
An Overview of Larch/C++:
Behavioral Speci�cations

for C++ Modules

Gary T. Leavens

TR #96-01e
February 1996, revised March, April 1996,

January, July 1997, January 1999

Keywords: behavioral speci�cation, model-based, behavioral interface speci�cation lan-
guage, Larch, C++, Larch/C++, Larch Shared Language, VDM, Z, correctness, veri�-
cation, abstract data type, object-oriented, speci�cation inheritance, example, checkable
redundancy, behavioral subtype, informality, tunable formality.
1993 CR Categories: D.2.1 [Software Engineering ] Requirements/Speci�cations | Lan-
guages; F.3.1 [Logics and Meaning of Programs] Specifying and verifying and reasoning
about programs| Assertions, invariants, pre- and post-conditions, speci�cation techniques.

Copyright cKluwer Academic Publishers, 1996. Used by permission. An abbreviated
and earlier version of this paper is chapter 8 in the book Speci�cation of Behavioral Seman-

tics in Object-Oriented Information Modeling , edited by Haim Kilov and William Harvey
(Kluwer Academic Publishers, 1996), pages 121-142.

Department of Computer Science
226 Atanaso� Hall

Iowa State University
Ames, Iowa 50011-1040, USA



AN OVERVIEW OF LARCH/C++:

BEHAVIORAL SPECIFICATIONS

FOR C++ MODULES

Gary T. Leavens�

Department of Computer Science

Iowa State University, Ames, Iowa 50011 USA

January 13, 1999

Abstract

An overview is presented of the behavioral interface speci�cation language Larch/C++.
The features of Larch/C++ used to specify the behavior of C++ functions and classes,
including subclasses, are described, with examples. Comparisons are made with other
object-oriented speci�cation languages. An innovation in Larch/C++ is the use of
examples in function speci�cations.

1 Introduction

Larch/C++ [30] is a model-based speci�cation language that allows the speci�cation of both
the exact interface and the behavior of a C++ [12, 46] program module.

1.1 Model-Based Speci�cation

The idea of model-based speci�cations builds on two seminal papers by Hoare. Hoare's
paper \An Axiomatic Basis for Computer Programming" [19], used two predicates over
program states to specify a computation. The �rst predicate speci�es the requirements on
the state before the computation; it is called the computation's precondition. The second
predicate speci�es the desired �nal state; it is called the computation's postcondition.

Hoare's paper \Proof of correctness of data representations" [20], described the veri�ca-
tion of abstract data type (ADT) implementations. In this paper Hoare introduced the use
of an abstraction function that maps the implementation data structure (e.g., an array) to
a mathematical value space (e.g., a set). The elements of this value space are thus called
abstract values [35]. The idea is that one speci�es the ADT using the abstract values, which
allows clients of the ADT's operations to reason about calls without worrying about the
details of the implementation.

A model-based speci�cation language combines these ideas. That is, it speci�es proce-
dures (what C++ calls functions), using pre- and postconditions. The pre- and postcondi-
tions use the vocabulary speci�ed in an abstract model, which speci�es the abstract values
mathematically.

The best-known model-based speci�cation languages are VDM-SL [21] and Z [44, 43, 17].
Both come with a mathematical toolkit from which a user can assemble abstract models
for use in specifying procedures. The toolkit of VDM-SL resembles that of a (functional)
programming language; it provides certain basic types (integers, booleans, characters), and
structured types such as records, Cartesian products, disjoint unions, and sets. The toolkit

�Leavens's work was supported in part by NSF grant CCR-9593168.

1



in Z is based on set theory; it has a relatively elaborate notation for various set constructions,
as well as powerful techniques for combining speci�cations (the schema calculus).

1.2 Larch

The work of Wing, Guttag, and Horning on Larch extends the VDM-SL and Z tradition in
two directions [54, 53, 16]:

� Although a mathematical toolkit is provided [16, Appendix A], speci�ers may design
their own mathematical theories using the Larch Shared Language (LSL) [16, Chapter
4]. This allows users, if they desire, to create and use an abstract model at exactly
the right level of abstraction; that is, one can either build an abstract model out of
readily available parts, or one can build a model from scratch. Clearly, not everyone
should be building models from scratch; thus it is convenient that those that do get
built can be shared, even among users of di�erent behavioral interface speci�cation
languages.

� Instead of one generic speci�cation language, there are several behavioral interface
speci�cation languages (BISLs), each tailored to specifying modules to be written in a
speci�c programming language. Examples include LCL [16, Chapter 5] (for C), LM3
[16, Chapter 6] (for Modula-3), Larch/Ada [15] (for Ada), Larch/CLU [54, 53] (for
CLU), Larch/Smalltalk [9] (for Smalltalk) and Larch/C++.

The advantage of tailoring each BISL to a speci�c programming language is that one can
specify both the behavior and the exact interface to be programmed [22]. This is of great
practical bene�t, because the details of the interface that need to be speci�ed vary among
programming languages. For example, because Larch/C++ is tailored to the speci�cation
of C++ code, it allows users to specify the use of such C++ features as virtual, const,
exception handling, and exact details of the C++ types (including distinctions between types
such as int and long int, pointers and pointers to constant objects, etc.). No such details
can be speci�ed directly in a speci�cation language such as VDM-SL or Z that is not tailored
to C++. The same remark applies to object-oriented (OO) speci�cation languages such as
Z++ [25, 24], ZEST [10], Object-Z [41, 42], OOZE [1, 2, 3], MooZ [37, 38], and VDM++
[39]. However, apparently there are \variants of Fresco" [50, 52] that are \derived from
C++ and Smalltalk" [51, p. 135]; these may permit more exact speci�cation of interface
details.

The remainder of this paper gives a set of examples in Larch/C++, and then concludes
with a discussion. The set of examples speci�es a hierarchy of shapes that is used as a case
study in the book Object Orientation in Z [45]. An index is provided for important ideas
and examples.

2 Quadrilaterals

To write a speci�cation in Larch/C++, one speci�es an abstract model and mathematical
vocabulary, and then uses these to specify the behavior of a C++ interface. The C++
built-in types have models that are supplied by Larch/C++ and written directly in LSL.
Users can also directly supply models for objects of their own classes in LSL, but except
for classes which are intended to be \pure values" like the built-in types, it is often more
convenient to specify the model of a class using several speci�cation-only data members.
These speci�cation variables are used in the speci�cation, but do not have to be implemented.
They often take on values of a type which is not itself intended to be implemented. Examples
of both styles of class speci�cation will be given below.

The process of specifying an abstract model and its accompanying vocabulary is not
usually completed before one begins writing the behavioral speci�cations. Quite often,

2



the speci�cations and the mathematics evolve together, as one searches for better ways to
express the desired behavior, and as one better understands what is desired.

To give some examples, this section describes the speci�cation of the abstract class
QuadShape and the class Quadrilateral. I �rst speci�ed QuadShape with 5 speci�cation
variables: four vectors representing the sides and a vector giving the position (even this
builds on previous work [45]). However, it was more convenient to think of the four edge
vectors as components of some structure, so they are modeled as part of an array. Arrays are
already modeled by a built-in trait of Larch/C++ [30, Section 11.7], but it was convenient
to de�ne some vocabulary (operators) for creating an array of values, and for testing to
see whether the vectors in such an array make a loop. In Larch/C++, such vocabulary
is speci�ed in a LSL trait. Therefore we turn to traits and the traits used in specifying
QuadShape. (See Section2.2 for the Larch/C++ interface speci�cation.)

2.1 Vocabulary for Specifying Quadrilaterals

Although LSL has the power to specify abstract models \from scratch," most abstract
models are built using tuples (records), sets, and other standard mathematical tools that
are either built-in to LSL or found in Guttag and Horning's Handbook [16, Appendix A].

