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Abstract 

Meta-exhalites consist of a variety of rock types including iron formation, coticule (garnet-quartz rock), 
tourmalinite, quartz-gahnite rock, apatite-rich rock, zincian staurolite-bearing rock, and barite-rich rock. 
Such lithologies may be spatially associated with a diversity of ore deposits, but they are particularly linked 
to sea floor base metal sulfides that formed in rift settings. Meta-exhalites generally form layers less than 2 
m thick, above, below, in, and along strike from stratiform or exhalative ore deposits. Geochemical dia
grams for iron formations, coticules, and tourmalinites (chondrite-normalized rare earth element (REE), 
ternary Al-Fe-Mn, Al/ (Al+ Fe+ Mn) vs. Fe/Ti, Ti02 vs. Al20 3) suggest ~riable contributions of detrital ma
terial and hydrothermal components, The detrital component, terrigeilous or elastic, is generally less than 
30 wt percent for iron formations, whereas for coticules and tourmalinites it is generally 30 to 70 wt percent 
and greater than 70 wt percent, respectively. Of the major constituents of meta-exhalites, Fe, Mn, B, P, and 
Zn generally have a hydrothermal source, whereas Al and Ti are from detrital elastic material. Silica can 
have hydrothermal and/ or detrital sources. Hydrogenous contributions are generally small. 

The variable setting, mineralogy, primary sedimentary structures, geochemistry, and lithological vari
ants of exhalites show that precursor constituents formed under a variety of physicochemical conditions 
(e.g., T, fo 2, pH, ionic strength, Js2, fco2) and were derived from different sources (elastic and volcanic). 
Iron formations, coticules, and tourmalinites form by the replaceme9t of permeable aluminous sediment~ 
and by exhalation into submarine brine pools. Hydrothermal fluids responsible for the formation of pre
cursors to meta-exhalites range in temperature from approximately 100° to 400°C. Layering in meta-ex
halites reflects rapid fluctuations in Eh-pH conditions, metal contents, f82, Jc02, and detrital input. Frac
tionation of Fe and Mn in the hydrothermal fluids is due to gradual increases in pH_ or Eh during mixing 
of ambient seawater with the fluids and may account for differences in proximity br"iron formations and 
coticules to sulfide deposits. The amount of hydrothermal input via venting, fluid/ rock ratio, bottom cur
rent drift, and the degree of basin isolation from elastic sedimentation also dictate the chemical compo
sition and mineralogy of meta-exhalites. 

The presence of a meta-exhalite is indicative qf a fossil zone of sea floor hydrothermal activity and, as 
such, can be utilized as a field guide in the exploration for ore deposits, particularly base metal sulfides. 
Relative abundance of certain minerals (e.g., iron carbonates, apatite, gahnite, zincian staurolite), bulk 
compositional variations that record increased ratios of hydrothermal components to detrital material, 
characteristic elements and elemental ratios, variations in the compositions of mineral phases (e.g., Zn to 
Fe ratio of staurolite, gahnite, and hogbomite as well as the Mg to Fe ratio of ferromagnesian silicates due 
to metamorphic sulfide-silicate reactions), and stable isotope data (S, C, 0, and B) provide vectors that 
are useful in exploration. ~ 

Introduction 

THE TERM exhalite was introduced by Ridler (1971) to refer 
to rocks in an exhalative-sedimentary association of inter-
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bedded volcaniclastic and chemical sediments. The volcani• 
elastic component typically consists of volcaniclastic sedi
ment, siltstone, and shale, whereas the chemical component 
may include chert, Fe-Mn sediment, and sulfides. Where re
gionally metamorphosed, exhalites, herein referred to as 
meta-exhalites, produce a variety of lithologies such as iron 
formation, coticule, tourmalinite, apatite-rich rock, quartz-
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gahnite rock, zincian staurolite-bearing rock, barite-rich 
rock, and metachert. In some localities gradations exist 
among the different exhalite types. 

Meta-exhalites are spatially and temporally associated 
with some of the largest base metal sulfide deposits in the 
world. In the paleo-Proterozoic Willyama Complex, Aus
tralia, coticules (garnet-quartz rocks) occur in and adjacent 
to the two largest deposits, Broken Hill (Stanton, 1972; Lot
termoser, 1989; Spry and Wonder, 1989) and Pinnacles 
(Parr, 1992), but they also extend intermittently for over 
100 km throughout the complex (Parr and Plimer, 1993). 
In addition, banded iron formation, tourmalinite, and 
quartz-gahnite rocks occur in close spatial association with 
sulfides at Broken Hill (Stanton, 1972, 1976a, b, c, d; 
Barnes et al., 1983) and are considered by many geologists 
working in the district to be indicators of paleohydrother
mal activity. Volumetrically significant associations of meta
exhalites with world-class base metal ofes occur at the 
meso-Proterozoic Gamsberg and Aggeneys, South Africa 
(Rozendaal and Stumpfl, 1984; Hoffman, 1993) deposits, 
and at Sullivan, British Columbia (e.g., Slack et al., 2000). 
Iron formation is host to sulfides in the Aggeneys and 
Gamsberg deposit~; coticules exist in the vicinity of sulfides 
in both mining camps. Although iron formation is not pre
sent at Sullivan, spectacular occurrences of tourmalinite, 
and to a lesser extent coticule, occur above, below, and 
along strike from the deposit (Slack et al., 2000). 

There are several Paleozoic (e.g., Buchans, Newfound
land; Rosebery, Tasmania; Mount Chalmers, Queensland; 
Hellyer, 1asmania) and Archean (e.g., Big Stubby and 
North Pole, Western Australia) volcanogenic massive std
fide deposits that contain barite that has been metamor
phosed at or below lower greenschist fades (e.g., Green et 
al., 1981; Barley, 1992; Large, 1992). Barite-bearing ore de
posits metamorphosed to the amphibolite fades include 
those at Gamsberg, South Africa (Rozendaal and Stumpfl, 
1984) and Aberfeldy, Scotland (Coats et al., 1980). Lotter
moser and A~hley (1996) have noted the exploration po
tential ofbarite-rich rocks for strata-bound Cu-Au mineral
ization in the Proterozoic Olary block, South Australia. 
Although we briefly mention these barite-bearing meta-ex
halites, they are not discussed further since they are rela
tively uncommon in settings distal from ore deposits. 

We describe herein the geological setting, petrography, 
mineralogy, geochemistry, and genesis of meta-exhalites 
that are spatially and temporally associated with metamor
phosed ores. Particular emphasis is placed on iron forma
tions, coticules, and tourmalinites that are related to sea 
floor massive sulfide deposits. The spatial and temporal as
sociation of meta-exhalites with sea floor hydrothermal de
posits makes their recognition and characterization poten
tially valuable in the search for concealed mineralization; 
hence, we al.so discuss these rocks in terms of their utility 
as exploration guides. 

Iron Formations 

There are many variants of iron formations which have 
been referred to variously as banded iron formation, fer-

ruginous chert, jasper, jasperoid, tetsusekiei (literally 
translated "iron-quartz" from Japanese), vasskis (Norwe
gian term for sulfidic black chert, but thought to derive 
from the German term "weiss-kirs" meaning white sul
fide), graphitic chert, cherty tuff, tuffaceous exhalite, 
chloritic iron formation, sulfide iron formation, or simply 
hydrothermal sediment. These rocks are commonly re
ferred to as Algoma-type iron formation (Gross, 1980). 
They are not to be confused with Superior-type iron for
mation ( e.g., Cloud, 1973; Holland, 1984; Beukes and 
Klein, 1992; Morris, 1993), consisting of chemical sedi
ment deposited from iron-rich waters that continuously 
upwelled from suboxic marine basins and encountered 
more oxygen-rich waters on continental shelves. 

With few exceptions, iron formations associated with 
massive sulfide ores are considered to be chemical sedi
ments deposited from hydrothermal fluids that vented 
into submarine basins (e.g., Stanton, 1972; Morris, 1993; 
Isley, 1995). In his classic paper,James (1954) character
ized iron formation as a thin-bedded or laminated chemi
cal sediment having a minimum of 15 wt percent Fe; 
herein we adopt a more liberal interpretation and include 
rocks with somewhat lower Fe content (as low as 10 wt% 
Fe). Table 1 provides an overview of selected localities of 
iron formation associated with massive sulfide mineraliza
tion mentioned in the text. Photographs of iron formation 
from some classic localities are shown in Figure 1 and re
flect differences in composition, metamorphic grade, and 
deformational factors. 

Geology and petrography 

Iron formations are associated with various types of vol
canogenic and sedimentary exhalative base metal sulfide 
deposits, including those of Cyprus- (Franklin et al., 
1981), Besshi- (Slack, 1993a), Kuroko- (Kalogeropoulos 
and Scott, 1983), an9 Broken Hill-type (Beeson, 1990). 
Iron formation generally caps massive sulfides and fqrms 
the immediate hanging wall of a deposit. In many Cyprus
and Besshi-type deposits, iron formations cover an area 
about twice that of the massive sulfides. Less commonly, 
they are lateral fades equivalents of massive sulfides and 
may extend for many kilometers along strike from the 
mineralization. For example, the iron formations and 
massive sulfide deposits that define the Brunswick and 
Heath Steele belts in the Bathurst district, New Brunswick, 
are traceable for over 12 km of strike length. In other de
posits, such as those at Manitouwadge, Ontario, massive 
sulfides grade into iron formation. Iron formation is also 
known to form discontinuous horizons above and below 
massive sulfides with no clear temporal equivalence to the 
massive sulfides; such is the case forthe many different ex
halite typ~s and lode rocks (e.g., massive sulfides) in the 
Broken Hill area of Australia (Stanton, 1972; Barnes et al., 
1983; Plimer, 1988a). 

In general, iron formations consist of layers less than 2 
m thick, although some can be tens of meters thick. The 
best developed and most laterally extensive massive sulfide
associated iron formations are those in volcanosedimen-
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TABLE 1. Geology of Selected Iron Formation Localities 

Deposit, Geologic Iron formation Associated 
dist~ict Age set~ing Metals type exhalites References 

Bathurst, New Brunswick Ordovician Mrhy, Cmsd Pb,Zn,Cu Carbonate, Coticule 1,2,3 
oxide, Silicate 

Millenbach, Quebec Archean Mrhy, Mbas Cu,Zn,'Au Main Con:tac't 4 
tuff { quartz, 
sulfides) 

Lake Dufault, Quebec Archean Mhry, Mbas Cu,Zn,Au Chert tuff 5 

Matagami, Quebec Archean Mrhy, Mbas Cu,Zn,Au Chert, carbonate, 6, 7,8 
sulfide 

Soucy, Quebec Proterozoic Mgab,Cmsd Cu Silicate 9 

Manitouwadge, Ontario Archean Cmsd, Mrhy, Cu,Zn,Au Oxide, silicate, 10, II 
Mbas,Gran sulfide 

Windy Craggy, British Columbia Triassic Mbas, Cmsd Cu,Zn Chert," carbonate 12 

Prescott:Jerome, Arizona Proterozoic Mhry Cu,Zn,Au Oxide, carbonate, 13, 14 
sulfide 

Broken Hill, Australia Proterozoic Cmsd, Mrhy, Pb,Zn,Ag Oxide, silicate Coticule, 15, 16, 17, 18, 
Mbas toutmalinite, 19, 20, 21, 22, 

· quartz-gahnite 23 
rock 

Olary block, Australia Proterozoic Cmsd, Mrhy Cu,Au Oxide, carbonate Barite-rich rock, 24,25 
coticule 

Mt. Isa block, Australia Proterozoic Cmsd, Mbas Pb,Zn,Ag Silicate Coticule 26,27,28 

Thalanga, Australia Cambro- Mrhy,Cmsd Zn,Pb,Cu,Ag Silicate 29,30 
Ordovician 

Aggeneys, South Africa Proterozoic Cmsd, Mrhy Pb,Zn,Cu Carbonate, Coticule, 31,32 
silicate, oxide tourmalinite 

