Each sidewall has 0.9 m lower portion of 203 mm concrete and 38x90 mm stud 
construction 406 mm on-center with a 1.5 m tall two-layer curtain. The interior ceiling was flat 
consisting of a flexible woven material of inconsequential thickness, rafters spaced 1.22 m on-center, 
with the balance filled with 254 mm of blown-in cellulose insulation.  The top chord of the rafters was 
covered with conventional steel roofing.  
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As shown in table 1, the total barn BHLF was 965.1 W/oC with the ceiling, curtains and building 
length perimeter accounting for the majority. The maximum heat loss component (17.9% of the 
overall BHLF) was the curtain component of the side walls, followed by the building length perimeter 
(16.1 %) and ceiling (15.0%).  

Table 1. Building heat loss factor for a typical deep-pit swine building. 

Component 
L 

(m) 
H or W 

(m) 
Area 
(m2) 

R-Values 
(oC-m2/W) 

BHLF 
(W/ oC )

Component 
(%) 

Ceiling 59.7  12.8  764.8 5.28  144.8  15.0  
SW1 lower  59.7  0.9  54.6 1.41  38.8  4.0  
SW1 upper 59.7  1.5  91.0 0.53  172.3  17.9  
SW2 lower 59.7  0.9  54.6 1.41  38.8  4.0  
SW2 upper 59.7  1.5  91.0 0.53  172.3  17.9  

EW1 12.8  2.4  30.1 3.52  8.6  0.9  
EW1 door 0.0  1.2 x0.9 1.1  0.53  2.1  0.2  

EW2 12.8  2.4  30.1 3.52  8.6  0.9  
EW2 door 0.0  1.2 x0.9 1.1  0.53  2.1  0.2  

Perimeter 1 59.7        2.60 [a] 155.2  16.1  
Perimeter 2 12.8    2.60  33.3  3.4  

Perimeter 3 59.7    2.60  155.2  16.1  

Perimeter 4 12.8      2.60  33.3  3.4  
Total Barn BHLF       965.1    

[a] The unit for the perimeter heat loss factor is W/m-C. 

The ventilation system of the monitored building consisted of nine stages with eight fans having four 
different diameters (46, 61, 91, and 122 cm). These fans (table 2) were operated automatically to 
maintain an operator desired inside climate according to the difference between indoor air 
temperature and set point temperature (SPT). The ventilation rates for each fan used in the BTA 
model were downgraded to 85% of their published capacity due to the fact that fan field performance 
can be negatively affected by a variety of factors including dust accumulation on fan shutters and 
blades, loose fan belts, and changing power supply to the fans. Also, the airflow rate capacity for 
each of the three 122 cm fans (fans 6, 7, and 8) needed to be further corrected because of the 
influence of high operating static pressures when these fans were used. A value of 80% of the “free-
air condition” value (8.82 m3/s) for each 122 cm fan was used in the BTA model.  

Table 2. Fan type and airflow rate used for the swine deep-pit building.[a] 

Fan  Fan Diameter (cm) 
Rate 
(m3/s) 

85% of 
Rate 
(m3/s) 

122cm Fan 
added (m3/s) 

PF (1,2) [b] 46 1.06  0.90  - 
SF (3), TF (4) 61 2.83  2.41  - 

TF (5) 91 4.96  4.21  - 
TF (6, 7, 8) 122 10.38 8.82  7.06  

[a] PF: Pit Fan; SF: Side Wall Fan; TF: Tunnel Fan.  
[b] Number in parenthesis indicates the number of the fans used. 
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Table 3 outlines the fan staging scheme for the swine deep-pit building used for field monitoring. Fan 
stages 0 and 1 consisted of variable-speed fans 1 to 4 (two pit fans, one side wall fan, and one 
tunnel fan). These fans operated continuously at stages 0A-0B and 1A-1B when the temperature 
difference between indoor air temperature and the SPT fell into a range of -0.3 to 0.6 C°  and 1.1 to 
1.7 C° , respectively; while higher stage fans (single-speed fans) were activated gradually with 
increased temperature differences until the maximum fan stage 9 was achieved, e.g., the pit fans 1 
and 2 and tunnel fans 5 to 7 turned on when the temperature difference reached 6.1 C° .  