A typical example is given in Figure 1. That �gure speci�es a theory in LSL, using
a LSL module, which is called a trait . This trait is named FourSidedFigure, and has a
parameter Scalar, which can be replaced by another type name when the trait is used.
This trait itself includes instances of: PreVector(Scalar, Vector for Vec[T]), int, and
Val Array(Vector). The �rst of these gives part of the model for vectors, and will be
discussed further below. The second of these gives a model for the C++ type int with
appropriate auxiliary de�nitions for C++ [30, Section 11.1.5]. The last of these gives a
model for the abstract values of C++ arrays of vectors [30, Section 11.7]. This model
includes such operations as indexing into an array using the __[__] operator. (LSL uses
the notation __ to indicate the places where arguments to mix�x operators can be passed.
For example, one can obtain the element at index 3 of an array value e by writing e[3].)
The LSL name for this type (sometimes called a sort) is Arr[Vector].

The trait Val Array has a type parameter, the type of its elements, and the actual
parameter, Vector, replaces it. Thus the trait Val Array(Vector) can be thought of as
a copy of the trait Val Array, with the name Vector replacing the formal sort parameter
of Val Array. The trait PreVector(Scalar, Vector for Vec[T]) is a copy of PreVector
with the name Scalar replacing its parameter (T), and with the name Vector replacing
Vec[T]. (These replacements are done simultaneously.)

Returning to Figure 1, in the lines following introduces, the signatures of two operators
are speci�ed. Their theory is speci�ed in the lines following asserts, and (what are intended
to be) redundant consequences of this theory are speci�ed in the lines following implies.

In the asserts section, the speci�cation de�nes an operator, isLoop, to test whether
four vectors de�ne a four-sided �gure [45, Section 2.2.3]. The term isLoop(e) is true
just when the vectors in the array value e sum to zero (make a loop). It is speci�ed
using the + operator from the trait PreVector(Scalar, Vector for Vec[T]). (It would
be inconsistent (i.e., wrong) to simply assert that the edges always sum to zero; doing so
would assert that all combinations of four vectors in an array value sum to zero, but array
values can be constructed so that this does not hold. Such properties must be handled by
either constructing an abstract model from scratch, or by asserting that the property holds
at the interface level, as is done in the interface speci�cation of QuadShape below.)

In the asserts section, the operator \<__,__,__,__\> is speci�ed to make an array
value from its four arguments. It is speci�ed using the assign operator on array values
from the trait Val Array(Vector).

The implies section of Figure 1 illustrates an important feature of the Larch approach:
the incorporation of checkable redundancy into speci�cations. The �rst part of the implies
section states some theorems about the operators introduced in the asserts section. The

3



FourSidedFigure(Scalar): trait

includes PreVector(Scalar, Vector for Vec[T]), int,

Val_Array(Vector)

introduces

isLoop: Arr[Vector] -> Bool

\<__,__,__,__\>: Vector, Vector, Vector, Vector -> Arr[Vector]

asserts

\forall e: Arr[Vector], v1,v2,v3,v4:Vector

isLoop(e) == (e[0] + e[1] + e[2] + e[3] = 0:Vector);

\<v1,v2,v3,v4\>

== assign(assign(assign(assign(create(4), 0,v1), 1,v2), 2,v3),

3,v4);

implies

\forall e: Arr[Vector], v1,v2,v3,v4:Vector

size(\<v1,v2,v3,v4\>) == 4;

(\<v1,v2,v3,v4\>)[0] == v1;

(\<v1,v2,v3,v4\>)[1] == v2;

(\<v1,v2,v3,v4\>)[2] == v3;

(\<v1,v2,v3,v4\>)[3] == v4;

allAllocated(\<v1,v2,v3,v4\>);

converts

isLoop:Arr[Vector] -> Bool,

\<__,__,__,__\>: Vector, Vector, Vector, Vector -> Arr[Vector]

Figure 1: The LSL trait FourSidedFigure (�le FourSidedFigure.lsl).

second part says that the two operators speci�ed are well-de�ned relative to other operators.
Such redundancy can serve as a consistency check; it can also highlight consequences of the
speci�cation for the bene�t of readers. One can attempt to formally prove that the theory
stated in the implies section follows from the rest of the speci�cation using a theorem
prover, and that may be helpful in \debugging" the speci�cation [16, Chapter 7].

In Object Orientation in Z [45], vectors are usually treated as a given set, meaning that
their speci�cation is of no interest. A type of values can be treated as a given set in LSL
by simply specifying the signatures of its operators that are needed in other parts of the
speci�cation, without giving any assertions about their behavior. For example, to treat
vectors as a given set, one would have FourSidedFigure include the trait PreVectorSig, as
speci�ed in Figure 2, instead of PreVector. Comments, which start with % and continue to
the end of a line, can be used to give some informal description of these operators if desired.

Although it is perfectly acceptable to treat vectors as a given set (and beginning users
are encouraged to make similar simpli�cations to avoid mathematical di�culties), one can
obtain a more precise speci�cation (and illustrate more of the power of LSL) by eshing out
the trait PreVector. This is done in Figure 3.

The trait PreVector speci�es an abstract model of vectors. This trait speci�es the type
Vec[T] with an approximate length operator1. Recall that the trait FourSidedFigure

1The speci�cations inObject Orientation in Z [45] are a bit vague on exactly what capabilities are needed
by the scalar type. As there is no easy way to implement an exact length function (because some lengths
are irrational) the speci�cation in PreVector allows the length operator to return an approximate result.

4



PreVectorSig(T): trait

introduces

__ + __: Vec[T], Vec[T] -> Vec[T]

__ * __: T, Vec[T] -> Vec[T]

0: -> Vec[T]

- __: Vec[T] -> Vec[T]

__ - __: Vec[T], Vec[T] -> Vec[T]

__ \cdot __: Vec[T], Vec[T] -> T

length: Vec[T] -> T

Figure 2: The LSL trait PreVectorSig, which can be used if the type Vec[T] is to be
treated as a \given" (�le PreVectorSig.lsl).

copies this trait and changes the names Vec[T] to Vector and T to Scalar. Such di�erences
in naming are common when reusing traits designed for other purposes, such as PreVector.

In the assumes clause of PreVector, the type T is required to be a ring with a unit
element, have a commutative multiplication operator (*), be totally ordered, and have
conversions to and from the real numbers. (The �rst three assumed traits are found in [16,
Appendix A]; the last trait, and the included trait Real that speci�es the real numbers,
are found in [28].) The use of traits for stating such assumptions is similar to the way that
theories are used for parameterized speci�cations in OBJ [14, 13]. The assertions in the trait
PreVector specify the theory of an inner product and the approximate length function.

In the implies of PreVector, the naming of another trait, in this case PreVectorSig(T),
says that the theory of that trait is included in this trait's theory. PreVector's converts
clause says that there is no ambiguity in the speci�cation of the inner product operator.
However, note that the length operator is not so well-speci�ed, and thus is not named in
the converts clause.

To push this mathematical modeling back to standard traits, the trait PreVectorSpace,
found in Figure 4, is used. (The trait DistributiveRingAction is found in [28], the other
traits are from [16, Appendix A].)

Now that we are done with the initial mathematical modeling, we can turn to the
behavioral interface speci�cations.