Gamsberg, South Africa Proterozoic Cmsd Pb,Zn Oxide, silicate Coticule 33,34 

Otjihase-Matchless belt, Proterozoic Mbas, Cmsd Cu Oxide 35,36,37 
Namibia 

Iimori,Japan Jurassic- Mbas,Cmsd Cu Oxide ~ 38 
Cretaceous 

Okuki,Japan Jurassic Mbas,Cmsd, Cu Oxide 39 
Mgab 

Boquira, Brazil Archean Cmsd,Mbas, · Pb-Zn Oxide, carbonate, 28,40 
Mrhy sulfide, silicate 

Trondheim, Norway Ordovician Mbas,Cmsd, Cu Vasskis, jaspers 41,42,43 
Mrhy 

Bergslagen, Sweden Proterozoic Mrhy, Mbas, Zn,Pb,Ag Silicate, oxide, Coticule, 28,44,45 
Cmsd, Mcar carbonate tourmalinite 

Skellefte, Sweden Proterozoic Mbas, Mrhy, Cu, Zn,Pb, Oxide 46 
Cmsd Au,Ag 

Abbreviations: Cmsd = elastic metasediments (e.g., pelitic schist), Gran= granite or felsic porphyry1 Mbas = metabasalt .(greenstone, amphibolite), 
Mcar = metacarbonate, Mgab = metagabbro and metadiorite, Mrhy = metarhyolite · · · 

References: 1, Graf 0975); 2, Troop (1984); 3, Peter and Goodfellow (1996b); 4, Kalogeropoul~s and Scott (1989); 5, Sakrison (1967); 6, David
son (1977); 7, Costa et al. (1983); 8, Liaghat and MacLean (1992); 9, Barrett et al. (1988); 10, Friesen et al. (1982); 11, Zaleski and Peterson (1995); 
12, Peter and Scott (1998); 13, Brook (1974); 14, Anderson and Guilbert (1979); 15, Richards (1966a); 16, Richards (1966b); 17, Stanton (1976a); 
18, Stanton (1976b); 19, Stanton (1976c); 20, Stanton (1976d); 21 Stanton (1976e); 22, Lottermoser (1989); 23, Parr (1992); 24, Lottermoser and 
Ashley (1995); 25, Lottermoser and Ashley (1996); 26, Stanton and Vaughan (1979); 27, Vaughan and Stanton (1986); 28, Beeson (1990); 29, Gre
gory et al. (1990); 30, Duhig et al. (1992); 31, Hoffman (1993); 32, Hoffman (1994); 33, Roze_ndaal (1980); 34, Rozendaal (1986); 35, Killick (1982); 
36, Killick (1983); 37, Adamson and Teichmann (1986); 38, Kanehira and Tatsumi (1970); 39, Imai (1978); 40, Carvalho et al. (1982); 41, Nilsen 
(1978); 42, Grenne and Vokes (1990); 43, Grenne and Slack (1997); 44, Hedstrom et al. (1989); 45, Parr and Plimer (1993); 46, Panik (1991) 

~ 
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Fie. 1. Photographs of iron formation associated with metamorphosed massive sulfide deposits. a. Siderite-chert iron 
formation from drill hole DDH-284, Bathurst district, New Brunswick. b. Banded-quartz-magnetite iron formation (POA 
172), Bathurst district, New Brunswick. c. Quartz-magnetite rock from Razorback ridge, Broken Hill area, Australia. d. 
Quartz-magnetite iron formation, Willecho mine, Manitouwadge, Canada. e. Quartz-magnetite lode rock, Pegmont de
posit, Australia. f. Magnetite-quartz-garnet layers in banded iron formation, Broken Hill mine area, Australia. 

tary sequences that formed in rift settings (e.g., Broken 
Hill, Australia; Bathurst, New Brunswick). The tectonic set
ting at the time of massive sulfide formation in the 
Bathurst area is thought to have been a back arc that 
formed on continental crust ( e.g., van Staal, 1992), 
whereas that for Broken Hill was an ensialic intraconti-

nental rift ( e.g., Cook and Ashley, 1992). Such rift se
quences typically are composed of elastic sedimentary 
rocks (metamorphosed shale and lesser sandstone or 
graywacke) and metarhyolites or related felsic metamor
phosed igneous rocks; mafic volcanic rocks, if present, 
generally do not occur within the ore horizon. 
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A popular classificatfon scheme for iron formations 
(James, 1954) distinguishes among sulfide, carbonate, ox
ide, and silicate fades, or predominant varieties, all of 
which may grade into each other. The underlying tenet is 
that the occurrence and distribution of the different types 
of iron formation are controlled by redox conditions ( dis
cussed below). Sulfide-predominant iron formation con
sists of one or more Fe, Cu, Zn, and Pb sulfides (e.g., 
pyrite, pyrrhotite, chalcopyrite, galena, sphalerite). In 
many localities, this type forms the lode rocks of the de
posit, such as at Gamsberg, South Africa (Rozendaal, 
1986), Boquira, Brazil (Carvalho et al., 1982), and Soucy, 
Canada (Barrett et al., 1988). Anderson and Guilbert 
(1979) interpreted the chalcopyrite-rich, banded massive 
sulfide deposits of the Jerome-Prescott district, Arizona, as 
sulfide-fades iron formation that is capped by oxide-fades 
iron formation. Various sulfides are interlaminated with 
chert in the immediate hanging wall to "the massive sul
fides, with pyrite being the most common at a variety of de
posits including Matagami, Quebec (Davidson, 1977), 
Delbridge, Quebec (Boldy, 1968), and H0ydal, Norway 
(Grenne and Vokes, 1990). 

Carbonate-predominant iron formation contains a vari
ety of carbonates including siderite, ankerite, dolomite, 
and kutnahorite. Districts where carbonate-predominant 
iron formation is especially well developed include 
Bathurst, New Brunswick (Peter and Goodfellow, 1996a) 
and Boquira, Brazil (Carvalho et al., 1982). 

Oxide-predominant iron formation consists of mag
netite and/or hematite interbedded with chert at, for ex
ample, Broken Hill, South Africa (Moore, 1989; Hoff
mann, 1993, 1994), Boquira, Brazil (Carvalho et al., 
1982), and Bergslagen, Sweden (Plimer, 1988a). In many 
localities, jasper is the most common type of oxide-pre
dominant iron formation, and forms the immediate 
hanging wall to many massive sulfide deposits including 
Okuki, Japan, (Imai, 1978), L0kken, Norway (Grenne, 
1986; Grenne and Slack, 1997), and Windy Craggy, 
Canada (Peter and Scott, 1998), although it may also oc
cur within the footwall or higher in the hanging wall. 
Magnetite-quartz ± garnet ± Fe-bearing silicate iron for
mation is prevalent in other deposits or districts including 
Fairmile, Australia (Beeson, 1990; Taylor and Scott, 
1982), Otjihase, Namibia (Killick, 1982, 1983; Adamson 
and Teichmann, 1986), Geco, Ontario (Friesen et al., 
1982), and Besshi, Japan (Kanehira and Tatsumi, 1970). 
Silicate-predominant iron formation consists mainly of 
Fe-, Mg-, and Mn-bearing silicates. In greenschist-facies 
rocks the dominant mineral is chlorite, however, at 
higher metamorphic grades silicates such as grunerite, 
actinolite, cummingtonite, spessartine garnet, and 
clinopyroxene prevail (Table 2). 

Sulfide-, carbonate-, oxide-, and silicate-predominant 
iron formation may be complexly interbedded as, for exam
ple, in the Brunswick belt, Bathurst (Peter and Goodfellow, 
1996a, fig. 5). This is consistent with fluctuating physico-
chemical conditions (e.g., T,/02, pH, ionic strength,/~,./co2) 

of the mineralizing fluid or at the depositional site. 

Iron formation may contain interbedded detrital elastic 
sediment or limestone. Iron formation typically is well lam
inated, with individual laminae consisting of one or several 
oxides, silicates, sulfides, or carbonates that are different 
from those of adjacent laminae; in many localities quartz is 
the most common interbedded mineral. In undeformed 
and weakly metamorphosed terranes, primary framboids, 
colloform structures, spheroidal cracks, and siliceous fila
ments may be present, but these are generally obliterated at 
amphibolite fades conditions or higher. Primary struc.: 
tures, such as crossbedding and graded bedding, have 
been observed in rocks metamorphosed even to granulite 
fades (e.g., Stanton, 1976a), but there is generally a direct 
relationship between grain size of constituent minerals 
and metamorphic grade. Iron formations in undeformed 
and weakly metamorphosed terranes (lower greenschist 
and below) are commonly very fine grained, whereas in up
per greenschist, amphibolite, and granulite fades rocks, 
iron formations typically are coarser grained due to the ef
fects of recrystallization (Duhig et al., 1992). 

Geochemistry 

Bulk compositions of iron formations are dominated by 
Fe

2
0 3, Si02, CO

2 
(if carbonate is present), CaO (if car

bonate and/or apatite are present), and MnO. In some 
iron formations, however, Mn is virtually absent (e.g., 
L0kken jaspers-Grenne and Slack, 1997). Concentra~ 
tions of MgO, Al

2
0 3, Ti 0

2
, P 

2
0

5
, and S02 are generally mi~ 

nor, but the first three can be major if there is a significant 
contribution from detrital sediment. Space considerations 
preclude listing representative bulk-rock compositions of 
iron formations spatially associated with ore deposits; 
however, such compositions are available elsewhere"(e.g., 
Richards, 1966a; Stanton, 1976c; Kalogeropoulos and 
Scott, 1983; Moore, 1989; Peter and Goodfellow, 1996a). 

Due to their coherent geochemical behavior, the rare 
earth elements (REE) are particularly useful in tracing hy
drothermal, sedimentary, and igneous processes. The be
havior of the REE in modern sea-floor hydrothermal envi
ronments is sufficiently well known to make comparisons 
with ancient samples and therefore deduce past processes 
and/ or sources that controlled their distribution. Rare 
earth element<; in iron formation and coticules ( discussed 
below) can originate from hydrothermal, hydrogenous, 
and detrital sources. Rare earth element patterns of several 
iron formations are shown in Figures 2a to ( 

Chondrite-normalized REE patterns for iron formations 
associated with massive sulfide mineralization typically 
show positive Eu anomalies (e.g., Graf, 1975, 1977, 1978) 
and negative Ce anomalies (e.g., Lottermoser, 1989; 
Liaghat and MacLean, 1992; Peter and Goodfellow, 1996a; 
Grenne and Slack, 1997; Peter and Scott, 1998; Fig. 2a, d). 
Positive Eu anomalies indicate significant contributions 
from high-temperature (>250°C), reduced hydrothermal 
fluids (Sverjensky, 1984). Negative chondrite-normalized 
Ce anomalies are characteristic of seawater (Fig. 2g; Hog
dahl et al., 1968). Authigenic sediments are thought to ac
curately reflect the relative Ce abundances of the waters 

I 
I 
i 
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TABLE 2. Relative Stabilities of Predominant Constituent Minerals in Metamorphosed Iron Formations1 

Low-grade Intermediate-grade High-grade 
General Specific Precursor metamorphism meta!11orphism metamorphism 

mineral type mineral type mineral (200° -350°C) (350°-550°C) (>550°C) 

Sulfides Fe sulfides Py, Po,Apy Py, Po,Apy Py, Po,Apy Py, Po,Apy 
Pb sulfide Gn Gn Gn Gn 
Zn sulfide Sp, Wu. Sp, Wu. Sp Sp 
Cu-Fe sulfides Ccp,Cb Ccp,Cb Ccp,Cb Ccp,Cb 

Carbonates Fe carbonate Sd Sd,Ank Sd,Ank Sd,Ank 
Mg carbonate Mgs 
Ca-Mg carbonate Doi Doi Doi Doi 
Mn carbonate Rds,Kut Rds, Kut 
Ca carbonate Cal Cal Cal (Cal) 