Table 3. Fan staging scheme for the swine deep-pit building.[a]  

Stage Fan ON 
Rate 
(m3/s)

Activation Delta 
T (°C) 

0A  PFs-1,2 at 65% VFC 1.17  -0.3 
0B  PFs-1,2 at 100% VFC 1.81  0.6 
1A PFs-1,2; SF-3, TF-4 at 70% VFC 5.17  1.1 
1B PFs-1,2; SF-3, TF-4 at 100% VFC 6.62  1.7 
2 PFs-1,2; TF-3,5 8.42  2.2 
3  PFs-1,2; SF-3; TF-4, 5 10.83 3.3 
4 PFs-1,2; TF-5,6 13.08 4.4 
5 PFs-1,2; TF-5, 6, 7 20.14 6.1 
6 PFs-1,2; TF-4,5,6,7,8 29.60 7.8 

[a] Delta T is equal to Tin-SPT. Tin: indoor temperature. VFC: 
ventilation full capacity.  

The SPT was set at 23.3 C°  when pigs entered (~ 20 kg). This SPT was reduced manually by the 
producer about 0.2 C°  every Monday until a lower limit of 20 C°  was reached.  

Typically, one complete growth production cycle (~20 to 120 kg) was 140 days or about 4.5 months. 
The sensible heat fluxes from the pigs were calculated by multiplying sensible heat production 
(SHP/kg) at a specific temperature by the total pig weight (Albright 1990). Moreover, the swine 
buildings monitored were equipped with a 14.7 kW supplemental heating system for cold weather 
make-up energy.  

Neural Network Air quality model  

Modeling source air quality in a swine deep-pit building is a complicated dynamic system with many 
nonlinear governing relationships. Moreover, there still exist some circumstances of gaseous 
emissions that cannot be explained with our current limited scientific understanding. Therefore, a 
black-box modeling approach using artificial neural networks (ANN) would be a potential method for 
handling air quality predictions. Black-box models do not need detailed prior knowledge of the 
structure and different interactions that exist between important variables. Meanwhile, their learning 
abilities make the models adaptive to system changes. Recently, there has been an increasing 
amount of applications of ANN models in the field of atmospheric pollution forecasting (Hooyberghs 
et al., 2005; Grivas et al., 2006; Sousa et al., 2007; Sun et al., 2008a). The results show that ANN 
black-box models are able to learn nonlinear relationships with limited knowledge about the process 
structure.  

Sun et al. (2008a) employed backpropagation neural network (BPNN) and generalized regression 
neural network (GRNN) techniques to model gas and PM10 concentrations and emissions generated 
and emitted from a swine deep-pit finishing building. The obtained BPNN and GRNN predictions 
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were in good agreement with field measurements, with coefficient of determination (R2) values 
between 81.2% and 99.5% and very low values of systemic performance indexes. The good results 
indicated that ANN technologies were capable of accurately modeling source air quality within and 
from these livestock production facilities. Furthermore, it was found that the process of constructing, 
training, and simulating the BP network models was very complicated. The effective way of obtaining 
good BP modeling results was to use some trial-and-error methods and thoroughly understand the 
theory of backpropagation. Conversely, for the GRNN models, there was only one parameter (the 
smoothing factor) that needed to be adjusted experimentally. Additionally, the GRNN performance 
was not sensitive to randomly assigned initial values and the GRNN approach did not require an 
iterative training procedure as in the backpropagation method. Other significant characteristics of the 
GRNN in comparison to the BPNN were the excellent approximation ability, fast training time, and 
exceptional stability during the prediction stage. Thus, it was recommended in Sun et al. (2008a) that 
a GRNN be used for source air quality modeling.  

