A PROCESS FOR PURIFYING YTTRIUM METAL

by

O. N. Carlson, J. A. Haefling
and F. A. Schmidt

RESEARCH AND DEVELOPMENT REPORT

U.S.A.E.C.

PHYSICAL SCIENCES READING ROOM
UNITED STATES ATOMIC ENERGY COMMISSION

Research and Development Report

A PROCESS FOR PURIFYING YTTRIUM METAL

by

O. N. Carlson, J. A. Haefling
and F. A. Schmidt

September, 1964

Ames Laboratory
at
Iowa State University of Science and Technology
F. H. Spedding, Director
Contract W-7405 eng-82
This report is distributed according to the category Metals, Ceramics and Materials (UC-25) as listed in TID-4500, September 1, 1964.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.
CONTENTS

ABSTRACT ................................................... 5
INTRODUCTION ............................................... 5
EXPERIMENTAL PROCEDURE AND RESULTS ................. 6
  Materials ......................................................... 6
  Preparation and Purification of YCl₃ and Magnesium .... 7
  Preparation of Y-29 wt% Mg Alloy .......................... 9
  Preparation of Yttrium Metal ................................ 10
  Other Procedures Used for Metal Refinement ............. 13
SUMMARY .......................................................... 14
ACKNOWLEDGMENT ............................................... 15
REFERENCES ...................................................... 16
A process is described for purifying crude or scrap yttrium metal by first reacting the yttrium with fused MgCl₂ and then purifying the magnesium and YCl₃ products by co-distillation. Dissolution and purification are carried out in a single heating step. The purified YCl₃ is reduced with calcium in the presence of the magnesium to form a Y-Mg intermediate alloy which is processed to yttrium sponge. Further refinement of the metal was obtained employing a salt extraction step and electron beam melting. Yttrium of 99.9+‰ purity was obtained from metal of 99.3‰ purity.

INTRODUCTION

In 1957 and 1958 a considerable quantity of yttrium metal was produced for the U.S. Atomic Energy Commission at the Ames Laboratory. The metal was prepared by the reduction of YF₃ with calcium or lithium to form a low melting Y-Mg intermediate alloy. This alloy was then converted to yttrium sponge which was consolidated into ingot form.¹ The yttrium metal prepared in this manner was of 99.3 wt% purity and exhibited a limited amount of ductility at room temperature.

The purpose of this investigation was to develop a metallurgical process whereby metal of this quality could be conveniently upgraded to a high purity material. Habermann and Daane² successfully purified yttrium in small quantities by vacuum distillation. Other refining methods such as vacuum melting, zone refining, and solid state electrolysis have been found to only partially purify crude yttrium metal.³-⁵
In this investigation efforts were concentrated on developing a procedure whereby the impure metal would be readily converted to a salt of yttrium which could be more easily purified than the metal itself.

Available thermodynamic data indicated that yttrium metal would reduce MgCl$_2$ to form YCl$_3$ and magnesium metal. This reaction appeared particularly favorable since the products, YCl$_3$ and magnesium, have sufficiently high vapor pressures to be purified by distillation in vacuo at 1000°C. By reacting this purified mixture with calcium metal, a Y-29 wt% Mg alloy would be obtained that could be processed to yttrium metal by the intermediate alloy process developed at the Ames Laboratory.

EXPERIMENTAL PROCEDURE AND RESULTS

Materials

For this investigation it was necessary that the yttrium metal be free only of significant amounts of surface contaminants and for the MgCl$_2$ to be anhydrous in order to avoid contamination from the reaction crucible. Therefore only limited purification of these materials was needed. However, more elaborate means were taken to purify the calcium metal used in the reduction step to prepare the Y-29 wt% Mg alloy.

Yttrium metal of varying purity was available in the form of sponge and arc-cast ingots as well as scrap pieces of massive metal, turnings, chips, and metal fines. The turnings and chips were degreased in trichlorethylene and air dried before they were used while the sponge and ingots were used without any surface treatment. The yttrium metal fines
were excluded from this work because of the potential fire hazard involved and their high impurity content.