2.2 Speci�cation of QuadShape and Quadrilateral

Following the ZEST [10] and Fresco [51] speci�cations of the shapes example, the �rst class
to specify is an abstract class of four-sided �gures, QuadShape. The reason for this is that, if
we follow [45, Chapter 2], then quadrilaterals are shearable, but some subtypes (rectangle,
rhombus, and square) are not. If we were to follow the class hierarchy given on page 8
of Object Orientation in Z [45], there would be problems, because the classes Rectangle,
Rhombus, and Square would be subtypes but not behavioral subtypes of the types of their
superclasses. Informally, a type S is a behavioral subtype of T if objects of type S can
act as if they are objects of type T [4, 5, 31, 26, 36, 32]. Having subclasses not implement
subtypes would make for a poor design; it would also make such classes unimplementable if
speci�ed in Larch/C++. This is because Larch/C++ forces subclasses to specify behavioral
subtypes of the types of their public superclasses [11]. Thus we will follow the ZEST and
Fresco speci�cations in using an abstract class without a shear operation as the superclass
of Quadrilateral.

The Larch/C++ speci�cation of the abstract class QuadShape is given in Figure 5. This
behavioral interface speci�cation includes the behavioral interface speci�cations of the type

5



PreVector(T): trait

assumes RingWithUnit, Abelian(* for \circ),

TotalOrder, CoerceToReal(T)

includes PreVectorSpace(T), Real

introduces

__ \cdot __: Vec[T], Vec[T] -> T % inner product

length: Vec[T] -> T

asserts

\forall u,v,w: Vec[T], a, b: T

% the inner product is bilinear

(u + v) \cdot w == (u \cdot w) + (v \cdot w);

u \cdot (v + w) == (u \cdot v) + (u \cdot w);

(a * u) \cdot v == a * (u \cdot v);

(a * u) \cdot v == u \cdot (a * v);

% the inner product is symmetric (commutative)

u \cdot v == v \cdot u;

% the inner product is positive definite

(u \cdot u) >= 0;

(u \cdot u = 0) == (u = 0);

approximates(length(u), sqrt(toReal(u \cdot u)));

implies

PreVectorSig(T)

converts

__ \cdot __: Vec[T], Vec[T] -> T

Figure 3: The LSL trait PreVector (�le PreVector.lsl).

Vector, which itself includes the speci�cation of the type Scalar. In Larch/C++, one could
also specify QuadShape as a C++ template class with the types Vector and Scalar as type
parameters [30, Chapter 8], but the approach adopted here is more in keeping with the
examples in Object Orientation in Z [45].

In the speci�cation of QuadShape, the �rst thing to note is that the syntax that is not
in comments is the same as in C++. Indeed, all of the C++ declaration syntax (with
a few ambiguities removed) is supported by Larch/C++. A C++ declaration form in a
Larch/C++ speci�cation means that a correct implementation must be C++ code with a
matching declaration. (Hence, a Larch/C++ speci�cation cannot be correctly implemented
in Ada or Smalltalk.) This happens automatically if, as in these examples, the behavioral
speci�cations are added as annotations to a C++ header �le.

Annotations in Larch/C++ take the form of special comments. What to C++ looks like
a comment of the form //@ ... or /*@ ... @*/ is taken as an annotation by Larch/C++.
That is, Larch/C++ simply ignores the annotation markers //@, /*@, and @*/; the text
inside what to C++ looks like a comment is thus signi�cant to Larch/C++.

6



PreVectorSpace(T): trait

assumes RingWithUnit, Abelian(* for \circ)

includes AbelianGroup(Vec[T] for T, + for \circ,

0 for unit, - __ for \inv),

DistributiveRingAction(T for M, Vec[T] for T)

implies

AC(+ for \circ, Vec[T] for T), Idempotent(- __, Vec[T])

\forall u,v,w: Vec[T], a, b: T

% the usual axioms, apart from the abelian group axioms

a * (u + v) == (a * u) + (a * v);

(a + b) * u == (a * u) + (b * u);

(a * b) * u == a * (b * u);

1 * u == u;

u - v == u + (- v);

% some standard theorems

(u + v = u + w) => v = w;

0 * u == 0:Vec[T];

-(a * u) == (-a) * u;

-(a * u) == a * (-u);

(-a) * (-u) == a * u;

(a \neq 0 /\ a * u = a * v) => u = v;

converts

0: -> Vec[T],

__+__: Vec[T], Vec[T] -> Vec[T],

__*__: T, Vec[T] -> Vec[T],

- __: Vec[T] -> Vec[T],

__ - __: Vec[T], Vec[T] -> Vec[T]

Figure 4: The LSL trait PreVectorSpace (�le PreVectorSpace.lsl).

With such annotations, the user of Larch/C++ can specify semantic modeling informa-
tion and behavior. At the class level, this is done with the keywords ABSTRACT, uses,
and invariant; at the level of C++ member function speci�cations this is done with
the keywords behavior, requires, requires redundantly, modifies, trashes, ensures,
example, and ensures redundantly.

Traits that de�ne the vocabulary used in the speci�cation are noted in uses clauses. In
the speci�cation of QuadShape, the trait used is FourSidedFigure, In Figure 5, the uses

clause precedes the class de�nition, so that the trait will be available to clients that include
QuadShape.h. (A uses clause within the class de�nition has a scope that is limited to that
class.)

The use of the keyword ABSTRACT in the speci�cation of the class QuadShape, speci�es
the intent that QuadShape is not to be used to make objects; that is, QuadShape is an
abstract class. As such, it has no \constructors" and therefore no objects will exist that

7



#ifndef QuadShape_h

#define QuadShape_h

#include "Vector.h"

//@ uses FourSidedFigure;

/*@ abstract @*/ class QuadShape {

public:

//@ spec Vector edges[4];

//@ spec Vector position;

//@ invariant isLoop(edges\any);

virtual Move(const Vector& v) throw();

//@ behavior {

//@ requires assigned(v, pre);

//@ requires redundantly assigned(edges, pre)

// /\ assigned(position, pre) /\ isLoop(edges^);

//@ modifies position;

//@ trashes nothing;

//@ ensures liberally position' = position^ + v^;

//@ ensures redundantly liberally edges' = edges^;

//@ example liberally position^ = 0:Vector /\ position' = v^;

//@ }

virtual Vector GetVec(int i) const throw();

//@ behavior {

//@ requires between(1, i, 4);

//@ ensures result = edges^[i-1];

//@ example i = 1 /\ result = edges^[0];

//@ }

virtual Vector GetPosition() const throw();

//@ behavior {

//@ ensures result = position^;

//@ }

};

#endif

Figure 5: The Larch/C++ speci�cation of the C++ class QuadShape (�le QuadShape.h).

are direct instances of such a class. This extra information could be used in consistency
checking tools [48, 47, 49].

The speci�cation variables edges and position together describe the abstract model of
QuadShape values. (As in C++, public: starts the public part of a class speci�cation.)
As noted above, because they use the keyword spec, they do not need to be implemented.
(An alternative speci�cation would be to use a LSL trait that described the abstract model
directly. This was done in the original version of this paper [29], and can be seen in other
examples below.)

The invariant clause will be explained following the explanation of the member function
speci�cations.

8



Each member function speci�cation looks like a C++ member function declaration,
followed by a speci�cation of the function's behavior. The the keyword behavior starts the
behavioral part. As previously mentioned, use of the C++ declaration syntax allows all of
the C++ function declaration syntax, including virtual, const, and throw to be used. It
also allows exact C++ type information to be recorded.

To illustrate most of the speci�cation format, the behavioral speci�cation of Move has
seven clauses. The requires clause gives the function's precondition, the requires redundantly

clause states a redundant property that must hold when the function is called, the modifies
and trashes clauses form a frame axiom [6], the ensures clause gives the function's post-
condition, the example clause gives a redundant example of its execution, and the ensures
redundantly clause states a redundant property of the speci�cation.