In this current research, a GRNN model was developed to explore the complex and highly nonlinear 
relationships between air pollutants and many input variables on the diurnal and seasonal NH3, H2S, 
and CO2 levels and emissions. This developed air quality model was then used to forecast long-term 
gas concentrations and emissions from a typical swine deep-pit building associated with five 
significant input elements: outdoor temperature obtained from a specific year or the TMY3 data; a 
typical swine growth cycle; and ventilation rate and indoor air temperature predicted by the transient 
BTA model (Sun and Hoff, 2009). It is noted that in the midwestern United States, it is common 
practice to store manure in deep holding concrete pits for one calendar year. This year-long slurry 
storage system is also a concentrated source for gas concentrations and emissions (Hoff et al., 
2006). Therefore, in-house manure storage level was considered as an additional factor representing 
the deep-pit system for the AQP model. The manure depth changes with swine production time, from 
0.3 m (empty pit) to 2.1 m (full pit) throughout the year. The full and empty events generally occur 
before and after slurry removal which is typically conducted once per year in the fall after harvest (i.e. 
October).  

Typical meteorological year  

Selecting appropriate representative meteorological data is vitally important to accurately predict 
indoor climate and long-term air quality levels. Normally, a representative meteorological data 
consists of a multi-year and long-term average measured data series which would represent a year 
of prevailing weather conditions for a specific location. It is noted that the use of typical climatic 
parameters instead of multiple-year data can reduce a great deal of time and computation in 
computer simulation and facilitate performance comparisons of different system types, 
configurations, and locations. Therefore, typical weather data has been extensively used for building 
energy simulation and solar energy analysis to assess the expected heating and cooling costs for the 
design of industrial and residential buildings. Currently, the most prevalent weather representations 
are test reference year (TRY), typical meteorological year (TMY3), and weather year for energy 
calculations (WYEC2). These data sets are used for different simulation purposes (Pedersen, 2007): 
TRY is suited to short-term energy predictions due to the representation of weather characteristics; 
while TMY3 and WYEC2 are most suitable for long-term energy estimations because the data 
represents long-term weather features; TRY can be used for short-term and long-term predictions. 
Yang et al. (2007) investigated the energy simulation results for office buildings in the five main 
climate zones of China and compared the results using TMY2 with those using multi-year data 
(1971-2000). It was found that the TMY2 was able to predict monthly load and energy use within 
5.4% of the long-term mean. Based on these results, it was concluded that the TMY3 data was an 
acceptable meteorological data set to be used for this current study.  
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TMY3 is composed of typical hourly meteorological values at a specific location over a long period of 
time (30 years). For each TMY3 dataset, 12 typical months are selected using statistics (Sandia 
method; NSRDB, 2008) determined by five important parameters: global radiation on a horizontal 
surface, direct normal radiation, dry bulb and dew point temperatures, and wind speed (NSRDB, 
2008). These important parameters were chosen because solar radiation determines the heat gain; 
dry bulb temperature and wind speed determine heat loss by convection; and dew point temperature 
is an absolute measure of humidity, which determines latent energy. The 12 judged most typical 
months were picked by the Sandia approach to form a complete year. Due to adjacent TMY3 months 
from different years, linear interpolation was performed to smooth the gap for 6 hours on each side of 
adjacent months. In each TMY3 month, mean values of the TMY3 elements are the closest to the 
averages of the elements for multiple years. Thus, the TMY3 can represent long-term average 
climatic conditions.   

Model performance evaluation measures  

Statistical measures, such as mean absolute error (MAE), coefficient of mass residual (CRM), index 
of agreement (IoA), and Nash-Sutcliffe model efficiency (NSEF) can be used to quantify the 
differences between modeled output and actual measurements, and provide a numerical description 
of the goodness of the model estimates (Nash and Sutcliffe, 1970; Willmott, 1982; Sousa et al., 
2007). The following statistical measures were employed to ensure the quality and reliability of the 
BTA model predictions.   