The MgCl\(_2\) was obtained from the Dow Chemical Co. This material, which contained small amounts of water, was first dehydrated in a stream of anhydrous HCl gas at 450°C. The calcium metal that was used as the reductant for YCl\(_3\) was obtained from the New England Lime Co. and purified by vacuum distillation at 900°C as described by Wilhelm and Carlson.\(^6\)

Preparation and Purification of YCl\(_3\) and Magnesium

The crude yttrium was reacted with anhydrous MgCl\(_2\) at 850°C under a protective argon atmosphere to form YCl\(_3\) and magnesium according to the reaction,

\[
2Y + 3 \text{MgCl}_2 \xrightarrow{850\degree C} 2\text{YCl}_3 + 3 \text{Mg}.
\]

The YCl\(_3\) and magnesium were then purified by co-distillation at 1000°C under a pressure of 50 \(\mu\). Both the dissolution and co-distillation operations were performed in a single heating step. The apparatus employed is shown in Fig. 1. The retort (6) was 6 in. in diam and was made of 309Cb stabilized stainless steel. The reaction crucible (4) perforated container (1) and outer crucible (7) were made of titanium sheet 0.045 in. thick. The unit was heated by an electric furnace and evacuated by a mechanical pumping system equipped with a cold trap.
Fig. 1. Apparatus for both the dissolution of yttrium metal and the co-distillation of YCl₃ and Mg.
A typical run consisted of placing 1515 g of MgCl₂ into the titanium crucible (4) and 1000 g of crude yttrium metal into the perforated titanium container (1) which was attached to a stirring rod (2) that passed through the water-cooled condenser (3). The system was evacuated and the reaction crucible (4) heated to 600 °C to allow outgassing to take place. Argon gas was then admitted to a pressure of 2 psi gauge and the temperature raised to 850 °C. After the MgCl₂ had melted the container with the yttrium was lowered into the molten salt and stirred with an external motor. Although the dissolution process takes place rather quickly, the reactants were stirred 30 min to insure completion of the reaction. At the end of this time the stirring rod was raised so that the tapered plug (5) sealed the bottom of the condenser.

The pressure in the system was then lowered to 40 μ and the temperature increased to 1000 °C and held for 40 h so that the YCl₃ and magnesium were co-distilled and collected on the water-cooled condenser. Since magnesium metal has a considerably higher vapor pressure than YCl₃ it distilled first and collected directly on the water-cooled condenser. The less volatile YCl₃ then deposited on the magnesium layer.

Preparation of Y-29 wt% Mg Alloy

The purified YCl₃ was reduced by calcium in the presence of magnesium to form a Y-29 wt% Mg intermediate alloy according to the reaction,

\[
2YCl₃ + 3 \text{Ca} + 3 \text{Mg} \xrightarrow{950^\circ\text{C}} 2Y + 3 \text{Mg} + 3 \text{CaCl}_₂.
\]
The purified calcium was placed in the bottom of a tantalum metal reduction crucible which was inserted into a stainless steel retort of the same size used in the dissolution and distillation step. The cover assembly and condenser containing the distilled YCl\textsubscript{3} and magnesium was then attached to the retort, and the sealed unit was outgassed by heating to 600°C under a pressure of 50 \mu. Argon gas was admitted to a pressure of 2 psi gauge and the retort heated to 950°C for one hour. During this step the cooling water to the condenser was turned off causing the YCl\textsubscript{3} and magnesium deposits to melt and drip into the tantalum crucible containing the calcium reductant.

After one hour the retort was removed from the furnace and tilted to allow the molten Y-29 wt% Mg alloy and CaCl\textsubscript{2} slag, which are immiscible, to solidify on the side of the tantalum crucible thus permitting easy removal.

Preparation of Yttrium Metal

The purified yttrium metal was obtained from the Y-29 wt% Mg alloy by heating the alloy in vacuo to remove the volatile components as described by Carlson et al.\textsuperscript{7} The resulting sponge was then arc melted in an inert atmosphere and evaluated by chemical and microscopic analysis. Typical analytical data of the arc-melted crude or scrap yttrium metal are shown in Table I. The purification of the yttrium is further illustrated in Figs. 2 and 3 which show the crude yttrium before and after processing.
Table I