The postcondition, and the assertions in the example and ensures redundantly clauses,
are predicates over two states. These states are the state just before the function body's
execution, called the pre-state, and the state just before the function body returns (or throws
an exception), called the post-state. A C++ object (a location) can be thought of as a box,
with contents that may di�er in di�erent states. The box may also be empty. When the
box empty, the object is said to be unassigned ; an object is assigned when it contains a
proper value. C++ objects are formally modeled in Larch/C++ using various traits [30,
Section 2.8], and these traits allow one to write assigned(v, pre), as in the precondition
of Move, to assert that the object v is allocated and assigned in the pre-state. (The pre-
and post-states are rei�ed in Larch/C++ using the keywords pre and post.) There is also
a more useful notation for extracting the value of an assigned object in either state. The
value of an assigned object, o, in the pre-state is written o^ (or o\pre), and the post-state
value of o is written o' (or o\post).

Within a member function speci�cation, data members of class instances are objects, as
are arguments passed by reference. This includes speci�cation variables. For example, in
QuadShape, both edges and position are considered to be objects. Thus the postcondition
of Move says that the post-state value of position is equal to the pre-state value of position
plus the pre-state value of the vector v.

The requires redundantly clause is an example of checkable redundancy [48, 47, 49].
It allows one to state preconditions that will be true because they are implied by the stated
precondition, the invariant, or by the semantics of Larch/C++. What would be checked is
that the given precondition, and the relevant theory of the invariants and parts of the seman-
tics of Larch/C++ imply the stated assertion. For example, the �rst two conjuncts of Move's
requires redundantly clause say that the speci�cation variables edges and position are
assigned in the pre-state. (The notation /\ means \and".) This highlights the semantics of
Larch/C++, which implicitly requires that all data members be assigned in visible states
[30, Section 6.2.2]. (The pre-state of a constructor, and the post-state of a destructor are
not considered visible states, and so are exempt from this requirement.) The last conjunct
says that the invariant holds in the pre-state. The requires redundantly clause is new
with Larch/C++.

The ensures clause of Move's speci�cation uses the Larch/C++ keyword liberally.
This makes it a partial correctness speci�cation; that is, the speci�cation says that if v is
assigned and if the execution of Move terminates, then the post-state must be as speci�ed.
However, the function need not always terminate; for example, it might abort the program
if the numbers representing the new position would be too large to represent.

If liberally is omitted, then a total correctness interpretation is used; for example,
GetPosition must terminate whenever it is called. (Throwing an exception is considered
termination, only abortion of the program or in�nite loops constitute nontermination.)
Neither VDM, Z, nor any other OO speci�cation language that we know of permit mixing
total and partial correctness in this manner.

A function may modify an allocated object by changing its value from one proper value
to another, or from unassigned to some proper value. Each object that a function is allowed

9



to modify must be noted by that function's modifies clause2. For example, Move is allowed
to modify position. An omitted modifies clause means that no objects are allowed to be
modi�ed. For example, GetVec and GetPosition cannot modify any objects.

A function may trash an object by making it either become deallocated or by making its
value be unassigned. The syntax trashes nothing means that no object can be trashed,
and is the default meaning for the trashes clause when it is omitted, as in GetVec and
GetPosition. Noting an object in the trashes clause allows the object be trashed, but
does not mandate it (just as the modifies clause allows modi�cation but does not mandate
it).

Having a distinction between modi�cation and trashing may seem counterintuitive, but is
important in helping shorten the speci�cations users have to write. In older versions of LCL
and other Larch interface languages, these notions were not separated, which led to semantic
problems [7, 8]. By following Chalin's ideas, most Larch/C++ function speci�cations do not
have to make assertions about whether objects are allocated and assigned in postconditions.
This is because, unless an object is named in the trashes clause, it must remain allocated
if it was allocated in the pre-state, and if it was assigned in the pre-state, then it must also
remain assigned in the post-state [30, Section 6.2.3].

An example clause adds checkable redundancy to a speci�cation. There may be several
examples listed in a single function speci�cation in Larch/C++. For each example, what
is checked is roughly that the example's assertion, together with the precondition should
imply the postcondition [30, Section 6.8]. As far as we know, this idea of adding examples
to formal function speci�cations is new in Larch/C++.

Another instance of the checkable redundancy idea is the ensures redundantly clause.
This is taken from Tan's work on LCL [48, 47, 49], where the idea of this kind of checkable
redundancy in behavioral interface speci�cations �rst appeared. A ensures redundantly

clause can be used to state a redundantly checkable property implied by the conjunction
of the precondition, the contributions to the postcondition of the frame axioms, and the
postcondition. In this case, the claim follows from the frame axioms, as edges cannot be
modi�ed.

All of these parts of a function's behavioral speci�cation are optional, except for the
ensures clause. This is illustrated by the speci�cation of GetPosition. When the requires
clause is omitted it defaults to requires true. (Of course, one can also omit the behavioral
speci�cation as a whole.)

In the speci�cation of GetVec, i is passed by value. Thus i is not considered an object
within the speci�cation. This is why i denotes an int value, and why notations such as i^
are not used [16, Chapter 5].

The invariant clause (found just before Move's speci�cation) describes a property that
must be true of each assigned object of type QuadShape in each visible state [40]; it can
also be thought of as restricting the space of values for the class. The notation edges\any

stands for the abstract value of edges in any visible state. Thus the invariant in Figure 5
says that the value of the edges array in each visible state must form a loop.

Note that, by using model-based speci�cations, it is easy to specify abstract classes. One
imagines that objects that satisfy the speci�cation have abstract values, even though there
are no constructors. The use of speci�cation variables (or LSL traits) allows one to describe
the abstract values, even though an implementation might have no data members. One can
think of these as describing the abstract values of concrete subtype objects.

The type Vector does not have to be fully speci�ed in Larch/C++ in order to be
included in the speci�cation of QuadShape. It can be regarded as \given" by making a
speci�cation module for it that simply declares the type Vector, and uses the appropriate
traits. An example of how to do this is shown in Figure 6. (Since the class Vector is
declared using the keyword spec, an implementation does not have to declare it as a class,

2Following Leino's work [34], if an object o mentioned in a modifies clause has been declared to depend
on some other object o0, then o

0 may also be modi�ed. The same quali�cation is also applied to the trashes
clause. But this quali�cation is not needed to understand the examples in this paper.

10



#include "Scalar.h"

//@ spec class Vector;

//@ uses PreVector(Scalar, Vector for Vec[T]);

//@ uses NoContainedObjects(Vector);

Figure 6: This shows how to treat Vector as a \given" type in Larch/C++ (�le Vector.h).

//@ spec class Scalar;

//@ uses Scalar;

Figure 7: Treating Scalar as a \given" type in Larch/C++ (�le Scalar.h).

Scalar: trait

assumes RingWithUnit(Scalar for T), Abelian(* for \circ, Scalar for T),

TotalOrder(Scalar for T)

includes CoerceToReal(Scalar)

Figure 8: The LSL trait Scalar (�le Scalar.lsl).

but might de�ne Vector with a typedef or in some other way.) Using a trait, in this case
PreVector(Scalar, Vector for Vec[T]) that speci�es something with the same name
(Vector), tells Larch/C++ about the abstract model of Vector. That is, if v is a Vector

object, then the abstract value of v in some state is described by the type Vector speci�ed
in the used traits.

In Larch/C++, several syntactic sugars depend on the ability to extract objects that
may be within an abstract value. The operator contained objects must be speci�ed for
each type whose abstract values are explicitly modeled by the user in order to make these
sugars work. For types like Vector, whose abstract values do not contain any objects, one
can do this by simply including an instance of the trait NoContainedObjects [30, Section
7.5] to specify contained objects in a way that says there are no subobjects in the abstract
values.