∑
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Where N is the total number of observations, Pi is the predicted value of the ith observation, Oi is the 
observed value of the ith observation, and O  is the mean of the observed values.   

The MAE estimates the residual error, expressed in the same unit as the data, which gives a global 
idea of the difference between the observed and predicted values. The CRM measures the tendency 
of the model to overestimate or underestimate the measured values. The IoA compares the 
difference between the mean, the predicted and the observed values, indicating the degree of error 
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for the predictions. The NSEF evaluates the relative magnitude of the residual variance in 
comparison with the measurement variance.  

In addition to the statistical measures identified above, the predictive accuracy of model outputs were 
examined through graphical presentations of the predicted vs. observed values. 

Results and Discussion 
In this section, a comparison was made between the predicted and actual gas concentrations and 
emissions in 2003 to evaluate the accuracy of the BTA-AQP model estimates. In addition, the 
simulated results using the TMY3 data set and a five-year mean weather data set were compared to 
validate the assumption that the TMY3 could accurately represent long-term source air quality levels. 
Finally, overall prediction errors of the BTA-AQP model were analyzed and future work is identified 
for improving the model. 

BAT-AQP Model Evaluation 

The monthly average predicted vs. field collected NH3 concentrations and emissions in 2003 are 
shown in figure 2. The absolute error (AE) was used to quantify the difference between the monthly 
predicted and field collected values. It was observed that AE ranged from 0.3% underestimation in 
October to 16.0% overestimation in December with an overall average value of 4.3 % for NH3 
concentration. The 16% absolute error in December was probably due to two growth cycles 
appearing in the same month, i.e., mature pigs (120 kg) were gradually shipped to market in early 
December and smaller pigs (~20kg) entered at the end of December. During these times, air quality 
levels and indoor climate were highly influenced by the management of the swine barn and workers’ 
involvement, which were not considered as a factor in the development of the BTA-AQP model. It 
can be further seen in figure 2 that the AE varied from 0.4% overestimation in August to 23% 
underestimation in April with an overall average value of 8.3% for NH3 emission. The big difference 
between the predicted and actual NH3 emission in April may be attributed to a lower ventilation rate 
predicted by the BTA model as compared with actual values (mean predicted vs. field measured 
ventilation rate was 2.67 vs. 3.40 m-3 s-1) and lower estimations of NH3 concentration.   
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Figure 2. Predicted vs. field NH3 concentrations and emissions in 2003. 

The monthly average predicted vs. field collected H2S concentrations and emissions in 2003 are 
shown in figure 3. The absolute error ranged from 2% underestimation in September to 37% 
overestimation in July with an overall average value of 10.5 % for H2S concentration. The 37% 
overestimation in July could be explained by the fact that some important variables were excluded in 
the H2S predictive model, such as manure characteristics and surface temperature. The manure 
temperature may be an important variable affecting H2S release in hot weather. Moreover, in early 
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July, some underestimated ventilation rates were observed at the beginning of a new swine growth 
cycle resulting in a corresponding higher predicted H2S concentration. For H2S emissions, the 
absolute error varied from 1% underestimation in January to 27% underestimation in December with 
an overall average value of 11.1 %. Again, the poor forecasting performance that occurred in 
December were mainly due to the model’s inability in estimating gas concentrations resulting from 
barn management and pig activity. Furthermore, it was found that the BTA-AQP model with an 
additional variable, in-house manure level, could largely improve H2S prediction accuracy. When in-
house manure level was incorporated into the model, the overall average AE dropped to 11% from 
an original 24% without manure depth considered. 
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Figure 3. Predicted vs. field H2S concentrations and emissions in 2003. 