Oxides Hydrated Fe oxides Hydrated Fe oxides Hem,Mag Hem,Mag Hem,Mag 
Gahnite (Gah) Gah Gah 

Silicates 7A serpentine-like Amorphous Gnl, Brt Gnl, Brt Gnl, Brt 
Talc-like structure Nn, amorphous Fe oxide Stp, Fe-Ann, Bt (Stp), Fe-Ann, Bt 
Fe-talc Nn Mn, Tic (Mn) 
Fe-Mg chlorite Chm,Cln Chm,Cln (Chm,Cln) 
Na-rich amphibole Rbk Rbk 
Mg-Fe amphiboles Gru Gru-Cum, Ath, Ced Gru-Cum, Ath, Ced 
Ca-Mg-Fe amphiboles Act-Tr, Hbl 
Mn-Fe-Al rich Chm? (Sps) Alm,Sps Alm,Sps 
Orthopyroxene (Fs) Fs 
Clinopyroxenes (Agt) Agt, (Hd) Agt, Hd 
Quartz Amorphous silica Qt:7. Qt:7. Qt:7. 
Fe olivine (Fa) Fa 
Ba feldspar Ba-Al-Si gel? Hy 
Ba mica Ba-Al-Si gel? Kn Kn 
Zircon Zrn Zrn Zrn Zrn 

Phosphates Apatite Ap Ap Ap 
= 

1 Based on data from French (1968, 1973), Immega and Klein (1976), Frost (1979), Haase (1982), Klein (1983), and Miyano and Klein (1986) 
Abbreviations after Kret:7. (1983) or otherwise indicated: Act= actinolite, Agt = aegerine-augite, Alm= almandine, Ank = ankerite, Ann= annite, Ath 

= anthophyllite, Apy = arsenopyrite, Brt = berthierine, Bt = biotite, Cal = calcite, Cb = cubanite, Ccp c chalcopyrite, Chm = chamosite, Cln = 
clinochlore, Cum = cummingtonite, Doi = dolomite, Fa = fayalite, J<'e-Ann = ferroannite, Ged = gedrite, Gn = galena, Gru = grunerite, Hbl = horn
blende, Hem = hematite, Hy= hyalophane, Hd = hedenbergite, Kn = kinoshitalite, Kut= kutnahorite, Mag= magnetite, Mgs = magnesite, Mn = min
nesotaite, Nn = nontronite, Po = pyrrhotite, Py= pyrite, Qu. = quart:7., Rbk = riebekite, Rds = rhodochrosite, Sd = siderite, Sp = sphalerite, Sps = spes
sartine, Tic = talc, Tr= tremolite, Wu.= wurt:7.ite, Zm = zircon; minerals in brackets denote possible presence or presence in lesser amounts 

from which they formed (Shimizu and Masuda, 1977), and 
marine carbonate, foram tests, modern pelagic clays, and 
modern metalliferous sediments all have negative anom
alies (Piper and Graef, 1974; Palmer, 1985; Shaw and 
Wasserburg, 1985). Chondrite-normalized REE patterns 
for some iron formations show positive Ce anomalies ( e.g., 
hematitic chert from the Iberian pyrite belt (Leistel et al., 
1998), Main Contact tuff (Kalogeropoulos and Scott, 1989; 
Fig. 2b); however, while such a feature is atypical of iron 
formations, it commonly characterizes modern Fe-Mn 
crusts (Elderfield et al., 1981), which are the largest known 
Ce repository in modern oceans. 

On chondrite-normalized REE plots, average continen
tally derived sediments and intermediate and felsic vol
canic rocks are light REE enriched and show negative Eu 
anomalies. Therefore, if an iron formation contains an ap
preciable proportion (> ca. 30 wt % ) of such detritus, the 
REE patterns will display light REE enrichment and have 
nil to negative Eu anomalits ( compared to that of, for ex
ample, hydrothermal Fe oxides and carbonates). This 
seems to be the best explanation of nil to negative Eu 

anomalies in some iron formations (Fig. 2b, c, f; see also 
Barriga, 1983; Lottermoser and Ashley, 1995). 

Rare earth element patterns of iron formations are com
monly similar to those of intermixed sea-floor hydrothermal 
fluids and seawater (Fig. 2g). As pointed out by Mills and El
derfield (1995) for modern sea-floor hydrothermal systems, 
negative Ce anomalies (and strong REE enrichments) on 
chondrite-normalized plots are only found in mixtures of 
greater than 90 percent seawater and end-member ·hy
drothermal vent fluid. For this reason, REE are of limited 
use as tracers of fluid-seawater mixing, although they place a 
lower limit on the seawater contribution to samples. 

Few studies exist on the sulfur isotope composition of 
iron formation-hosted sulfides. 834S values for pyrite in tet
susekiei from the Hokoruku district (Japan) range from 
-0.6 and 6.1 per mil and indicate an igneous sulfur 
source, together with a small possible contribution from 
reduced seawater sulfate (Kalogeropoulos and Scott, 
1983). Brunswick belt iron formation 834S values for sul
fides vary from ,-15.6 to 22.4 per mil (Peter and Goodfel
low, 1993); this range is similar to that for the ore sulfides 
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and thereby indicates common sulfur sources from re
duced seawater sulfate and bacteriogenic sulfur. Sulfide 
minerals in vasskis units in Norway have <534S values be
tween -20 and -25 per mil (Sand, 1986), which imply sul
fur derivation from biogenic sources or formation under 
oxidized conditions. Minor pyrite in ironstones distal 
from the Thalanga deposit in Australia have 834S values be
tween -14.4 and 5.7 per mil (average-8.1 %0); these values 
are unlike those for the massive sulfides (o34S = 10-18%0). 
They suggest open-system bacterial (biological) reduction 
of seawater sulfate for the ironstones, versus inorganic re
duction of seawater sulfate for the massive sulfides (Duhig 
etal., 1992). 

Carbon and oxygen isotope studies of hydrothermal iron 
formation are even more limited in number than those for 
sulfur. The paucity of studies is due, in part, to the difficulties 
in interpreting the isotopic data, particularly for carbon, 
given the sensitivity of carbon isotopic compositions to a va
riety of physicochemical conditions ( e.g., T, Jo2, pH, ionic 
strength, 813Ci:c) and the rate ofisotopic exchange between 
various carbon species (e.g., Ohmoto, 1972). Despite these 
difficulties, various studies have utilized C or O isotopes in in
terpreting the origin of carbonates in iron formations associ
ated with metamorphosed ore deposit'>. For example, car
bonates in carbonate-fades iron formation from Boquira, 
Brazil, have 81:'ICPDB values between -5.5 and 3.3 per mil (Car
valho ct al., 1982) and are consistent with a predominantly 
marine carbon source. Carbon isotope analyses of siderite 
and calcite in Brunswick belt iron formation range between 
-16.2 and -7.2 per mil and suggest a mixed carbon source 
consisting of organic matter, seawater, and marine carbonate 
(Peter and Goodfellow, 1993). Barriga (1983) reported oxy
gen isotope compositions of quartz in jasper overlying the 
Aljustrel deposit in the Iberian pyrite belt as being between 
17.9 and 20.1 per mil. Whole-rock 8180sMow analyses of 
jaspers from the area of the 4')kken and H0ydal deposits, 
Norway, range from 13.0 to 15.5 per mil (Grenne and Slack, 
1997). Carbonates in carbonate fades iron formation from 
Boquira, Brazil, have 8180 values between 8.6 and 21.5 per 
mil (Carvalho et al., 1982). Values of 8180sMow for siderite, 
calcite, and rhodochrosite in iron formation from the 
Brunswick belt vary from 9.6 to 15.6 per mil, whereas those 
for quartz in Key tuffite samples from the Mattagami Lake 
deposit are between 8.7 and 12.3 per mil (Costa etal., 1983). 

Published strontium and lead isotope data for iron for
mations are rare. Siderite from the Brunswick belt has 
87Sr/86Sr values between 0.71189 and 0.71508 (W.D. 
Goodfellow, unpub. data) that are intermediate between 
those of Middle Ordovician seawater (0.7082; Burke et al., 
1982) and continental crust (0.713 to 0.720), thus suggest
ing Sr input from both sources. Lead isotope ratios for 
chert facies iron formation that locally cap massive sulfides 
in the Iberian pyrite belt range between 18.20 and 18.44 
for 206Pb/204Pb and are ~ore radiogenic than the assod
ated massive sulfides (206Pb/204Pb = 18.13-18.23); sulfi~e 
facies pyritic chert is also more radiogenic (206Pb/204Pb = 
18.24 to 18.45; Leistel et al., 1998; Marcoux, 1998). Differ
ences in Pb isotope signatures and lead contents between 

cherts and sulfide-rich rocks were considered (Leistel et 
al.,1998) to show that there is no genetic link between the 
cherts and the massive sulfides and that their leads have 
different sources. 

Origin 

Styk of mineralization: Given the multiple sources possible 
for constituent elements within iron formations, there is 
considerable debate as to whether certain elements were 
introduced directly from the hydrothermal fluid or were 
scavenged from the water column onto iron oxyhydroxide 
particles. However, despite this debate, it is widely ac
cepted that Algoma-type iron formations are ancient met
alliferous sediments that were deposited on the sea floor 
like those on modern midocean ridges and back-arc · 
basins (e.g., Isley, 1995; Peter and Goodfellow, 1996a). Re
cent REE and Nd isotope evidence indicates that the iron 
in some Algoma-type iron formations also originated from 
hydrothermal sources (e.g.,Jacobsen and Pimentel-Klose, 
1988). Iron formations associated with Cu-Au mineraliza
tion of the Selwyn Range, Australia, are excluded from this 
review, as they are considered to be (Williams, 1994) epi
genetic, structurally-controlled replacements. 

The following three models have been proposed for the 
origin of Algoma-type iron formations: 

1. Precipitation from buoyant, high-temperature 
(350°-400°C) hydrothermal fluiqs (Fig. 3a): particulates 
are carried upward in a buoyant hydrothermalplume until 
they reach a neutral density, disperse later.ally from the 
vent site, and are influenced by bottom currents. The 
plume particulates are sedimented largely due to gravita
tional settling and are dispersed on a scale of kilometers to 
tens and even hundreds of kilometers. Particulates are de
posited as sulfides, carbonates, sulfates, silicates, or oxyhy
droxides. The· redox conditions of the ambient water col
umn play an important role in the nature of the particles 
deposited, as well as their preservation. Restricted basins 
are conducive to reducing conditions and better preserva
tion, whereas oxygenated conditions give rise to precipi
tates similar to modern metalliferous Fe-Si-Mn oxyhydrox
ides, such as those at modern ridge crests along the East 
Pacific Rise, Bauer Deep, and Galapagos rift (e.g., 
Bostrom and Peterson, 1966; Dymond, 1981; Barrett, 
1987). In the Bathurst mining camp, the distribution of 
iron formation over several kilometers suggests that the hy
drothermal fluids formed buoyant plumes from which 
minerals precipitated, settled on the sea .floor, and pro
duced the sulfide ores and associated iron formations. It is 
possible that megaplumes, tied to magmatic and tectonic 
evolution of a ridge crest (Embley et al., 1991), have con
tributed to the widespread occurrence of interlaminated 
or interbedded sulfides, carbonates, oxides, and silicates in 

·. ancient iron fQrmations. 
· 2. Precipitation from highly saline, high-temperature hy

drothermal fluids (Fig. 3b): particulates are carried to the sea 
floor in a buoyant hydrothermal plume where they hug the 
bottom or rise until they reach a pycnocline and spread out 
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laterally from the vent. An example of the latter case is in the 
Atlantis II Deep of the Red Sea, where hydrothermal fluids 
leach Miocene evaporites in the subsurface and give rise to 
dense, saline brines that pond in smaller, restricted basins 
(e.g., Degens and Ross, 1969). Sediments are finely layered 
(typically 1-5 mm), containing oxides as well as laminae and 
beds of sulfides. Sulfides .are precipitated from this dense 
fluid under anoxic conditions, ~hereas interlaminated ox
ides are precipitated from overlying, more oxidized fluids. 
These two fluids are separated at a density interface. 