The same trick for treating Vector as a given type is also used for the type Scalar. Its
speci�cation is given in Figure 7. The trait that it uses is given in Figure 8.

The speci�cation of the subclass Quadrilateral is given in Figure 9. The C++ syntax
\: virtual public QuadShape" is what says that Quadrilateral is a public subclass (and
hence a subtype) of QuadShape. (The keyword virtual, in C++, allows multiple inheritors
to share a single copy of the data members; this also holds in Larch/C++ for speci�cation
variables.) In Larch/C++, a subclass is forced to be a behavioral subtype of the type of
its public superclass. Roughly speaking, the idea is that the speci�cation of each virtual
member function of QuadShapemust be satis�ed by a correct implementation of that virtual
member function in the class Quadrilateral.

Technically, in Larch/C++ behavioral subtyping is forced by inheriting the speci�cation
of the supertype's invariant and virtual member functions in the subtype [11]. Since we
have used speci�cation variables in this example, and since these are inherited as in C++,
the virtual member function speci�cations of the supertype, QuadShape, are easy to apply
to the subtype. In such examples, one just forgets about extra data members in the subtype
when interpreting part of a speci�cation inherited from the supertype. This is also the case

11



#include "QuadShape.h"

#include "Shear.h"

class Quadrilateral : virtual public QuadShape {

public:

Quadrilateral(Vector v1, Vector v2, Vector v3, Vector v4,

Vector pos) throw();

//@ behavior {

//@ requires isLoop(\<v1,v2,v3,v4\>);

//@ modifies edges, position;

//@ ensures liberally edges' = \<v1,v2,v3,v4\> /\ position' = pos;

//@ }

virtual void ShearBy(const Shear& s) throw();

//@ behavior {

//@ requires assigned(s, pre);

//@ modifies self;

//@ ensures informally "self is sheared by s";

//@ }

};

Figure 9: The Larch/C++ speci�cation of the C++ class Quadrilateral (�le
Quadrilateral.h).

in other OO speci�cation languages, including Object-Z [41, 42], MooZ [37, 38], VDM++
[39], Z++ [25, 24], OOZE [1, 2, 3], and ZEST [10].

(In Larch/C++, and in other Larch-style BISLs, such as LM3 [16, Chapter 6], and
Larch/Smalltalk [9], abstract models do not have to be given by speci�cation variables3.
For example, in Larch/C++, one can specify a supertype and a subtype and give both of
them arbitrary models by writing an LSL trait for each. In such a case, when one does
not use speci�cation variables to describe the abstract models of both the subtype and the
supertype, giving a semantics to inherited speci�cations is a problem. See our other work
[9, 27, 11] for how to handle such uncommon cases, and the Larch/C++ reference manual
[30] for the details in Larch/C++.)

The \constructor" speci�ed for the class Quadrilateral has the same name as the class
in C++. Constructors in C++ really are initializers, and this constructor must set the post-
state values of the speci�cation variables to the appropriate abstract value. The requires
clause is needed so that the object will satisfy the invariant inherited from QuadShape.

The speci�cation of ShearBy illustrates another feature of Larch/C++: informal terms.
An informal term starts with the keyword informally and is followed by one or more string
constants. An informal term can be used anywhere a boolean term can be used. An informal
term can thus be used to selectively suppress details about a speci�cation. This suppression
of detail is done frequently in the speci�cations in Object Orientation in Z [45] by using
comments instead of formal speci�cations when discussing shearing. The use of informal
terms is similar, but more tightly integrated, since informal terms can appear within more
complex predicates. This example also illustrates how one can use informal predicates to
\tune" the level of formality in a Larch/C++ speci�cation. For example, in Larch/C++
one could start out by using largely informal speci�cations, and then increase the level of
formality as needed or desired. Informal terms, and their tight integration into Larch/C++,

3Indeed, Larch/C++ is the only Larch-style BISL for which abstract models can be given by using
speci�cation variables.

12



//@ spec class Shear;

//@ uses NoContainedObjects(Shear); //see a book on computer graphics

Figure 10: The speci�cation of Shear (�le Shear.h).

is something that is new with Larch/C++ [29].
The type Shear is speci�ed as a given set in Figure 10. In this example, no signature is

given for the trait functions that operate on the type Shear, because that type is only used
informally. Using the trait NoContainedObjects(Shear) is enough to tell Larch/C++ that
the abstract values are explicitly speci�ed.

3 Other Subtypes of QuadShape

This section contains the speci�cations of the other subtypes of QuadShape described in
Object Orientation in Z [45].

As in the ZEST speci�cation of the shapes examples [10], we start with the abstract type
ParallelShape, which is shown in Figure 11. The invariant clause in this speci�cation
says that the abstract values of such objects must have edges with parallel sides. (The
operator isaParallelogram is speci�ed in the trait shown in Figure 12.)

An interesting aspect of ParallelShape (apparently overlooked in all the speci�cations
in Object Orientation in Z [45]) is that if all the sides of a quadrilateral are zero length, then
the angle to be returned by AnglePar is not well-de�ned. The speci�cation of AnglePar
illustrates how to specify exceptions to handle such cases. (By specifying an exception,
the normal case is allowed to have a stronger precondition, and hence its precondition can
protect the postcondition from unde�nedness [33].) Note �rst that the body of AnglePar
has two pairs of pre- and postcondition speci�cations. Larch/C++ actually permits any
number of these speci�cation cases in a function speci�cation body; the semantics is that
the implementation must satisfy all of them [54, Section 4.1.4] [50, 51, 52] and that a caller
must establish the disjunction of the preconditions. Thus this speci�cation says that if the
receiver's edges describe a shape with an interior, the appropriate angle must be returned,
and if not, then it must throw the exception NoInterior. (The notations ~ and \/ mean
\not" and \or" respectively.) Although the mathematics of angles is left informal, the
speci�cation of the exception is formalized. The term returns is true just when the
function returns normally without throwing any exception, and throws(NoInterior) is
true just when the function throws an exception of type NoInterior. The claim in the
exceptional case shows how one can describe the abstract value of the exception result of a
given type. (In this case the claim is trivially true, because there are no other proper values
and the exception result is passed by value.)

The speci�cation of the type NoInterior is in Figure 13. This speci�cation uses an
instance of the Larch/C++ built-in trait NoInformationExecption [30, Section 6.10] to
specify the abstract model of the type NoInterior. This trait is designed as an aid in
specifying abstract models for exception types in which no signi�cant information is being
passed; it says that there is only one abstract value: theException. The class speci�cation
also speci�es the default constructor. In Larch/C++, the keyword self denotes the object
that C++ programs refer to as *this; that is, self is a name for the object being con-
structed (or the object receiving a message in a member function). In a speci�cation where
the abstract model is given explicitly by an LSL trait (in this case by the �rst trait used),
the value of self' is one of the values described in that trait.

Turning to another concrete class speci�cation, the type Parallelogram (see Figure 14)
is a public subclass of both Quadrilateral and ParallelShape. (This follows the design

13



#ifndef ParallelShape_h

#define ParallelShape_h

#include "QuadShape.h"

#include "NoInterior.h"

/*@ abstract @*/ class ParallelShape : virtual public QuadShape {

public:

//@ uses IsaParallelogram(Scalar);

//@ invariant isaParallelogram(edges\any);

virtual double AnglePar() const throw(NoInterior);

//@ behavior {

//@ requires ~(edges^[0] = 0 \/ edges^[1] = 0);

//@ ensures returns

//@ /\ informally "result is the angle between edges^[0] and"

//@ "edges^[1]";

//@ also

//@ requires edges^[0] = 0 \/ edges^[1] = 0;

//@ ensures throws(NoInterior);

//@ ensures redundantly thrown(NoInterior) = theException;

//@ }

};

#endif

Figure 11: The Larch/C++ speci�cation of the C++ class ParallelShape (�le
ParallelShape.h).