The monthly average predicted vs. field collected CO2 concentrations and emissions in 2003 are 
illustrated in figure 4. The absolute error ranged from 0.3% overestimation in February to 10.9% 
overestimation in July with an overall average value of 2.8 % for CO2 concentration. For CO2 
emissions, the AE varied from 1.6% underestimation in September to 28.3% underestimation in April 
with an overall average value of 7.7 %. The relatively inaccurate ventilation rate predictions, in 
comparison to other monthly fitted values, led to greater absolute error in CO2 emission calculation in 
April.  
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Figure 4. Predicted vs. field CO2 concentrations and emissions in 2003. 

Table 4 summarizes the statistical performance of the BTA-AQP model for predicting monthly 
average gas concentrations and emissions in 2003. The annual predicted averages and standard 
deviations (S.D.) of gas concentrations and emissions were in very good agreement with the actual 
measurements. For all the parameters, the MAE/S.D. (S.D. is the standard deviation of the 
measured data) ratios were less than 0.5, indicating that the BTA-AQP models’ performance for the 
residual variations were very good. The CRM values approximated to 0, meaning that there was no 



 

12 

systematic under- or over- prediction by the BTA-AQP model. The IoA values were close to 1, 
implying excellent agreement between the observed and predicted values. The Nash-Sutcliffe EF 
values were greater than 0.5, indicating that the simulated data matched the measured data very 
well. Therefore, the BTA-AQP model was able to accurately predict indoor climate and gas 
concentrations and emissions from the monitored swine deep-pit building.  

Table 4. Statistical performance of the BTA-AQP models.[a] 

Parameter Actual ± S.D. Predicted ± 
S.D. MAE CRM IoA EF 

NH3Con (ppm) 19.9 ± 6.8 19.8 ± 6.1 0.9 -0.005  0.99  0.95 

NH3ER (kg d-1) 6.86 ± 2.04 6.37 ± 1.69 0.63 -0.071  0.94  0.79 

H2SCon (ppb) 553 ± 260 546 ± 260 62 -0.011  0.97  0.87 

H2SER (kg d-1) 0.473 ± 0.295 0.463 ± 0.293 0.052 -0.021  0.99  0.94 

CO2Con (ppm) 2636 ± 1618 2633 ± 1556 64 -0.001  0.99  0.99 

CO2ER (kg d-1) 1226 ± 280 1153 ± 185 107 -0.059  0.85  0.60 
[a] Con and ER indicate the concentrations and emissions, respectively. 

 

Long-term NH3, H2S, and CO2 concentrations and emissions 

A comparison was made between the TMY3 data set and the long-term mean weather data and the 
corresponding air quality predicted by the BTA-AQP model in order to investigate how the air quality 
values using a TMY3 data set followed actual long-term means. The long-term period of time used in 
this study was selected from 2004 to 2008 due to the availability of a complete online weather data 
set in the region near the monitored swine facility. The Des Moines International Airport was chosen 
as the TMY3 site, which is about 100 kilometers away from the swine facility used for field data 
collection, since it is the closest Class I site in the Iowa TMY3 data set. Class I stations are those 
with the lowest uncertainty in weather information. Figure 5 illustrates the relationship between the 
long-term mean (i.e. on-site 5-year average data) and the TMY3 generated values for outside 
temperature. The minimum and maximum dashed lines represent the minimum and maximum 
ranges of the outside temperature during the selected 5-year period (2004-2008). It was observed 
that the TMY3 data fell within the min-max range but some noticeable differences between the TMY3 
and the long-term means were evident especially in February, May, August, and December. The 
overall absolute error between data sets was 16.3% throughout the year.  
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Figure 5. TMY3 vs. long-term mean for the outside temperature.   

Figures 6 and 7 summarize monthly ventilation rate and indoor temperature estimated by the BTA 
model using the TMY3 data set and the on-site 2004-2008 weather data, respectively. The monthly 
ventilation rate predictions were higher than the long-term means during warm weather but closely 
matched the long-term means during cold weather conditions (figure 5). This probably was caused 
by the discrepancy in outdoor temperature between the TMY3 data set and the 2004-2008 weather 
data, i.e., relatively higher outdoor temperature using the TMY3 in the summer resulted in a higher 
estimated ventilation rate. Conversely, the predicted indoor temperatures were in good agreement 
with the long-term means (figure 7). The overall absolute error was less than 2.0%.  
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Figure 6. TMY3 vs. long-term mean for the estimated ventilation rate. 
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Figure 7. TMY3 vs. long-term mean for the estimated indoor temperature. 