3. Precipitation from low-temperature ( <250°C), dif
fusely venting hydrothermal fluids rather than high-temper
ature, highly focused fluids: several studies provide evi
dence for low-temperature formation. 1etsusekiei is 
thought to have formed at temperatures less than 150°C 
(Kalogeropoulos and Scott, 1983). The REE patterns of 
modern ochers from the TAG site on the Mid-Atlantic 
Ridge (Fig. 2g) indicate that they cannot have formed from 
black smoker fluid-seawater mixtures or by oxidation of 
chimney sulfides (Mitra et al., 1994). Instead, these ochers 
probably formed from low-temperature, diffusely flowing 
fluids, or from a late-stage, silica-rich fluid during waning hy
drothermal activity (Lalou et al., 1990). Low temperatures 
of formation have been determined for some ancient iron 
formations. Based on oxygen isotope data,jaspers from the 
area of the L0kken and H0ydal deposits give formational 
temperatures between 150° and 220°C (Grenne and Slack, 
1997); calculated temperatures for the cherts and jaspers 
overlying the sulfide deposit., at Aljustrel, Iberian pyrite 
belt, are around 120°C (Munha et al., 1986). 

In the above models, the iron formation minerals ( or 
their precursors) are precipitated directly from the vent 
fluid and the hydrothermal plume. Individual laminae are 
therefore ascribed to discrete pulses of hydrothermal 
fluid. This contrasts with the ochers on Cyprus, which 
formed by oxidative sea-floor weathering of preexisting 
sulfide minerals (Herzig et al., 1991). Debate still exists 
about the syngenetic nature of certain oxide-fades iron 
formations such as those associated with the Irish-type de
posits (e.g., Hitzman et al., 1995; Cruise, 1996). High Fe 
and Mn within the Irish iron formations is attributed 
(Cruise, 1996) to the presence of late fe7roan dolomite; 
however, this observation does not a prion rule out a strat
iform origin by precipitation on the sea floor. 

Hydrothermal, detrital, and hydrogenous sources: By analogy 
with modern sea-floor hydrothermal vent fluids (e.g., Von 
Damm, 1990), element<, such as Fe, Mn, Cu, and Zn in 
iron formations are generally assigned a hydrothermal 
origin. In many instances, the detrital component can be 
readily identified, and largely attributed to enclosing host 
rocks (whether sedimentary, mafic volcanic, or felsic vol
canic). Strong correlations involving a major component 
(Al20 3), and ininor and trace elements such as Ti, Cr, Zr, 
Nb, Th, and REE can be explained by the presence of clay7 

rich detrital elastic material of sedimentary or volcanic ori
gin (e.g., Peter and Goodfellow, 1996a). 

Bostrom (1973a) used a ternary Al-Fe-Mn plot to distin
guish between hydrothermal, detrital (e.g., eolian, tur
biditic, epiclastic, pyroclastic), and hydrogenous inputs to 
metalliferous sediments. The rationale behind the distinc
tion is that Al is essentially of detrital origin, whereas Fe 
and Mn are predominantly hydrothermal (Fig. 4). An
other commonly used plot is Al/ (Al + Fe + Mn) versus 
Fe/Ti (Bostrom, 1973a), which strictly assumes that Ti, 
like Al, is detrital. Such plots show that data for iron for
mations from a variety of sites span a continuous trend be
tween hydrothermal sediment ai1d terrigenous and 
pelagic sediment (Fig. 5). 

Techniques such as interelcment correlations and Q
mode factor analysis ( e.g., Gross, 1993) have also been 
used for differentiating hydrothermal, detrital, and seawa
ter sources for iron formation. Pearson interelement cor
relations for Brunswick belt iron formations between Si02 
and Ti02, A120 3, MgO, Na20, ~O, Be, Ce, Co, Cr, Ga, Hf, 
La, Lu, Nb, Ni, Rb, Sc, Ta, Th, U, V, Y, Yb, and Zr are at
tributed to detrital silicate and aluminosilicate minerals; 
between Be and Ce, Cr, Ga, Hf, La, Lu, Nb, Ni, Sc, 1a, Th, 
U, Yb, and Zr to mafic aluminosilicates; between Ba and 
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FIG. 4. Al-Fe-Mn ternary plot (mole % ) of iron formation samples from 
selected deposits and areas: Brunswick horizon iron formation, Bathurst 
mining camp, New Brunswick (Peter and Goodfellow, 1996a); Main Con
tact tuff, Noranda, Quebec (Kalogeropoulos, 1982); Key tuffite, 
Mattagami area, Quebec (Davidson, 1977; Liaghat and MacLean, 1992); 
Windy Craggy deposit, British Columbia (Peter and Scott, 1998); iron for
mation, Broken Hill block, Australia (Eeson, 1971; Stanton, 1976a); 
Olary block, Australia (Lottennoser and Ashley, 1996); Broken Hill, 
South Africa (Moore, 1989; Hoffmann, 1993, 1994). Shown for reference 
are the compositional fields of metalliferous sediments from the East Pa
cific Rise ·and the Afar Depression (hydrothermal field), and basalts, 
shales, and granites .(nonhydrothermal field) utilizing data from 
Bostrom (1973a). The compositions of Deep Sea Drilling Project Leg 31 
(Bonatti et al., 1979), umbers associated with Cyprus massive sulfide de
posits (Robertson and H11dson, 1973), and Pacific Ocean sediments (Dy
mond et al., 1973) are also indicated. 
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Be, Cs, Ga, Nb, Rb, and Tl to feldspar; and between 
Fe

2
O/ and CaO, CO

2
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O

5
, Sr, S, Ag, As, Au, Bi, Cd, Cu, 

Eu, Eu/Eu*, Hg, In, Mo, Pb, Sb, Se, Tl, and Zn to hy
drothermal iron oxides, carbonates, apatite, and sulfides 
(Peter and Goodfellow, 1996a). Strong correlations 
among the relatively immobile elements Al, Sc, V, Y, and 
heavy REE indicate a small component (mostly <5%) of 
detrital, probably basaltic, material within the jaspers of 
the L0kken-H0ydal area, Norway (Grenne and Slack, 
1997). Lottermoser and Ashley ( 1995) noted that Olary 
block (Australia) iron formations display correlations be
tween Al and Ti, K, Hf, Rb, and Zr, which reflect elastic or 
volcanic detritus. At Broken Hill, South Africa, the amphi
bole-rich iron formations (Fe/Ti= 100--7,000; Al/ (Al +,Mn 
+Fe)= 0.01-0.05; n = 10) are interpreted to have a greater 
hydrothermal component, whereas the garnet-rich vari
eties (Fe/Ti= 40--100; Al/(Al +Mn+ Fe)= 0.11-0.21; n = 
8) contain a greater detrital component (Hoffmann, 
1994, fig. 7.8). 

Factor analysis has also been used to identify contribu
tions from hydrothermal, hydrogenous, and detrital com
ponents in iron formation. Factors commonly include 
geochemically coherent elements that relate to sample 
type or processes that have affected the rocks. Factor 
analysis by Davidson (1977) on samples of Key tuffite from 
Matagami, Quebec, identified four major groupings: (1) 
Zn, Cu, Cd, Pb, Ag, P, and Na (30% of total variability) at
tributed to hydrothermal COillponent; (2) Fe, Cr, and Co 

(15% of variability) attributed to hydrothermal pyrite and 
pyrrhotite; (3) Al, Ba, Ti, Mg, and V (27% of total variabil
ity) due to detrital aluminosilicates; and ( 4) Ca, Mn, Sr, K, 
and Be attributed to detrital aluminosilicates of volcanic 
origin. Factor analysis of iron formation from the Soucy 
deposit, Labrador, indicates that SiO2, Na2O, and TiO2 re
side in detrital material, whereas Fe is hydrothermal (Bar
rett et al., 1988). 

Stanton ( 1972) noted the coincidence between high P 
and sulfides in Broken Hill (Australia) iron formation, and 
on this basis argued that P was derived from the hydrother
mal fluid rather than from seawater. Work on modern hy
drothermal plumes (Mottl and McConachy, 1990) has 
shown that P, Si, Ca, V, and As in hydrothermal particles 
originate by these species being chemically scavenged 
from the water column by iron oxyhydroxide particles. 
The degree of enrichment thus depends on the residence 
time of the particles in the water column and the ambient 
element concentrations in seawater. Caution must be 
noted here that the P budget is Hkely to be very different in 
modern seawater than in the Proterozoic, since most P in 
modern deep-sea sediment occurs as skeletal biogenous 
remnants in the form ofapatite (e.g., Marchig, 1978). 

In the Bath.urst area, As values. in iron formation are 
highest overlying ( or dose to) known massive sulfide de
posits. This indicates that As is not hydrogenous; any 
plume particles over the massive sulfide deposits would 
have settled out more quickly than · those transported 
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away from the vent site, and thus would have had shorter 
residence times in the water column (and reduced poten
tial to scavenge elements from seawater). The hydroge
nous component in iron formations is generally very 
small and, therefore, is not discernible in Al-Fe-Mn and 
Al/ (Al + Fe + Mn) -Fe/Ti plots. Lottermoser and Ashley 
( 1995) suggested that the high Th content of Olary block 
(Australia) iron formation is due to a large hydrogenous 
component that was scavenged from the water column, al
though high Th contents could also reflect elastic detritus 
derived from A-type granites and/ or rhyolites ( cf. Ashley 
et al., 1996). The best indicator of a hydrogenous origin is 
a distinct negative Ce anomaly on a chondrite-normalized 
REE plot (Fig. 2a-g), as is found with modern oxy
genated seawater. 

Precursor mineralogy: The oxide, silicate; carbonate, and 
sulfide mineralogy of metamorphosed iron formations is 
dependent on bulk composition and a variety of physico
chemical conditions (e.g., P, T,/02, pH, I,Js2, and/co2). Al
though the mineralogy of iron formations at various meta
morphic grades (Table 2) is well documented, there is 
much debate in the literature as to their precursors. 
Duhig et al. ( 1992) suggested, on the basis of textural con
siderations, that iron formation in the Mount Windsor vol
canic belt, Australia, was derived from silica gels. Grenne 
and Slack (1997), in their study of jaspers from the 1rond
heim district, Norway, reached a similar conclusion. They 
proposed that the jaspers formed by crystallization from 
siliceous colloids or gels that were genetically related to 
the hydrothermal system(s) responsible for deposition of 
the nearby L0kken and H0ydal massive sulfide deposits. 

Magnetite is commonly thought to be a dehydration 
product ofa precursor mixture ofFe(OI-1)2 and Fe(OH) 3• 

Stanton (1976c) argued that chamosite was a primary pre
cursor phase of iron formation associated with the Broken 
Hill deposit, Australia. Modern metalliferous sediments 
contain a high proportion of nontronite, an Fe-rich smec
tite day (e.g., Dymond et al., 1973). The hydrothermal de
posits of the FAMOUS area on the Mid-Atlantic Ridge are 
composed, in large part, of nontronite, and, have bulk 
compositions remarkably similar to those of iron forma
tions. Minnesotaite in iron formations is thought to form 
during diagenesis or low-grade metamorphism from\pre
cursor septechlorites and chamositic iron minerals. Stilp
nomelane bands may have formed from precursor ash-fall 
tuffbeds (e.g., Beukes and Klein, 1992). 