IsaParallelogram(Scalar): trait

includes FourSidedFigure(Scalar)

introduces

isaParallelogram: Arr[Vector] -> Bool

asserts \forall e: Arr[Vector]

isaParallelogram(e) == isLoop(e) /\ (e[0] + e[2] = 0:Vector);

implies \forall e: Arr[Vector]

isaParallelogram(e) == isLoop(e) /\ (e[1] + e[3] = 0:Vector);

Figure 12: The LSL trait IsaParallelogram (�le IsaParallelogram.lsl).

in Object Orientation in Z [45]; whether this is a good idea for a design in C++ is de-
batable.) It inherits the speci�cations of each, including the ShearBy member function of
Quadrilateral, and the invariant from ParallelShape (including the inherited invariant
from QuadShape). This is done by specifying a simulation function for each supertype. Of
course, the constructor of Quadrilateral is not inherited, and so a constructor must be
speci�ed. This speci�cation is a partial correctness speci�cation, which allows for cases in
which the vector cannot be successfully negated.

Another shape type is Rhombus, which is speci�ed in Figure 15. This class is speci�ed
as a public subclass of ParallelShape. The trait used to specify the operator isaRhombus
is in Figure 16.

14



//@ uses NoInformationException(NoInterior),

//@ NoContainedObjects(NoInterior);

class NoInterior {

public:

NoInterior() throw();

//@ behavior {

//@ modifies self;

//@ ensures self' = theException;

//@ }

};

Figure 13: The Larch/C++ speci�cation of the C++ class NoInterior (�le NoInterior.h).

#include "Quadrilateral.h"

#include "ParallelShape.h"

class Parallelogram : public Quadrilateral, public ParallelShape {

public:

Parallelogram(Vector v1, Vector v2, Vector pos) throw();

//@ behavior {

//@ modifies edges, position;

//@ ensures liberally edges' = \<v1,v2,-v1,-v2\>

//@ /\ position' = pos;

//@ }

};

Figure 14: The Larch/C++ speci�cation of the C++ class Parallelogram (�le
Parallelogram.h).

The class Rectangle is speci�ed in Figure 17. Its invariant is speci�ed using the trait
IsaRectangle from Figure 18.

Finally, in Figure 19 the class Square is speci�ed as a public subclass of both Rhombus

and Rectangle. The trait IsaSquare, given in Figure 20, is used in the speci�cation of the
constructor to state a claim that follows from the inherited invariant, but which might not
otherwise be obvious.

4 Discussion and Conclusions

The shapes example from Object Orientation in Z [45] is perhaps not ideal for illustrating
the mechanisms in Larch/C++ used for speci�cation inheritance, as the subtypes all use the
same set of speci�cation variables and no member function speci�cations are strengthened.
In our other work [11, 30], we give more interesting examples, in which the abstract models
of the subtype objects contain more information than objects of their supertypes.

However, the shapes example does permit direct comparison to the OO speci�cation
languages presented in Object Orientation in Z [45]. The following are the most basic

15



#include "ParallelShape.h"

class Rhombus : virtual public ParallelShape {

public:

//@ uses IsaRhombus;

//@ invariant isaRhombus(edges\any);

Rhombus(Vector v1, Vector v2, Vector pos) throw();

//@ behavior {

//@ requires length(v1) = length(v2);

//@ modifies edges, position;

//@ ensures liberally edges' = \<v1,v2,-v1,-v2\>

//@ /\ position' = pos;

//@ }

};

Figure 15: The Larch/C++ speci�cation of the C++ class Rhombus (�le Rhombus.h).

IsaRhombus: trait

includes IsaParallelogram

introduces

isaRhombus: Arr[Vector] -> Bool

asserts

\forall e: Arr[Vector]

isaRhombus(e) == isaParallelogram(e)

/\ (length(e[0]) = length(e[1]));

implies

\forall e: Arr[Vector]

isaRhombus(e) => isaParallelogram(e);

isaRhombus(e) == isaParallelogram(e)

/\ (length(e[0]) = length(e[2]));

isaRhombus(e) == isaParallelogram(e)

/\ (length(e[0]) = length(e[3]));

Figure 16: The LSL trait IsaRhombus (�le IsaRhombus.lsl).

points of similarity and di�erence.

� The LSL traits speci�ed in the examples correspond roughly to the Z speci�cations
given in Chapter 2 of Object Orientation in Z [45]. This says that LSL is roughly
comparable to Z in terms of modeling power. However, LSL includes syntax for stating
redundant properties of traits, which may help catch errors in such mathematical
modeling.

� The behavioral interface speci�cations are roughly comparable to the various OO
speci�cations written in the OO speci�cation languages in Object Orientation in Z

[45], in particular to ZEST and Fresco. However, only for Fresco is there even a hint
[51, p. 135] that it may be able to specify the C++ interface details that Larch/C++
can specify.

16



#include "ParallelShape.h"

class Rectangle : virtual public ParallelShape {

public:

//@ uses IsaRectangle;

//@ invariant isaRectangle(edges\any);

Rectangle(Vector v1, Vector v2, Vector pos) throw();

//@ behavior {

//@ requires v1 \cdot v2 = 0:Vector;

//@ modifies edges, position;

//@ ensures liberally edges' = \<v1,v2,-v1,-v2\>

//@ /\ position' = pos;

//@ }

};

Figure 17: The Larch/C++ speci�cation of the C++ class Rectangle (�le Rectangle.h).

IsaRectangle: trait

includes IsaParallelogram

introduces

isaRectangle: Arr[Vector] -> Bool

asserts

\forall e: Arr[Vector]

isaRectangle(e) == isaParallelogram(e) /\ (e[0] \cdot e[1] = 0);

implies

\forall e: Arr[Vector]

isaRectangle(e) => isaParallelogram(e);

isaRectangle(e) == isaParallelogram(e) /\ (e[1] \cdot e[2] = 0);

Figure 18: The trait IsaRectangle (�le IsaRectangle.lsl).

It is important that a formal speci�cation language not require one to formalize every
detail. By allowing one to leave some types of data, some operations, and some aspects of
behavior informal, Larch/C++, like Z and other OO speci�cation languages, allows users to
focus on what is important. In LSL, informality is accomplished by omitting speci�cations,
as in Figure 2. In Larch/C++ informality can also be accomplished by omitting speci�ca-
tions as in Figure 6, but more �ne-grained tuning is permitted by the use of the informal
predicates.

Larch/C++ is a large, but expressive, speci�cation language. Most of its size and com-
plexity arises from the complexity of C++, which, for example, has a large and complex
declaration syntax, and a large number of low-level, built-in types. Although Larch/C++
has several features that other formal speci�cation languages do not have, these features
earn their place by adding much to the expressiveness of the language. For instance, the
requires redundantly, example, and ensures redundantly clauses in function speci�-
cations add syntax, but they allow additional checking and also allow one to convey extra

17



#include "Rhombus.h"

#include "Rectangle.h"

class Square : public Rhombus, public Rectangle {

public:

Square(Vector v1, Vector pos) throw();

//@ behavior {

//@ uses IsaSquare;

//@ modifies edges, position;

//@ ensures liberally edges'[1] = v1 /\ position' = pos;

//@ ensures redundantly liberally isaSquare(edges');

//@ }

};

Figure 19: The Larch/C++ speci�cation of the C++ class Square (�le Square.h).

