Development and comparison of a novel rapid sampling method to serum and tonsil scraping to detect PRRSV in acutely infected sows

LI Peng (Jack)
06/27/2023
Li Peng (Jack)

Education:
- 2021-: MSc/PhD student in VDPAM, ISU, US.
- 2010-2013 – MSc in PVM, CAU, China.
- 2016-2010 – DVM(equivalent). BYAU, China.

Professional Experiences:
- 2020–2022, **ASFV Research Scientist** in Swine Research Institute (SRI) of Newhope Co., ltd, Qingdao, China;
- 2013-2019, Swine Vaccine Technical Services Specialist / Manager/ Sales Director at China Animal Husbandry Industrial Co., ltd, China.
• Professional Experiences:

• **Interpreter** of Leman China Swine Conference (2017-2021, China);
• Interpreter of IPVS (2016, Dublin; 2018, Chongqing, China);
• Interpreter of OIE CSFV Reference Laboratory Technical Conference (2017, 2019, Beijing, China) ;
• **Professional Experiences:**

• Interpreter of FLY-V Seminar Series for Future Leaders of Young Veterinarians (2017, 2018, 2019, Henan, China);

• CAHIC-MSD AH JV project Coordinator and Interpreter (2014-2017).
Outline

• Introduction
 • Difference of elimination strategy between PRRSV(US) and ASFV (CN)

• Proof of concept for Tonsil oral scraping (TOSc) design and development
 • TOSc collector design
 • TOSc sample collection
 • TOSc sample processing
 • TOSc sample composition

• Comparison of detection rate and Ct values between TOSc and tonsil scraping (TSc) and serum in acutely infected sows
Introduction
Introduction

• Difference between PRRSV and ASFV elimination

 • PRRSV: Herd closure to rely on sow immunity to clear the virus based on SIR model;

 • ASFV: low contagiousness, without known/proven immunity, test-removal or (partial) depopulation based on early detection in SOWs
Load-Close-Homogenize for PRRSV

Hallmark: Consecutive PRRSV negative weaned piglets!

Gestation sows IA

Gestation sows IB

Gestation sows II

= Previously exposed and shedding

= Previously exposed, no or “unknown” shedding

= Not previously exposed, no shedding

Adapted from slides of Dr. Holtkamp's courtesy
Test removal for ASFV

Hallmark: Consecutive negative sows
Early detection at low prevalence in sows!

= Previously exposed and shedding
= Previously exposed, no or “unknown” shedding
= Not previously exposed, no shedding

Adapted from slides of Dr. Holtkamp’s courtesy
Proof of concept for TOSc-sampling tool for PRRSV

1. Delayed time-to-stability (TTS) calls for better understanding PRRSV ecology in sow populations following outbreaks.

2. No easy sample type for sows
 - Serum, tonsil scraping for sows:
 - Labor intensive,
 - Animal invasive,
 - Oral fluid:
 - Various success rate

Objective: an easy and reliable sow samples
Without snaring!

The missing link of easy sampling in gestation sows
Proof of Concept for TOSc Design and Development
Tonsil Scraping for finisher and sows

- Restraining the sows/finishers
- Mucous like fluid

source: SMEC, Clinical Skills: Tonsil Scrapings (iastate.edu)
Tonsil-Oral Scraping method (TOSc)

TOSc collector-design of proof of concept

Rubber finger pad (thimble) to make it “ABRASIVE” to mimic tonsil scraping
TOSc: Sample Collection Process

Before sampling | Sample collection (w/o restraining) | Sample collected | TOSc fluid in tubes
Key points of TOSc collection process:

- In parallel with the vertical axis of mouth; (move)
- Depth with 5 inches of handle outside the mouth
- Upwards angle
- No resistance when scraping (hard palatine or bitten by the sow)
- Helpful when some sow is pushed frontwards especially for gilts.
TOSc – Sample Processing

Vortex & transfer

supernatant →

deposit →
What’s TOSc sample?

Figure 2. Sample 1. Higher magnification of figure 1. Focally on the left there is a small cluster of immune cells including lymphocytes, plasma cells, suspect macrophages, and rare eosinophils. Frequent squamous epithelial cells are also present.

Large amount of squamous cells and **some immune cells**
Comparison of detection rate and Ct values between TOSc and tonsil scraping (TSc) and serum in acutely infected sows
Study design

• Recent outbreak of PRRSV on a previously naïve sow farm
• 30 sows in farrowing
Comparison of sampling types for sows in terms PRRSV PCR positivity, Ct values, and need for straining.

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Serum</th>
<th>Tonsil Scraping</th>
<th>Tonsil Oral scraping (TOSc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection rate [95% CI]</td>
<td>16.8%<sup>a</sup> [7.1%,34.3%] (5/30)</td>
<td>73.3%<sup>b</sup> [60.2%,85.3%] (22/30)</td>
<td>100%<sup>ab</sup> [87.7,99.9%] (30/30)</td>
</tr>
<tr>
<td>Average and range of PCR Ct values</td>
<td>35.2 [33.6-36.4]</td>
<td>30.7 [25.1-35.4]</td>
<td>29.7 [24.1-36.3]</td>
</tr>
<tr>
<td>Need for straining sows</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

^{ab}: different superscript letters indicate significant difference in least square means (Tukey test, p<0.05)
Ct ≤ 37 was deemed positive.

TOSc: Tonsil Oral Scraping;

***, p < 0.001; **, p < 0.01;

ns: not significant, p > 0.05 (Dunn Test).
Conclusion

• TOSc recovered a mixture of oral fluids and tonsil exudates within seconds without restraining the sows.

• Numerically, TOSc samples had higher PRRSV qPCR detection rate compared to serum and tonsil scraping and lower average Ct values than tonsil scraping and serum in acutely infected sows.

• Statistically, In terms of PRRSV RNA detection rate and Ct values, there was no significant difference between TOSc and tonsil scraping; while there was a significant pairwise difference between serum and tonsil scraping, and between TOSc and serum.

• Great potential of TOSc as a novel, practical, and rapid tool for PRRSV RNA detection in sows to be able to assess sow herd status.
Limitations

• Limited sample size

• Early infection status

• No comparison between TOSc and OF

• Further research needed for comparison between TOSc, OF, serum, tonsil scraping at different stages of infection with a larger sample size.
Thank you for guiding me!!

Dr. Ana Paula
Dr. Daniel Moreas
Dr. Onyekachukwu Henry Osemeke
Dr. Edison Magalhaes
Dr. Paul Yeske
Dr. Thomas Petznick
Dr. Christine Mainquist
Dr. Phillip Gauger
Dr. Marta Mainenti

Dr. Kyoungjin J. Yoon
Dr. Jeffrey Zimmerman
Dr. Locke A. Karriker

Dr. Daniel Linhares
Dr. Gustavo Silva
Dr. Derald Holtkamp

Field Epi Team

Dr. Jason Yan

www.fieldepi.org