Physicochemical constraints: A strong influence on the na
ture of the hydrothermal precipitates is the redox condi
tions at the depositional site. Water depth and circulation 
influence redox conditions (Eh). The different fades of 
iron formation (sulfide, carbonate, oxide, silicate; James, 
1954) are thought to have formed under differing condi
tions of Eh or pH in the local depositional environment. 
Garrels and Christ ( 1965) determined the stabHity rela
tionships in the system Fe-O-H-S-C02 at 25°C. Sulfide
fades iron formation forms in the deepest water under 

strongly reducing and strongly negative Eh conditions. 
Carbonate- and silicate-fades iron formation require inter
mediate Eh conditions, such as those favored in deep wa
ter under modrrately reducing conditions, albeit in 
slightly shallower waters than sulfide-fades iron forma
tion. Siderite precipitation is favored over magnetite pre
cipitation at relatively neutral pH and under the same Eh 
conditions (but ranging to lower values). Oxide-fades 
iron formation is precipitated under high Eh, oxidizing 
conditions, such as in shallow waters where iron is de
posited as amorphous Fe3+ hydroxides [Fe(OH) 3]. Under 
more reducing conditions, fine-grained magnetite 
(Fe30 4) forms. Hydroxides of divalent iron [Fe(OH) 2] are 
deposited only in highly reducing environments in a nar
row field near the limit of stability of water at atmospheric 
pressure. Fe(OH) 3 converts to Fe30 4 in the presence ofa 
reducing agent such as organic matter, or it could convert 
to siderite or greenalite. Magnetite also forms as a result of 
a reaction between hematite and carbonate during burial 
metamorphism. Thus, fluctuations in T, Eh, or pH and in 
Pco2, coupled with variations in the amount of reduced 
sulfur available, determine whether hematite, magnetite, 
siderite, pyrite, or pyrrhotite are precursor minerals. Stan
ton (1976b) suggested tha! the mineralizing fluids at Bro
ken Hill, Australia, were warm and acidic, and that the am
bient basin waters were cool and neutral. Distinct 
mineralogical layers in iron formation at Broken Hill led 
Stanton (1976c) to propose oscillations of pH and Eh con
ditions in the depositional basin. 

The observation that iron formations are typically asso
ciated with Broken Hill-type deposits and not, for exam
ple, with most sedimentary-exhalative (sedex) deposits is 
because conditions for the former were more oxidized 
(e.g., Large et al., 1996) than the reducing conditions in
voked for the latter (Goodfellow et al., 1993). In Broken 
Hill-type deposits, magnetite is abundant, whereas 
graphite is abundant in the sedex-type deposits. Where 
graphite is present, such as in the lower parts of the Garns
berg orebody, South Africa, locally reducing conditions 
were likely, whereas the barite-hematite-magnetite layers in 
the same orebody were deposited under more oxidizing 
conditions (Rozendaal and Stumpfl, 1984). 

Redox conditions also control the distribution of Fe and 
Mn in hydrothermal precipitates (e.g., Crerar et al., 1980; 
Spry and Wonder, 1989). Mn is more mobile with in
creased pH and Eh, whereas Fe2+ is oxidized to Fe3+ where 
hydrothermal fluid and seawater mix. Higher pH and Eh 
conditions are required to oxidize Mn2+ to insoluble Mn4+. 

The study of Mn distribution in modern marine basins ~ 
shows it to be soluble in anoxic waters, precipitating as Mn 
oxides or carbonates in the zone of mixing with oxic wa
ters. Thus, Fe and Mn are fractionated in solution due to 
gradual pH increase or gradual oxidation during mixing 
of hydrothermal fluid with ambient seawater. The pres~ 
ence at Tynagh, Irdand, of iron formation and a syn
genetic manganese aureole around the deposit, as well as 
the presence of fossil worms (Banks, 1985), indicate that 
fluids vented into an oxidizing water column. Broken Hill-
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type and sedex deposits typically also have Mn enrichment 
haloes in the wall rocks that may be used in the search for 
concealed mineralization (see below). 

Implicit reference to proximal versus distal settings (i.e., 
distance from the site of focused hydrothermal discharge) 
is made in many studies of iron formation genesis ( e.g., 

complex fades changes could be due to fluctuating 
physicochemical conditions of mineral precipitation. De
trital sedimentary interbeds in iron formation result from 
periodic turbiditic sedimentation. 

Coticules 

Scott et al., 1983). The reasoning is that sulfides are de7 Renard (1878) coined the term coticule and referred to 
posited dose to the fluid discharge site in the deepest it as a rock containing essential spessartine garnet in a ma
(most reduced) parts of the basin, whereas oxides and sili- trix of sericite and/or quartz. A quartz-garnet rock, in 
cates are transported to shallower, .more oxidized waters which the garnet exhibits a dominance of the almandine, 
farther from the vent. The lateral zonation of iron forma- grossular, andradite, or pyrope compositional end-mem
tion at Pegmont, Australia, has been ascribed to an increase hers, should strictly be referred to as quartz garnetite. The 
in Eh from center to edge of a paleobasin (Vaughan and terms garnet quartzite and quartz garnetite were used by 
Stanton, 1986). ~ Richards (1966a, b) and Spry aird Wonder (1989), respec-

Complex hydrologic conditions, such as those in the tively, to describe garnet-quartz rocks at Broken Hill, Aus
modern Red Sea, can give rise to a density-stratified basin tralia. Nevertheless, the term coticule is herein applied to 
with surface waters that are more oxic and deeper waters garnet-quartz rocks, regardless of garnet composition, 
that are anoxic and enriched in dissolved ferrous iron (due since intimate spatial relationships among spessartine
to hydrothermal input). Interaction between these two wa- quartz-rich rocks, almandine-rich rocks, and grossular.: 
ter masses, together with the rates of supply of oxygen and quartz-rich rocks occur in various localities ( e.g., Broken 
carbon to the interface between the surface and the deep Hill, Australia-Spry and Wonder, 1989; Aggeneys, South 
waters, can produce complex interbedding of sulfide- and Africa-Spry, 1990). The andradite and calderite compo
oxide-predominant precursor minerals to iron formation. nents of garnet in coticules are negligible. Coticules are 
Plimer (1988a) favored a brine pool spillover model for the not to be confused with fine-grained, essentially unmeta
origin of the sulfides, iron formations, and coticules at Bro- morphosed ferromanganiferous sediments, called um
ken Hill, Australia. He suggested that paleotopographic hers, which occur stratigraphically above Cyprus-type mas
variations due to horsts and grabens controlled the distribu- sive sulfide deposits (Constantinou and Govett, 1972). 
tion of sulfides and iron formations, with the sulfides and re- Although found in a variety of geological settings, cotic
duced iron formation assemblages restricted to grabens ules are commonly spatially associated with metamor
and the more oxidized assemblages to horsts. Such a see- phosed base metal, scheelite, and gold deposits (Table 3). 
nario would be similar to that in the Red Sea. A~ is the situation for tourmalinites (below), most recent 

A change from highly acid to moderately acid pH leads studies of coticules associated with metamorphosed mas
to the total removal of iron from solution. End-member, sive sulfide deposits suggest formation either by exhalative 
high-temperature, sea-floor vent fluids are reduced and processes or subsea-floor replacement ( e.g., Cook and 
acidic (e.g., Von Damm, 1990). Vent fluids, on mixing with Halls, 1990; Spry, 1990; Slack etal., 2000). However, earlier 
cooler seawater in the subsurface or on the sea floor, pre- genetic interpretations of coticules associated with these 
cipitate sulfides and thereby lower the Fe/H2S ratio of the metamorphosed massive sulfide deposits are diverse. For 
fluid mixture. If the fluids were 200°C or cooler, inorganic example, coticule at Broken Hill, Australia, has been vari
sulfate reduction in the feeding aquifer would be sluggish ously interpreted as a metamorphosed chemical sediment 
(Ohmoto and Lasaga, 1982) and high Fe/H2S ratios re- (Segnit, 1961; Richards, 1966a, b; Stanton, 1976c; Stanton 
suit. Continued cooling and mixing would yield precipita- and Williams, 1978; Spry and Wonder, 1989; Slack et al., 
tion of Fe and Mn oxides rather than sulfides. As discussed 1993b), a variant of metamorphosed detrital sands (Hay
by Duhig et al. (1992), fluids with Fe/H2S less than rl ~on and McConachy, 1987), and as metasomatized sedi
would potentially.precipitate Fe sulfides in and around the ment (Stillwell, 1959). 
vent site and Mn oxide distally; fluids with Fe/H2S greater 
than 1 would precipitate Fe and Fe-Mn oxide deposits. Geology and petrography 

In summary, the chemical composition and mineralogy 
of iron formation in a given area depends on the physico
chemical conditions of the venting hydrothermal fluid 
(e.g., pH, T, ionic strength, Js2), the redox conditions of 
the basin or water column into which venting occurs (wa
ter depth may partly control this also), the degree of basin 
isolation from elastic sedimentation, the amount of hy
drothermal fluid input via venting, and bottom current 
drift. Predominantly gradational boundaries between iron 
formation fades and between iron formation and underly
ing host rocks could reflect waxing and waning hydrother
mal activity against steady-state sedimentation, wh~reas 

In ore-forming environments, coticules are typically asso
ciated with rift-hosted volcanosedimentary base metal sul
fide deposits, particularly those of the Broken Hill (Beeson, 
1990) and Besshi (Slack, 1993a) types. They occur within 
sulfide deposits or as discontinuous units above, below, or 
along strike from massive sulfides, in some localities ex
tending intermittently over several kilometers (e.g., 
Willyama Complex, Aggeneys). Coticules generally form 
layers less than 2 m thick; but in somefocations, such as the 
Broken Hill area, Australia, they may be greater than 10 m 
thick. Coticules are most common in silicidastic sedimen
tary rocks (graywackes and shales) that have experienced 
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TABLE 3. Geological Setting of Selected Coticule Localities 

Deposit, Geological Garnet-bearing Associated 
district · _Age setting Metals rock type exhalites References 

Glendalouh, Ireland Camb.ro-Ordovician Cmsd,Gran Pb,Zn Cotic:ule Tourmalinite 1 

Tinahely, Ireland Cam bro-Ordovician Cmsd,Gran w Coticul~ Tourmalinite 2 

Sulitjelma, Norway Early Paleozoic Mbas Cu. Coticule 3 

Skorovass, Norway Early Paleozoic Mbas Cu Coticule 4 

Bleikvassli, Norway Early Paleozoic Cmsd,Mbas Pb,Zn,Ag; Coticule 5,6 
Cu,Au 

Karnten, Austria Siluro-Devonian Cmsd Zn,Cu Coticule Quartz-spine! ro_ck 7 

Angas, Australia Cambrian Cmsd Pb,Zn Coticule Gahnite-staurolite rock 8 

Western Georgia Early Pale?zoic Cmsd,Mbas Cu,Zn Coticule Tourmalinite, 9 
iron formation 

Sullivan, Canada Proterozoic Cmsd, Mbas Pb,Zn Coticule Tourmalinite 10 

Willyama Complex Proterozoic Cmsd, Mrhy, Pb,Zn,Ag Coticule, garnetite, Tourmalinite, 11, 12, 13!_ 14, 
(Broken Hill, Mbas quartz garnetites iron formation, 15, 16 
Pinnacles) Australia quartz-gahnite rock 

Elizabeth, Vermont Ordovician Cmsd,Mbas Cu,Zn Coticule Tourmalinite 6, 17 

Aggeneys, South Africa Proterozoic Cmsd,Mrhy Pb,Zn,Cu Coticule Iron formation, 6, 18, 19 
tourmalinite 

Gamsberg, South Africa Proterozoic Cmsd Pb,Zn Coticule Iron formation 20,21 

Quha River, South Africa Proterozoic Cmsd,Mbas Disseminated Coticule Tourmalinite 22 
sulfides 

Pegmont, Australia Proterozoic Cmsd Pb,Zn Coticule Iron formation, 23 
tourmalinite 

New Brunswick, Canada Ordovician Mrhy,Cmsd Pb, Zn,Cu, Coticule Iron formation 24 
Sn,W,Mo 

Sierras Pampeanas Proterozoic Cmsd w Coticule Tourmalinite 25 
Orientales, Argentina 

Cannington, Australia Proterozoic Cmsd Pb,Zn,Ag Coticule 26 

Gossan Lead, Virginia Proterozoic Cmsd,Mbas Cu,Zn Coticule 27 

Notes: Abbreviations: Cmsd = elastic metasediments (e.g., pelitic schist), Gran= granite or felsic porphyry, Mbas c metabasalt (greenstone, amphi
bolite), Mcar = metacarbonate, Mgab = metagabbro and metadiorite, Mrhy = metarhyolite 

References: 1, Williams and Kennan (1983); 2, McArdle and Kennan (1988); 3, Cook and Halls (1990); 4,Halls et al. (1977); 5, Skauli (1990); 6, this 
study; 7, Williams and Manby (1987); 8, Both et al. (1995); 9, Wonder et al. (1988); 10, Slack et al. (2000); 11, Barnes et al. (1983); 12, Lottermoser 
(1989); 13, Lottermoser (1988); 14, Spry and Wonder (1989); 15, Parr (1992); 16, Wiggins (1990); 17, Annis et al. (1983); 18, Spry (1988); 19, Lipson 
(1990); 20, Stumpf! (1979); 21, Rozendaal and Stumpf! (1984); 22, Cornell et al. (1996); 23, Vaughan and Stanton (1986); 24, Gardiner and Venu
gopal (1992); 25, de Brodtkorb et al. (1995); 26, Bodon (1996); 27, Gair and Slack (1984) 

anything from greenschist to granulite fades metamor
phism. They are typically intercalated with other meta--ex
halites, particularly iron formations and tourmalinites. 