The monthly air quality predictions for the TMY3 were compared with the averaged results of the 5-
year period and these are shown in figure 8. It was found that the NH3, H2S, and CO2 concentrations 
and emissions obtained by the TMY3 data set and the long-term air quality means were between the 
minimum and maximum values of the five individual year simulations, and the TMY3 predictions 
followed the long-term means well. It can be further seen that the TMY3 values were within 6.1%, 
6.1%, and 5.0% of the mean weather year annual total for the NH3, H2S, and CO2 concentrations 
respectively and 3.0%, 2.7%, and 2.5% of the mean weather year annual total for the NH3, H2S, and 
CO2 emissions respectively. These good agreements between the TMY3 data set predictions and the 
long-term means indicate that TMY3 data can be used in performing accurate long-term simulations 
of source air quality.  
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Figure 8. TMY3 vs. long-term mean for the monthly air quality values  

(NH3, H2S and CO2 concentrations and emissions).  

Table 5 gives the absolute errors for comparing predicted annual gas concentrations and emissions 
using the TMY3 and a single year weather data. No major differences were observed between 
annual TMY3 and any one single year in terms of air quality values. The minimum AE (2.4%) 
occurred with CO2 emissions in 2007 while the maximum AE (10.2%) appeared in H2S concentration 
in 2004, which suggests that annual gas concentrations and emissions can be obtained by a TMY3 
data set instead of an individual year weather data without resulting in large errors. These results 
show that a Class I TMY3 data set can be used to evaluate annual air quality levels within an 
acceptable accuracy, especially for the livestock producers and environment researchers who might 
not be able to acquire complete and Class I level local weather information near a particular animal 
facility.  However, it should be noted that TMY3 data is not appropriate to estimate peak values for a 
particulate period of time. Also, it cannot be used for real-time air quality predictions. 
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Table 5. Comparison of predicted air quality using the TMY3 and a single year.[a]  

Year NH3Con NH3ER H2SCon H2SER CO2Con CO2ER 

2004 8.4% 2.7% 10.2% 2.7% 6.5% 3.6% 

2005 6.1% 4.9% 7.1% 3.3% 5.4% 3.3% 

2006 4.9% 4.7% 6.3% 6.8% 4.1% 3.7% 

2007 5.3% 3.2% 6.7% 4.3% 5.7% 2.4% 

2008 8.6% 4.9% 8.1% 6.6% 7.7% 4.7% 
[a] Con and ER indicate concentrations and emissions, respectively. 

 

Overall model error analysis and future work 

The developed BTA-AQP model and TMY3 data can be used for accurately predicting indoor climate 
and long-term gas concentrations and emissions, but improvement in its accuracy should be made 
according to the following sources of error:  

(1) Uncertainties in source air quality data. Since the source air quality data is important to develop 
the BTA-AQP model and evaluate the model predictive performance, more efforts should be made to 
maximize confidence, credibility, and consistency of the measured data; 

(2) Prediction errors of the BTA model. As the number of assumptions in a model increases, the 
accuracy and relevance of the model diminishes. For example, the simulated supplemental heaters 
turning on and off during cold weather resulted in spikes of the predicted ventilation rate and 
corresponding low indoor temperature. These predictions largely differed from the actual hourly 
measurements. Thus, more attention should be given to the supplemental heater simulation in future 
work. The swine heat production data used in this research was from ASABE standards established 
decades ago. With improved genetics and feed management and diets, swine heat production (HP) 
has been changed in recent years. Brown-Brandl el al. (2004) reported that the lean percent increase 
of 1.55% in the last 10 years has caused an increase in HP by approximately 15%. Future work is 
needed to collect new swine HP data from the latest literature; 