Analysis of Arc-Cast Yttrium Metal
Before and After Purification

<table>
<thead>
<tr>
<th>Element</th>
<th>Crude Yttrium (ppm)</th>
<th>Purified Yttrium (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>375</td>
<td>140</td>
</tr>
<tr>
<td>N</td>
<td>230</td>
<td>60</td>
</tr>
<tr>
<td>F</td>
<td>900</td>
<td>30</td>
</tr>
<tr>
<td>O</td>
<td>2700</td>
<td>1300</td>
</tr>
<tr>
<td>H</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Cr</td>
<td>125</td>
<td>75</td>
</tr>
<tr>
<td>Fe</td>
<td>180</td>
<td>75</td>
</tr>
<tr>
<td>Ni</td>
<td>500</td>
<td>220</td>
</tr>
<tr>
<td>Si</td>
<td>~150</td>
<td>&lt;100</td>
</tr>
<tr>
<td>Ta</td>
<td>&lt;400</td>
<td>&lt;400</td>
</tr>
<tr>
<td>Ti</td>
<td>1500</td>
<td>40</td>
</tr>
</tbody>
</table>

Samples of the purified yttrium were electron beam melted in an effort to obtain further refinement of the metal. By this treatment the hydrogen and chromium contents were decreased to <10 ppm and <35 ppm respectively, while the concentration of other impurities remained unchanged. A photomicrograph of the electron beam-melted yttrium is shown in Fig. 4.
Fig. 2. Commercial yttrium as arc-cast. As electropolished in HClO$_4$. 250X.

Fig. 3. Purified yttrium as arc-cast. As electropolished in HClO$_4$. 250X.

Fig. 4. Yttrium metal as electron beam melted. As electropolished in HClO$_4$. 250X.
Other Procedures Used for Metal Refinement

Other procedures were considered for purifying crude yttrium metal. One of these methods was to dissolve the impure material in HCl with subsequent crystallization of YCl$_3$ $\cdot$ 6 H$_2$O from solution by evaporation. After removing the water from this hydrated compound the YCl$_3$ could be reduced to yttrium metal using calcium or lithium as the reductant. This method was abandoned since a considerable length of time was required to thermally decompose the YCl$_3$ $\cdot$ 6 H$_2$O to high purity YCl$_3$. Another procedure involved the conversion of impure yttrium to oxide which could be purified and processed to yttrium metal by one of several methods. However, this approach was also rejected since many of the impurities present as oxides could be removed only by ion exchange processing.

It was found that the intermediate Y-29 wt% Mg alloy obtained in this work was always low in impurity content except for oxygen. The oxygen was contributed by the calcium reductant or it was entrained with the magnesium or YCl$_3$ during the co-distillation step. In separate experiments this impurity was decreased to 400 ppm in the yttrium metal by contacting the Y-29 wt% Mg alloy with fused YCl$_3$.

A decrease in oxygen content was also accomplished by using YCl$_3$ as an extractant and simply adding a deficiency of calcium metal in the reduction step so that the slag consisted of CaCl$_2$ - 25 wt% YCl$_3$. In these experiments enough magnesium metal was also removed from the charge.
prior to the reduction so that the resulting alloy contained 29 wt% Mg. Yttrium metal prepared in this way contained 800 to 1000 ppm oxygen.

By employing the process described in this investigation in conjunction with the various refining procedures, scrap or crude yttrium has been purified with 80-85% recoveries of metal consistently being obtained. Although this process was developed on the pound scale little difficulty should be encountered in processing several hundred pounds of yttrium per batch, since the reduction step for the preparation of the intermediate alloy has already been proven in the production of large quantities.

SUMMARY

1. A process has been developed by which commercial grade yttrium metal of 99.3 wt% purity can be upgraded to metal of 99.8 wt%.

2. By employing an additional refining step in which the Y-Mg intermediate alloy is contacted with fused YCl₃, the oxygen content of the metal was reduced from 1300 to 400 ppm thereby producing metal of 99.9 wt% purity.

3. Yttrium having an oxygen content of 800 to 1000 ppm can be obtained if the reduction is calcium deficient so that the slag produced contains YCl₃ which is an extractant for oxygen in the Y-29 wt% Mg alloy.

4. The hydrogen and chromium contents of the purified yttrium can be lowered by electron-beam melting.

5. There is no apparent reason why this process could not be used to purify large quantities of yttrium metal.
ACKNOWLEDGMENT

The authors wish to thank the analytical and spectrographic groups of the Ames Laboratory for performing the necessary analyses, and Mr. I. Jensen and Mr. E. J. Ritland for their assistance in performing the experimental work.
REFERENCES