Garnets in coticules vary in grain size from a few hundred 
microns to greater than l .cm in diameter (Fig. 6a-c). Gar
nets in coticules metamorphosed to upper amphibolite 
and granulite fades tend to be coarser, due to the effects of 
recrystallization. In undeformed to weakly deformed rocks 
atthe Bleikvassli Zn-Pb-(Cu) deposit, Norway, fine-grained 
garnets (<l mm diam) can form laminations in quartz 
horizons of varying thickness (up to 1 m). Primary struc
tures, such as · crossbedding and graded bedding, have 
been observed in rocks metamorphosed even to the gran
ulite fades (e.g., Broken Hill, Australia). 

The mineralogy of coticules associated with metamor
phosed ore deposits consists primarily of quartz and garnet, 

with or without accompanying muscovite, biotite, chlorite, 
amphibole, gahnite, feldspar, carbonate, aluminosilicates, 
pyroxenoids, apatite, scheelite, tourmaline, and sulfides. Ac
cessory minerals include cordierite, epidote, staurolite, titan
ite, zircon, fluorite, and ilmenite. Graphite is absent from 
coticules, unlike tourmaliijites where it is relatively com
mon, suggesting deposition of the coticules under relatively 
oxidizing conditions. Mineral inclusions in garnet vary but 
consist predominantly of quartz. Rare carbonate inclusions 
have also been documented in garnet ( e.g., the Sullivan de
posit), thereby suggesting a Mn carbonate or rhodochrosite 
precursor for the Mn component (Slack et al., 2000). 

Garnets in coticul~s consist predominantly of spessar
tine-almandine solid solutions. However, extensive solid so
lutions with the pyrope and grossular molecules have also 
been documented (e.g., from the Broken Hill deposit, 
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FIG. 6. Photographs of coticules and tourmalinites. a. Coticule (quartz-garnetite) along strike from the northern encl 
of the Bleikvassli deposit, Norway. b. Garnetite crosscut by coarse-grained coticule (quartz-garnetite) from 3 lens, Bro
ken Hill deposit, Australia. c. Coticule (quartz-garnetite) in contact with magnetite iron formation (bottom) from the 
Big Syncline deposit, Aggeneys, South Africa. The lens cap is sitting on the iron formation near the contact. cl. Pho
tomicrograph (plane-polarized light) of garnet grains in tourmalinite from the footwall of the Sullivan deposit, 
Canada. Note that the cores of garnet grains consist of tourmaline. Scale bar= 2.3 mm. e. Photomicrograph (plane-po
larized light) of interlocking grains of tourmaline in tourmalinite in the Villa Rica area, western Georgia. Scale bar= 1 
mm. f. Crossbeds in tourmalinite from the Silver King East mine, Broken Hill, Australia. 
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Australia-Spry and Wonder, 1989; and Spry, 1990; and 
from the Aggeneys area, South Africa-Spry, 1988). The 
compositional variations in garnet in these deposits reflect 
changes in Eh, pH, Jc:02, fluid/rock ratios, and metal con
tents during the precipitation of precursor minerals, such 
as rhodochrosite, carpholite, todorokite, birnessite, non
tronite, Fe(OH) 2, and Fe(OH) 3. 

The garnets locally show compositional zoning but are 
less well zoned than garnets in spatially associated schists 
and gneisses. Some garnet overgrowths at Broken Hill are 
the result of a late metasomatic overgrowth on an early
formed metamorphic garnet (Spry and Wonder, 1989). 
Bodon ( 1998) described a similar textural relationship for 
garnet in the Cannington deposit, Queensland. 

Geochemistry 

Geochemical studies of coticules have, in large part, 
been restricted to acquisition of major and trace (includ
ing rare earth) element compositions. A limited review of 
major and trace element studies of coticules spatially as
sociated with base metal sulfide occurrences was made by 
Spry ( 1990); however, several substantial geochemical 
studies of coticules have been completed since that re
view (e.g., Parr, 1992; Slack et al., 2000). Representative 
bulk-rock compositions are given by Wonder et al. 
(1988), Lottermoser (1989), Spry and Wonder (1989), 
Parr (1992), Bjerkgard and ~j0rlykke (1996), and Slack 
et al. (2000). 

The few stable isotope data obtained on coticules are sul
fur isotope analyses collected as part of larger studies of 
spatially related massive sulfide deposits The sulfur isotope 
compositions fall within the range of values reported for 
the associated massive sulfides and suggest a common ori
gin (e.g., Spry, 1988; Parr, 1992). 

Major elements: Coticules show variable contents of Si02 
(31.3-94.3 wt%), Al20 3 (l.3-21.l wt%), FeP.~ (0.8-37.4 
wt%), MnO (0.2-18.2 wt%), FeO (2.1-27.2 wt%), CaO 
(0.2-17.3 wt%), MgO (0.1-4.0 wt%), and Ti02 (0.0-1.3 
wt%). Concentrations of alkalis, halogens, H 20, and CO2 
are generally less than 2 wt percent. 

Various discrimination diagrams have been used to assist 
interpretation of source environments and evaluate hy
drothermal, hydrogenous, and pelagic contributions to 
coticule-forming precursors ( e.g., Wonder et al., 1988; 
Spry, 1990; Cornell et al., 1996). However, many such dia
grams involve silica versus alumina and should be 
avoided. This is because coupled data for oxides constitut
ing a major proportion of the rock, as is the case with Si02 
and Al

2
0,p are strongly affected by statistical closure and 

can be misleading (Slack et al., 1993b, 2000). Further
more, Si02-based discrimination diagrams do not distin
guish between detrital and hydrothermal sources of silica. 

A plot of Ti02 versus Al20 3 by Slack et al. (2000) shows 
strong correlations among tourmalinites, coticules, and 
unaltered metasedimentary host rocks at the Sullivan and 
nearby North Star deposits, British Columbia (Fig. 7). 

These correlations were believed (Slack et al., 2000) to re
flect similar processes of detrital sedimentation for clays, il
menite, and rutile for the three lithologies, and therefore 
support a major detrital contribution to the tourmalinites 
and coticules. A comparable scenario was envisioned 
(Slack et al., 1993b) for protoliths of coticules, tourmalin
ites, and pelitic schists in the Broken Hill district, where a 
strong correlation between Ti0

2 
and Al

2
0

3 
occurs for each 

of these rock types. A plot of Ti0
2 

versus Al20 3 for 
metasedimentary rocks and coticules at Broken Hill is 
shown in Figure Sa. A much weaker correlation is observed 
between Ti02 and Al20 3 for coticules from the Aggeneys 
district (Fig. Sb), primarily due to Ti02 contents close to 
detection limit~ (0.02 wt % Ti02). These Ti02-Al20 3 plots 
demonstrate that coticules and tourmalinites contain a 
substantial detrital component, and that previous models 
that relied only on exhalative processes are invalid. 

Molar element ratios normalized to molar Al can also be 
useful in identifying the origin of coticule. Slack et al. 
( 1993b) used this approach for Broken Hill coticules and 
found them to be enriched in Si, Fe, Mn, and Ca relative to 
unaltered elastic metasedimen ts of the district ( cf. Slack 
and Stevens, 1994). In a similar way, Slack et al. (2000) eval
uated protoliths of coticules at the Sullivan and North Star 
deposits, British Columbia, and found enrichments of 
these same elements (except Si), together with Band sev
eral metals. These results were interpreted (Slack et al., 
1993b, 2000) in terms ofa hydrothermal source for the Fe 
and Mn, while the Ca and Mn data were considered to sup
port abundant carbonate in precursors to the coticules. 
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FIG. 7. Variation in Al2n1 versus TiO2 for tourmalinites and coticules 
from the Sullivan, North Star, and Stemwinder deposits, Canada. The 
large black cross shows mean compositions and one standard deviation for 
all analyzed tourmalinites exclusive of coticules (Al2O" = 13.30 ± 3.06 wt%; 
TiO,= 0.50 ± 0.14 wt%; n = 72); the large gray cross shows mean and one 
standard deviation for unaltered elastic metasedimentary rocks of the 
lower and middle Aldridge Formation (Al2O 3 = 13.82 ± 3.24 wt%; TiO2 = 
0.54 ± 0.12 wt%; n = 92); +=Sullivan shallow footwall tourmalinites; x = 

Sullivan deep footwall tourmalinites; A = Sullivan hangingwall tourmalin
ites, o = Stemwinder tourmalinites, V = North Star tourmalinites, o = Sul
livan and North Star coticules (from Slack et al., 2000, fig. 10). 
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FIG. 8. AI2O3 versus TiO2 plot for metasedimentary rocks and coticules 
from a. Broken Hill, Australia, and b .. Aggeneys, South Africa. The com
positions of coticules from Broken Hill, Australia, are from Spry (1978), 
Elliot (1979), Wiggins (1990), and Slack (1993b), whereas the shaded 
field outlining the compositions of elastic metasediments derived from 
the Broken Hill area was compiled by CRA Exploration Pty. Ltd (Main et 
al., 1983). The compositions of coticules from the Aggeneys area are 
from this study, Lipson (1990), and Hoffman (1993). The shaded area 
outlines the compositions of elastic metasediments in the Ore Schist For
mation hosting the Aggeneys deposits that were determined by Lipson 
(1990). The poor correlation between the Ore Schist Formation and 
coticules likely suggests contributions of elastic components from schist 
horizons in the immediate stratigraphic footwall (e.g., Namies schist and 
Shaft schist) and the hanging wall (e.g., Hanging-wall schist). 

Iron and Mn in marine sediments are derived predomi
nantly from hydrothermal sources, whereas Al is of detrital 
origin and is added to the sediment by clay minerals 
(Bostrom, 1973b; Peter and Goodfellow, 1996a). Figure 9 is 
a ternary Fe-Al-Mn plot of coticule compositions showing a 
broad scatter of data. that suggests mixtures of hydrothermal 
and nonhydrothermal components to coticule protoliths. 