(3) Prediction errors of the AQP model. The accuracy of the artificial neural network AQP model 
depends on the completeness of the data set and availability of various model input factors that 
significantly affect source air quality. The complete emission profiles should cover all possible swine 
production stages for a long period of time. In this study, one-year source air quality data was used 
that might not capture all of the relationships between gaseous concentrations and emissions and 
theses input factors. More gas measurements are needed to expand the size of the data set. For the 
model input parameters, more important factors beyond indoor and outdoor temperatures, ventilation 
rate, swine growth cycle, and in-house manure storage level, should be considered and incorporated 
in the model.  Added variables such as feed nutrient content, management practices, and manure 
temperature might prove to be important input variables. When pigs grow, the amount and 
composition of the feed intake change, as do the amount and composition of the manure. Thus, the 
amount of gas generation tends to increase. However, sharp decreases in the amount of daily 
nitrogen excretion were found when diet formulation changes were implemented. This adjustment 
process alleviates the amount of nitrogen in the manure converted to ammonia and other gases. 
Swine management practices are also vital factors to determine air quality levels. Good management 
practices can maintain proper environment requirements for the animals and decrease daily air 
emissions. Manure temperature might be a factor that may directly influence H2S release; and, 
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(4) Bias error of the TMY3 and its limited application. Uncertainty values exist in the meteorological 
elements of the TMY3 data set (NSRDB, 2008). Additionally, TMY3 data is suitable for simulating 
solar energy conversion systems and building systems since each TMY3 month was selected 
according to five elements (global horizontal radiation, direct normal radiation, dry bulb and dew point 
temperatures, and wind speed) which are the most important for solar energy and building systems. 
No literature has shown that the TMY3 data is suited to air quality predictions as well. Therefore, 
further research may focus on the development of new TMY data that is determined to be more 
appropriate for air quality simulations.  

Summary and Conclusions 
The over-arching goal of this study was to develop a building thermal analysis and air quality 
predictive (BTA-AQP) model to quantify indoor climate and long-term air quality (ammonia, hydrogen 
sulfide and carbon dioxide concentrations and emissions) from swine deep-pit buildings.  

A comparison was made between the predicted and actual gas concentrations and emissions 
collected in 2003 in order to evaluate the accuracy of the BTA-AQP model estimates. It was found 
that the mean absolute errors between the monthly predicted and field collected values were 4.3%, 
10.5%, and 2.8% for the NH3, H2S, and CO2 concentrations respectively and 8.3%, 11.1%, and 7.7% 
for the NH3, H2S, and CO2 emissions respectively. For all the predicted parameters, the MAE/S.D. 
(S.D. is the standard deviation of the measured data) ratios were less than 0.5; the CRM values 
approximated to 0; the IoA values were close to 1; and the Nash-Sutcliffe EF values were greater 
than 0.5. These good model performance ratings indicated that the BTA-AQP model was able to 
accurately predict indoor climate and gas concentrations and emissions from swine deep-pit 
buildings.  

The monthly air quality values estimated by the BTA-AQP model using TMY3 data were compared 
with those using 5-year averaged on-site weather data. It was observed that the predictions using 
TMY3 data followed the long-term mean patterns very well, which suggests that TMY3 data can be 
used in performing accurate long-term simulations of source air quality. In addition, annual gas 
concentrations and emissions can be obtained using TMY3 data instead of an individual year 
weather data without resulting in large errors. These results demonstrate that a convenient approach 
to evaluate annual air quality levels within an acceptable accuracy is possible without long-term 
expensive on-site measurements. However, it should be noted that the TMY3 data is not appropriate 
to estimate peak values for a particulate period of time or for real-time estimates. 

Improvement in the BTA-AQP model accuracy should be made according to four main sources of 
error: Uncertainties in air quality data; Prediction errors of the BTA model; Prediction errors of the 
AQP model, and Bias errors of the TMY3 data and its limited application.  
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