IsaSquare: trait

includes IsaRectangle, IsaRhombus

introduces

isaSquare: Arr[Vector] -> Bool

asserts

\forall e: Arr[Vector]

isaSquare(e) == isaRectangle(e) /\ isaRhombus(e);

Figure 20: The LSL trait IsaSquare (�le IsaSquare.lsl).

information about the meaning and intent of a speci�cation. The requires redundantly

and example clauses are new with Larch/C++; the idea for the ensures redundantly

clause and redundancy in interface speci�cations is due to Tan [48, 47, 49]. (Tan called this
a claims clause.)

More important for expressiveness are some fundamental semantic ideas that, while
they also add to the complexity of the language, add new dimensions to the expressiveness
of the language. One semantic idea is the distinction between trashing and modi�cation
[7, 8], which places the frame axiom of Larch-style speci�cation languages on a �rm semantic
foundation. In Larch/C++ one can also specify such notions as whether storage is allocated
or assigned. More important, allowing the user to specify both total and partial correctness
for functions gives to users a choice previously reserved by speci�cation language designers;
the use of partial correctness, for example, is necessary for succinct speci�cation of functions
that may fail due to the �niteness of various data structures [19]. Allowing the speci�cation
of several speci�cation cases (an idea due to Wing [54, Section 4.1.4] and Wills [50, 51, 52]) is
convenient for the speci�cation of exceptions and for giving a concrete form to speci�cation
inheritance [11]. Furthermore, when combined with the ability to specify both total and
partial correctness, the expressiveness of the speci�cation language becomes much more
complete [18].

The Larch approach of behavioral interface speci�cation [54, 53], and the expressive
features of Larch/C++ make it a step towards the more practical and useful formal docu-
mentation for object-oriented classes.

18



Acknowledgements

This work was supported in part by NSF grant CCR-9503168. Thanks to Adrian Fiech and
Rustan Leino for suggestions and comments on earlier drafts. Rustan's comments led to
several improvements in the semantics. Thanks also to Yoonsik Cheon, who helped design
Larch/C++, and to Matt Markland who helped implement the Larch/C++ checker.

References

[1] A. J. Alencar and J. A. Goguen. OOZE: An object oriented Z environment. In P. America,
editor, ECOOP '91: European Conference on Object Oriented Programming, volume 512 of
Lecture Notes in Computer Science, pages 180{199. Springer-Verlag, New York, N.Y., 1991.

[2] A. J. Alencar and J. A. Goguen. OOZE. In Stepney et al. [45], pages 79{94.

[3] A. J. Alencar and J. A. Goguen. Speci�cation in OOZE with examples. In Lano and Haughton
[23], pages 158{183.

[4] Pierre America. Inheritance and subtyping in a parallel object-oriented language. In Jean
Bezivin et al., editors, ECOOP '87, European Conference on Object-Oriented Programming,
Paris, France, pages 234{242, New York, N.Y., June 1987. Springer-Verlag. Lecture Notes in
Computer Science, Volume 276.

[5] Pierre America. Designing an object-oriented programming language with behavioural subtyp-
ing. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Foundations of Object-
Oriented Languages, REX School/Workshop, Noordwijkerhout, The Netherlands, May/June
1990, volume 489 of Lecture Notes in Computer Science, pages 60{90. Springer-Verlag, New
York, N.Y., 1991.

[6] Alex Borgida, John Mylopoulos, and Rayomnd Reiter. On the frame problem in procedure
speci�cations. IEEE Transactions on Software Engineering, 21(10):785{798, October 1995.

[7] Patrice Chalin. On the LanguageDesign and Semantic Foundation of LCL, a Larch/C Interface
Speci�cation Language. PhD thesis, Concordia University, 1455 de Maisonneuve Blvd. West,
Montreal, Quebec, Canada, October 1995. Available as CU/DCS TR 95-12, from the URL
ftp://ftp.cs.concordia.ca/pub/chalin/tr.ps.Z.

[8] Patrice Chalin, Peter Grogono, and T. Radhakrishnan. Identi�cation of and solutions to
shortcomings of LCL, a Larch/C interface speci�cation language. In Marie-Claude Gaudel
and James Woodcock, editors, FME '96: Industrial Bene�t and Advances in Formal Methods,
volume 1051 of Lecture Notes in Computer Science, pages 385{404, New York, N.Y., March
1996. Springer-Verlag.

[9] Yoonsik Cheon and Gary T. Leavens. The Larch/Smalltalk interface speci�cation language.
ACM Transactions on Software Engineering and Methodology, 3(3):221{253, July 1994.

[10] Elspeth Cusack and G. H. B. Rafsanjani. ZEST. In Stepney et al. [45], pages 113{126.

[11] Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping through speci�ca-
tion inheritance. In Proceedings of the 18th International Conference on Software Engineering,
Berlin, Germany, pages 258{267. IEEE Computer Society Press, March 1996.

[12] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley Publishing Co., Reading, Mass., 1990.

[13] Kokichi Futatsugi, Joseph A. Goguen, Jean-Pierre Jouannaud, and Jose Meseguer. Principles
of OBJ2. In Conference Record of the Twelfth Annual ACM Symposium on Principles of
Programming Languages, pages 52{66. ACM, January 1985.

[14] Joseph A. Goguen. Parameterized programming. IEEE Transactions on Software Engineering,
SE-10(5):528{543, September 1984.

[15] David Guaspari, Carla Marceau, and Wolfgang Polak. Formal veri�cation of Ada programs.
IEEE Transactions on Software Engineering, 16(9):1058{1075, September 1990.

[16] John V. Guttag, James J. Horning, S.J. Garland, K.D. Jones, A. Modet, and J.M. Wing.
Larch: Languages and Tools for Formal Speci�cation. Springer-Verlag, New York, N.Y., 1993.

19



[17] I. Hayes, editor. Speci�cation Case Studies. International Series in Computer Science. Prentice-
Hall, Inc., second edition, 1993.

[18] Wim H. Hesselink. Programs, Recursion, and Unbounded Choice, volume 27 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, New York, N.Y., 1992.

[19] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576{583, October 1969.

[20] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1(4):271{281,
1972.

[21] Cli� B. Jones. Systematic Software Development Using VDM. International Series in Computer
Science. Prentice Hall, Englewood Cli�s, N.J., second edition, 1990.

[22] Leslie Lamport. A simple approach to specifying concurrent systems. Communications of the
ACM, 32(1):32{45, January 1989.

[23] K. Lano and H. Haughton, editors. Object-Oriented Speci�cation Case Studies. The Object-
Oriented Series. Prentice Hall, New York, N.Y., 1994.

[24] K. Lano and H. Haughton. Specifying a concept-recognition system in Z++. In Lano and
Haughton [23], chapter 7, pages 137{157.

[25] Kevin C. Lano. Z++. In Stepney et al. [45], pages 106{112.

[26] Gary T. Leavens. Modular speci�cation and veri�cation of object-oriented programs. IEEE
Software, 8(4):72{80, July 1991.

[27] Gary T. Leavens. Inheritance of interface speci�cations (extended abstract). In Proceedings
of the Workshop on Interface De�nition Languages, volume 29(8) of ACM SIGPLAN Notices,
pages 129{138, August 1994.

[28] Gary T. Leavens. LSL math traits. http://www.cs.iastate.edu/~leavens/Math-traits.html, Jan
1996.

[29] Gary T. Leavens. An overview of Larch/C++: Behavioral speci�cations for C++ mod-
ules. In Haim Kilov and William Harvey, editors, Speci�cation of Behavioral Semantics in
Object-Oriented Information Modeling, chapter 8, pages 121{142. Kluwer Academic Publish-
ers, Boston, 1996. An extended version is TR #96-01d, Department of Computer Science,
Iowa State University, Ames, Iowa, 50011.