These same data are plotted as a function of Fe/Ti versus 
Al/ (Al + Mn + Fe) to indicate the relative contributions of 
terrigenous elastic and/ or pelagic sediment and hy
drothermal components (Fig. 10). Most of the data have 
Fe/Ti less than 200 and Al/ (Al+ Fe+ Mn) greater than 0.2, 
suggesting an input of up to 70 percent hydrothermal 
component in metalliferous sediment, with the remainder . 
being detrital terrigenous and/ or pelagic sediment. Some 
samples from Broken Hill (Australia) appear to have little 
or no component of metalliferous hydrothermal sediment, 
based on values of Fe/Ti less than 20 and Al/ (Al + Fe + 
Mn) greater than 0.6. Although plots of this type have not 
previously been used to evaluate the compositions of clay 
minerals, it is possible that nine of the Bleikvassli data 
points fall above the hydrothermal component-terrigenous 
elastic and/ or pelagic sediment mixing curve because the 
precursor clay mineral in the nonhydrothermal compo
nent was predominantly montmorillonite. 

Theye et al. (1996) showed that the precursor to spessar~ 
tine in the Lienne syncline, Venn-Stavelot massif, Belgium, 
was a carpholite ((Fe2+, Mn2+, Mg)(Al, Fe3+) 2[Si

2
0 6](0H, 

F) 4)) group mineral. Utilizing compositional data of 
carpholite from Th eye et al. 's ( 1998, 1able 2) study, average 
values of Fe/Ti= 8.22 and Al/ (Al+ Mn+ Fe)= 0.68 are olr 
tained. These values are very similar to those shown for the 
average composition of terrigenous sediment at the end of 
the mixing curve in Figure 10. Whether carpholite is a com
mon precursor to spessartine remains uncertain; however, 
the field and experimental evidence ofTheye et al. (1998) 
support the concept that it may be important in the forma
tion of coticules. It should be stressed herein that carpho
lite is just one of several possible precursor minerals. Other 
such minerals include, for example, rhodochrosite and 
manganosiderite, which have been proposed as possible 
Mn-bearing precursor minerals to coticules elsewhere in 
the Venn-Stavelot massif and the Sullivan deposit by 
Schreyer et al. (1992) and Slack et al. (2000), respectively. 

Rare earth e/,ements: Chondrite-normalized REE patterns 
for coticules (Figs. 11 and 12) are very similar to those for 
iron formations (Fig. 2) in that both types of meta-ex
halites are generally enriched in light REE and depleted in 
heavy REE. Coticules, like iron formations, may also dis
play small negative Ce anomalies as well as positive or neg
ative Eu anomalies. Rare earth element data for the Sulli
van and North Star deposits, British Columbia, show light 
REE enrichment, heavy REE depletion, and negative Eu 
anomalies relative. to chondrites (Fig. Ila; Slack et al., 
2000). Sample JS-81-72B, a pyrrhotite- and biotite~rich 
coticule from the footwall of the Sullivan deposit, exhibits 
a positive Eu anomaly. The fact that REE patterns for the 
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FIG. 9. Al-Fe-Mn ternary plot for coticules: Broken Hill, Australia (Spry, 
1978; Elliot, 1979; Spry and Wonder, 1989; Wiggins, 1990); Aggeneys, 
South Africa (Lipson, 1990; Hoffman, 1993; this study); Elizabeth, Ver
mont (this study); Sullivan, Canada (Slack et al., 2000); San Luis, Ar
gentina (Fernandez et al., 1994); Bleikvassli (Skauli, 1990; this study); 
Quha River prospect, South Africa (Cornell et al., 1996); western Georgia 
(Wonder et al., 1988); Huey deposit, Virginia (Ga_ir and Slack, 1984); 
Karnten deposit, Austria (Williams and Manby, 1987); and Angas deposit, 
Australia (McElhinney, 1994). 
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FIG. 10. Al/ (Al+ Fe+ Mn) versus Fe/Ti plot of coticules. Symbols and 
locations are as in Figure 9. Curves are theoretical mixing lines between 
metalliferous sediment from the East Pacific Rise (EPR) .and Red Sea 
(RS), with terrigenous sediment (TS) and pelagic ~diment (PS). Num
bers along curves represent approximate amount of metalliferous sedi
ment within the mixtures. Modified from Barrett (1981) and Spry 
(1990). The composition of two montmorillonites (Ml and M2) taken 
from Grim and Kulbricki (1961) are also included (circle over a cross). 

coticules are "essentially the same as those of unaltered 
Aldridge metasedimentary rocks (hachured), that host 
the _Sullivan and North Star deposits, suggests a detrital in
put to the coticules. B_ased on their geochemical data, and 
on the occurrence of carbonate inclusions in some of the 
coticule garnets, Slack et al. (2000) postulated that the 
protolith to the Sullivan and North Star coticules included 
a significant proportion of manganosiderite. 

As noted by Peter and Goodfellow (1996a) and in the 
above discussion of iron formations, greater than ca. 30 wt 
percent detritus in the depositional environment of the 
coticules should produce enriched light REE and de
pleted heavy REE patterns and a negative Eu anomaly. 
Such negative Eu anomalies are common in coticules and 
suggest a large detrital component. The Fe/Ti versus· 
Al/ (Al+ Mn+ Fe) data shown in Figure 10 support a min
imum of 30 wt percent detritus in the source environment. 
The possibility that a significant contribution of detritus is 
present in the precursors to coticules is also supported by 
plots of TiO2 versus Al2O 3 for the Broken Hill (Australia) 
and Aggeneys areas (Figs. 8a and b), as well as by similarity 
in the REE patterns of coticules and associated metasedi
mentary rocks in the Pinnacles area (Fig. 12a). 

A'!suniing that metamorphism does not alter the REE pat
tern of coticules (e.g., Lottermoser, 1988, 1989; Parr, 1992), 
the presence of small, negative Ce anomalies in some sam
ples from the Elizabeth (Fig. llb), San Luis (Fig. lld), and 
Pinnacles (12a) deposits shows varying inputs of seawater to 
the fluids responsible for the formation of the coticules. Pos
itive Eu anomalies occur in coticules from the Sullivan, Pin
nacles, Broken Hill, and Aggeneys deposits, suggesting con
tributions from high-temperature, reduced hydrothermal 
fluids (Sverjensky, 1984; Peter and Goodfellow, 1996a). Lot
termoser (1988, 1989) showed that exhalites (e.g., iron for
mation, coticules, quartz-gahnite rocks), are enriched in 
Eu2+ with proximity to sulfide zones in the Broken Hill area, 
Australia (see coticule sample 5, Fig. 12c), and depleted in 
Eu2+ from distal localities. This relationship was interpreted 
(Lottermoser, 1989) as reflecting higher temperatures in 
the hydrothermal fluid and lower detrital input to the pro
tolith of proximal coticules, compared with distal coticules 
where the hydrothermal fluid had a lower temperature and 
the detrital input was higher. 

Tourmalinites 

Tourmalinites are volumetrically minor rocks that occur 
in close association with many types of exhalative mineral 
deposits. Following Nicholson (1980) and Slack et al. 
(1984), tourmalinites are defined as strata-bound rocks 
that contain in excess of 15 to 20 percent tourmaline by 
volume. Many workers in Europe, and others elsewhere, 
have used the term tourmalinite to refer to discordant 
tourmaline-rich veins (i.e., postprimary) and breccias, but 
this usage is not adopted here. In the following sections, 
descriptions and interpretations of tourmalinites are re
stricted to occurrences that are closely .associated with 
clearly exhalative deposits and/ or chemical sediments 
(Table 4). We have also included in our discussion tour-
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malinites that occur as discordant zones in the footwall of 
the vent complex of the Sullivan deposit. Tourmalinites re
lated to strata~bound and/ or.stratiform rocks, unrelated to 
ore-forming processes, that formed by syn- or postmeta
morphic replacement processes were discussed in detail by 
Slack (1996) and are not repeated herein. 

Studies of tourmalinites associated with massive sulfide 
deposits suggest that boron-rich rocks form both by ex
halative activity and subsea-floor replacement (e.g., Slack 
et al., 1993b; Slack, 1996). Tourmalinites that originated 
through each process are described below, since both 
types may be associated with exhalative mineral deposits. 
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Because it is advantageous in exploration to distinguish ex
halative tourmalinites from those formed by replacement 
(Slack, 1993b, 1996), various discriminating criteria are 
presented. 

Geology and petrography 

Tourmalinites are most common in siliciclastic meta-sed
imentary sequences (Slack et al., 1984). These sequences 
typically comprise metamorphosed shale, schist, gneiss, 

and lesser sandstone or graywacke, with variable amounts 
of interbedded metabasalt; rhyolites or related felsic meta
morphosed igneous rocks generally are not abundant. 
Tourmalinites may be interbedded with chert, coticule, 
iron formation, and carbonates or calc-silicate rocks. Rift
type tectonic settings are common. In such settings, elastic 
sediments and evaporites serve as the chief sources of the 
boron through convective leaching by circulating hydro
thermal fluids (Slack, 1982; Palmer and Slack, 1989). 
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TABLE 4. Geologic Setting of Selected Tourmalinite Localities 

Deposit-district Age Geologic setting Metals Associated exhalites References 

Bergslagen, Sweden Proterozoic Mrhy, Mbas, Cmsd, Mcar Pb,Zn,Ag Iron formation, coticule 1 

Sierras Pampeanas Proterozoic Cmsd 
Orientales, Argentina 

Western Georgia Early Paleozoic Cmsd, Mbas 

Pegmont, Australia Proterozoic Cmsd 

Sullivan, Canada Proterozoic Cmsd, Mbas 

Broken Hill, Australia Proterozoic Cmsd, Mrhy, Mbas 

Elizabeth, Vermont Ordovician Cmsd, Mbas 

Aggeneys, South Africa Proterozoic Cmsd, Mrhy 

Western Greenland Archean Mbas 

Leinster, Ireland Siluro-Devonian Cmsd,Gran 

Eastern Alps, Austria Ordovician- Cmsd, Mbas 
Carboniferous 

Nagpur, India Proterozoic Cmsd, Mbas 

Bagdad, Arizona Proterozoic Mrhy, Mbas 

Bottino, Italy Siluro-Ordovician Cmsd, Mrhy 

w 

Cu,Zn 

Pb,Zn 

Pb,Zn 

Pb,Zn,Ag, W 

Cu,Zn 

Pb,Zn,Cu 

w 
Au 

w 

Cu,Zn 

Cu,Zn 

Pb,Zn,Ag 

Coticule 

Coticule, iron formation 

Iron formation, coticule 

Coticule 

Coticule, iron formation, 
quartz-gahnite rock 

Coticule 

Iron formation, coticule 

Iron formation 

Coticule 

2 

3 

4 

5,6 

7,8 

9 

10 

11 

12 

13 

14 

15 

16 

Notes: Abbreviations: Cmsd = elastic metasediments (e.g., pelitic schist), Gran= granite or felsic porphyry, Mbas = metabasalt (greenstone, amphi
bolite), Mcar = metacarbonate, Mgab = metagabbro and metadiorite, Mrhy = metarhyolite 

References: 1, Hellingwerf et al. (1994); 2, de Brodtkorb et al. (1995); 3, Wonder et al. (1988); 4, Plimer (1988b); 5, Hamilton et al. (1982); 6. Slack 
et al. (2000); 7, Slack et al. (1993b); 8, Plimer (1987); 9, Slack et al. (1993a); 10, Wilner (1992); 11, Appel and Garde (1987); 12, McArdle et al. (1989); 
13, Raith (1988); 14, Bandyopadhyay et al. (1993); 15, Conway (1986); 16, Benvenuti et al. (1989) 

Textural features of tourmalinites vary widely as a func
tion of setting and superimposed metamorphism. In un
deformed and weakly metamorphosed terranes (lower 
greenschist fades and below), tourmalinites are ex
tremely fine grained and may resemble dark chert 
(Ethier and Campbell, 1977; Zhang et al., 1994), 
whereas in upper greenschist fades through to granulite 
fades, tourmalinites are coarse grained and display 
prominent layering defined by alternating quartz and 
tourmaline bands (Fig. 6d and e). Primary sedimentary 
structures are preserved within some tourmalinites, in
cluding those in high-grade metamorphic terranes (Fig. 
6f), as well as multiple generations of folds ( see Slack et 
al., 1984, 1993b). 