[30] Gary T. Leavens. Larch/C++ Reference Manual. Version 5.25. Available in
ftp://ftp.cs.iastate.edu/pub/larchc++/lcpp.ps.gz or on the World Wide Web at the URL
http://www.cs.iastate.edu/~leavens/larchc++.html, January 1999.

[31] Gary T. Leavens and William E. Weihl. Reasoning about object-oriented programs that use
subtypes (extended abstract). In N. Meyrowitz, editor, OOPSLA ECOOP '90 Proceedings,
volume 25(10) of ACM SIGPLAN Notices, pages 212{223. ACM, October 1990.

[32] Gary T. Leavens and William E. Weihl. Speci�cation and veri�cation of object-oriented pro-
grams using supertype abstraction. Acta Informatica, 32(8):705{778, November 1995.

[33] Gary T. Leavens and Jeannette M. Wing. Protective interface speci�cations. Technical Report
96-04d, Iowa State University, Department of Computer Science, September 1997. In Michel
Bidoit and Max Dauchet (editors), TAPSOFT '97: Theory and Practice of Software Develop-
ment, 7th International Joint Conference CAAP/FASE, Lille, France. Volume 1214 of Lecture
Notes in Computer Science, Springer-Verlag, 1997, pages 520-534. Available by anonymous ftp
from ftp.cs.iastate.edu or by e-mail from almanac@cs.iastate.edu.

[34] K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis, California Institute of
Technology, 1995. Available as Technical Report Caltech-CS-TR-95-03.

[35] Barbara Liskov and John Guttag. Abstraction and Speci�cation in Program Development. The
MIT Press, Cambridge, Mass., 1986.

[36] Barbara Liskov and Jeannette Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems, 16(6):1811{1841, November 1994.

[37] Silvio Lemos Meira and Ana L�ucia C. Cavalcanti. MooZ case studies. In Stepney et al. [45],
pages 37{58.

20



[38] Silvio Lemos Meira, Ana L�ucia C. Cavalcanti, and Cassio Souza Santos. The Unix �ling system:
A MooZ speci�cation. In Lano and Haughton [23], chapter 4, pages 80{109.

[39] Swapan Mitra. Object-oriented speci�cation in VDM++. In Lano and Haughton [23], chap-
ter 6, pages 130{136.

[40] Arnd Poetzsch-He�ter. Speci�cation and veri�cation of object-oriented programs. Habilitation
thesis, Technical University of Munich, January 1997.

[41] Gordon Rose. Object-Z. In Stepney et al. [45], pages 59{77.

[42] Gordon Rose and Roger Duke. An Object-Z speci�cation of a mobile phone system. In Lano
and Haughton [23], chapter 5, pages 110{129.

[43] J. Spivey. An introduction to Z and formal speci�cations. Software Engineering Journal,
January 1989.

[44] J. Michael Spivey. The Z Notation: A Reference Manual. International Series in Computer
Science. Prentice-Hall, New York, N.Y., second edition, 1992.

[45] Susan Stepney, Rosalind Barden, and David Cooper, editors. Object Orientation in Z. Work-
shops in Computing. Springer-Verlag, Cambridge CB2 1LQ, UK, 1992.

[46] Bjarne Stroustrup. The C++ Programming Language: Second Edition. Addison-Wesley Pub-
lishing Co., Reading, Mass., 1991.

[47] Yang Meng Tan. Formal speci�cation techniques for promoting software modularity, enhancing
documentation, and testing speci�cations. Technical Report 619, Massachusetts Institute of
Technology, Laboratory for Computer Science, 545 Technology Square, Cambridge, Mass.,
June 1994.

[48] Yang Meng Tan. Interface language for supporting programming styles. ACM SIGPLAN
Notices, 29(8):74{83, August 1994. Proceedings of the Workshop on Interface De�nition Lan-
guages.

[49] Yang Meng Tan. Formal Speci�cation Techniques for Engineering Modular C Programs, vol-
ume 1 of Kluwer International Series in Software Engineering. Kluwer Academic Publishers,
Boston, 1995.

[50] Alan Wills. Capsules and types in Fresco: Program validation in Smalltalk. In P. America,
editor, ECOOP '91: European Conference on Object Oriented Programming, volume 512 of
Lecture Notes in Computer Science, pages 59{76. Springer-Verlag, New York, N.Y., 1991.

[51] Alan Wills. Speci�cation in Fresco. In Stepney et al. [45], chapter 11, pages 127{135.

[52] Alan Wills. Re�nement in Fresco. In Lano and Houghton [23], chapter 9, pages 184{201.

[53] Jeannette M. Wing. Writing Larch interface language speci�cations. ACM Transactions on
Programming Languages and Systems, 9(1):1{24, January 1987.

[54] Jeannette Marie Wing. A two-tiered approach to specifying programs. Technical Report
TR-299, Massachusetts Institute of Technology, Laboratory for Computer Science, 1983.

21



Index

abstract class, 7, 10
abstract data type (ADT), 1
abstract model, 1, 16
abstract value, 1
abstraction function, 1
Ada, 2
assigned variable, 9

behavior, 1
behavioral interface speci�cation, 2, 16
behavioral subtype, 11

C, 2
C++, 1, 2
Chalin, 10
checkable redundancy, 3, 9, 10
class, abstract, 7, 10
consistency checking, 7
constructor, 12
contained objects, 11

deallocation, 10

ensures redundantly, 10
examples, in speci�cation, 10
examples, in speci�cations, 9
exception, speci�cation of, 13
expressiveness, 17

formality, tunable, 10
formality, tuning, 4, 12
FourSidedFigure trait, 3
frame axiom, 9
Fresco, 5

given set, 4, 10
Guttag, 2

Hoare, 1
Horning, 2

informality, 4, 10, 12, 17
inheritance, of speci�cations, 11
interface, 1
interface speci�cation, behavioral, 16
invariant, 10
IsaParallelogram trait, 13
IsaRectangle trait, 14
IsaRhombus trait, 14
IsaSquare trait, 15

Larch, 2
Larch Shared Language, 2
Larch/Ada, 2
Larch/C++, 1, 2
Larch/Smalltalk, 2, 11
LCL, 2, 7, 10

LCLint, 7
Leino, 9
liberal speci�cation, 9
LM3, 2, 11
LSL, 2, 3

model-based, 1
model-based speci�cation, 1
modeling process, 2
modify, 9
Modula-3, 2
MooZ, 2, 11

NoInterior trait, 13

OBJ, 4
Object-Z, 2, 11
OOZE, 2, 11

Parallelogram, 13
ParallelShape, 13
partial correctness, 9
post-state, 9
postcondition, 1
pre-state, 9
precondition, 1
PreVector trait, 4
PreVectorSig trait, 4
PreVectorSpace trait, 5

Quadrilateral, 11
QuadShape, 5

Rectangle, 14
redundancy, checkable, 3, 9, 10
requires redundantly clause, 9
returns, 13
Rhombus, 14

Scalar, 11
Scalar trait, 11
Shear, 13
Smalltalk, 2
speci�cation case, in Larch/C++, 13
speci�cation inheritance, 11
speci�cation variable, 2
speci�cation variables, 8
specifying exceptions, 13
Square, 15
subclass, 11
subtype, behavioral, 11
supertype, behavioral, 11

Tan, 10, 17
throws, an exception, 13
trait, 3
trash, 10

22



tunable formality, 10
tuning formality, 4

unassigned variable, 9

VDM++, 2, 11
VDM-SL, 1
Vector, 10
virtual, member function spec., 11

Wing, 2

Z, 1
Z++, 2, 11
ZEST, 2, 5, 11

23