Quartz and subequal tourmaline, with or without accom
panying feldspar, mica, chlorite, garnet, apatite, graphite, 
and sulfides dominate the mineralogy of tourmalinites. Ac
cessories may include zircon, titanite, rutile, ilmenite, al
lanite, monazite, and epidote. Oxidized species such as 
hematite and barite are unknown. The occurrence of 
graphite in many tourmalinites, and the uniform lack of 
highly oxidized minerals, imply deposition under reducing 
conditions in an anoxic basin or in subsurface pore waters. 

Origin 

Recent geologic and geochemical studies suggest that 
tourmalinites form both by replacement of aluminous sed
iments or volcanic rocks and by exhalation in brine pools 
(Slack, 1993b; Slack et al., 1993b). Tourmalinites form by 

replacement in submarine-hydrothermal systems beneath 
the sediment- ( or volcanic-) water interface, and in primary 
feeder zones of proximal deposits such as at the Sullivan 
Pb-Zn-Ag mine, British Columbia, where tourmalinites oc
cur in a discordant, funnel-shaped pipe that extends more 
than 450 m below the stratiform ores (Hamilton et al., 
1982; Turner et al., 1993; Slack et al., 2000). Some tourma
linites result from replacement of aluminous rocks during 
contact and regional boron metasomatism (e.g., Slack, 
1996), but these occurrences will not be discussed. 

Recent models for the formation of stratiform tourma
linites require the interaction of B-rich fluids with perme
able aluminous sediments or volcanic rocks. These models 
involve a local (internal) source of Al in the spatially asso
ciated sediments, due to the limited solubility of Al in 
aqueous solutions at low to moderate temperature 
(200°-400°C) and moderate pH (&---8; Slack, 1993b). In 
many cases, the major element composition of the tour
malinites simply requires the introduction of B, but in 
other cases Si, Fe, Mg, Mn, and/ or P may also be intro
duced; Ca, K, Na, and trace elements such as Ba, Rb, and 
Cs are commonly depleted ( e.g., Slack, 1996; Slack et al., 
2000). Relative enrichment in Fe (excluding Fe in sul
fides), Mn, and/or P appears to be characteristic of ex
halative tourmalinites (Slack et al., 1993b), these elements 
being added to sea-floor sediments or felsic volcanic rocks 
through syngenetic precipitation, typically in a saline 
brine pool. However, if this type of exhalative transforma
tion of aluminous sediments or volcanic rocks is to form 
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tourmalinites, it requires diagenetic replacement of detri
tal clay, feldspar, and/ or chlorite by reaction with hot B
rich brines on or near the sea floor (Slack, 1996). Recent 
studies by Slack et al. (1998) suggest that boron-rich mud 
volcanoes of the Black Sea south of the Crimean Peninsula 
may be modern analogues to tourmalinites associated 
with Sullivan-type deposits. 

Geochemistry 

For space reasons, whole-rock compositions of tourma
linites associated with hydr6thermal ore deposits are not 
given here. However, representative compositions are 
available in, for example, Annis et al. (1983), Plimer 
(1987), Slack et al. (1993b, 2000), and Slack (1996). 
Whole-rock geochemical analyses show that the contents 
of many minor, trace, and rare earth elements in tourma~_,. 
linites largely match those of their respective host rocks: In 
most cases, toiirmalinites are contained within elastic 

. metasediments, the latter displaying broad correlations of 
compositional data for selected major elements, and 
strong correlations for relatively immobile minor and 
trace elements such as Ti, Cr, Zr, Nb, Th, and REE (e.g., 
Sawyer, 1986; Slack and Stevens; 1994). Such correlations 
for elastic metasediments are widely accepted as mixing ·· 
lines between primary quartz-rich and day-rich end-mem
bers, due to sorting and other sedimentary processes that 
occurred during transport and deposition of the sedi
ments. Similarity in correlations between relatively immo
bile trace elements in the metasediments and tourmalin-. 
ites reflects a detrital component in the latter, presumably 
inherited from the elastic sedimentary protoliths of the 
tourmalinites (Bandyopadhyay et al., 1993; Slack et al., 
1993b; Slack, 1996). Rhyolitic volcanic rocks also may be 
protoliths to tourmalinites in some cases, such as those as
sociated with massive sulfide deposits of the Bagdad dis
trict in Arizona (Conway, 1986), the Bieluwutu prospect in 
China (Nie, 1993), and the Bergslagen district in Sweden 
(Hellingwerf et al., 1994); some tourmalinites in the Bro
ken Hill district of Australia, particularly those in contact 
with the felsic metavolcanicHores Gneiss, may have a rhy
olitic volcanic precursor (Slack et al., 1993b; Fig. 6). One 
of the few known basaltic protoliths to tourmalinites is 
found at the Elizabeth massive sulfide deposit in Vermont,. 
where a strata-bound quartz-albite-tourmaline gneiss has a· 
geochemical signature that matches that of associated 
tholeiitic amphibolites, but not that of surrounding elastic 
metasediments (Slack et al., 1993a). 

The formation of tourmalinites generally involves some 
net mass change. Mass losses are most common, due to 
the characteristic removal of substantial Ca, K, and Na 
from precursor sediments or volcanic rocks during tour
malinization. A small to moderate volume loss may be as
sociated with the mass loss. Evaluation of mass and vol
ume changes during the formation of · tourmalinites 
requires whole-rock geochemical data for. relatively .im
mobile elements (e.g., Slack, 1996; Slack et aL, 1996, 
2000). Evaluation is complicated, however, by the typically 
elastic sedimentary protoliths of many• tourmalinites. 

Such protoliths inherently have large statistical uncer
tainties in their mean compositions, due to variation in 
primary sand/ clay ratios. Calculations of absolute mass 
change in the formation of tourmalinites therefore are 
not meaningful, but calculations of relative change are ac
.ceptable'. This can be. achieved by determining gains or 
losses of elements by normalizing data for individual ele
ments to the average Al content of each tourmalinite, and 
in turn to the Al-normalized average for the inferred un
altered protolith (Slack, 1996). The nature and degree of 
the mass change depend on factors such as fluid composi
tion, pH, and the time-integrated fluid/rock ratio. Large 
mass losses are characteristic of the high fluid/rock envi
ronment of tourmalinized feeder zones, in contrast to the 
formation of exhalative tourmalinites that tend to show 
little or no mass loss (Slack, 1996; Slack et al., 2000). 

Slack et al. (1993b) proposed that elevated contents of 
Fe (nonsulfide), Mn, and/ or Pin tourmalinites are indica
tive of an exhalative origin. This hypothesis rests on the 
concentrations of these elements measured in modern 
sea-floor deposits such as the metalliferous sediments of 
the Pacific Ocean and the Red Sea deeps, and in ancient 
banded iron formations. Figure 13 shows the compositions 
of selecte9 stratiform tourmalinites, on a whole-rock 
(weight) basis, compared to those of modern oceanic sed
iments and metalliferous deposits. Most of the tourmalin
ites have Fe/Ti less than 15 and Al/ (Al+ Fe+ Mn) greater 
than 0.6, indicating little or no component of metallifer
ous hydrothermal sediment. However, such tourmalinites. 
are not necessarily excluded from having an exhalative ori
gin; field relationships, including the spatial association of 
tourmalinites to sulfides and other meta-exhalites, are 
critical. 1burmalinites that have Fe/Ti greater than 15 
and Al/ (Al + Fe + Mn) less than 0.6 include three each 
from the Broken Hill district in New South Wales and the 
Sullivan deposit in British Columbia (Slack et al., 1993b; 
2000), and one each from the Bottino district in Italy 
(Benvenuti et al., 1989), the Nagpur district in India 
(Bandyopadhyay et al., 1993), the Bieluwutu deposit in 
China (Nie, 1993), the Tisova deposit in the Czech Repub
lic .(Pertold et al., 1994), and the Morning Glory prospect 
in Montana (Slack, 1996). Four of these tourmalinites 
(Broken Hill, Sullivan, Morning Glory, Tisova) have 22 to 
30 percent metalliferous sediment component, with the re
mainder being detrital terrigenous and/ or pelagic sedi
ment. Note that the estimates of the relative input of met
alliferous sediment component and detrital terrigenous 
and/ or pelagic sediment component are maintained 
notwithstanding the possibility of a small amount ( <5%) of 
detrital Fe and Mn. 

The compositions of tourmalines in relatively unmeta
morphosed and metamorphosed exhalative mineral de
posits and tourmalinites are a function of several parame
ters including (Slack and Coad, 1989; Slack 1996) the 
chemistry of their host rocks and hydrothermal fluids and 
the time-integrated fluid/rock ratio. In more · strongly 
metamorphosed mineral deposits (amphibolite fades and 
higher), the compositions of tourmaline may also reflect 
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FIG. 13. Bulk compositions ofstratiform tourmalinites of potential exhalative origin, shown in terms of Fe/Ti versus 
Al/ (Al +Fe+ Mn), on a weight percent basis (see Figure 10 caption). Data sources: Sullivan mine area, British Co
lumbia (Slack et al., 2000); Broken Hill district, Australia (Slack et al., 1993b); Nagpur district, India (Bandyopadhyay 
et al., 1993); Morning Glory prospect, Montana (Slack, 1996); Ebnath area, Germany (Abraham et al., 1972); Azov re
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sulfide-silicate reactions in which tourmaline, in equilib
rium with pyrite and/or pyrrhotite, has formed Mg-rich 
discordant rims or individual grains (Taylor and Slack, 
1984; Slack and Coad, 1989), or developed recrystallized, 
compositionally homogeneous grains (Slack et al., 
1993b). If the fluid/rock ratio is low, the bulk composition 
of the host rock is most important, such as in the Broken 
Hill district (Australia) where tourmalines have high Fe 
contents inherited from their elastic metasedimentary 
country rocks (Slack et al., 1993b; Slack and Stevens, 
1994). However, in high fluid/rock settings, such as the 
feeder zones of the Kidd Creek (Ontario) and Sullivan de
posits, compositions of tourmalines are controlled largely 
by the chemistry of the hydrothermal fluids (Slack and 
Coad, 1989; Slack et al., 2000). Magnesian tourmalines 
nevertheless clearly form in submarine-hydrothermal set
tings, independent of regional metamorphism (Slack, 
1996), by entrainment of Mg-rich seawater into the tops 
and margins of sea-floor hydrothermal systems. Examples 
include the Sullivan deposit (Ethier and Campbell, 1977; 
Jiang et al., 1998) and the Yingdongzi and Tongmugou Pb
Zn-Ag deposits, China (Jiang et al., 1995). 

Isotope data 

Isotopic studies of tourmalinites (and tourmalines) from 
stratiform deposits have focused on the stable isotopes of 
oxygen, hydrogen, and boron ( e.g., Slack, 1996; Jiang, 
1998). The first oxygen isotope analyses of tourmalinites 
were reported by Nesbitt et al. (1984) for samples from the 
Sullivan Pb-Zn-Ag deposit. They found whole-rock 8 8OsMow 
values of 10.7 to 13.1 per mil for six tourmalinites, similar to 
the range of values obtained for unaltered metasedimentary 
rocks of the surrounding Aldridge Formation. The data 
were interpreted by Nesbitt et al. (1984) as indicating a rela
tively low temperature ( <l 00°C) of formation for the tour
malinites. A more detailed oxygen isotope study of 34 Sulli
van area tourmalinites by Seal et al. (2000) reveals a slightly 
larger range of <51 80 values (10.3-14.2%0), but much higher 
temperatures (250°-300°C) of tourmalinization (see also 
Beaty et al., 1988). The difference in tourmalinite-forming 
temperatures results from Nesbitt et al. (1984) not consider
ing the effect of detrital quartz ( ca. 40-80 vol % ) on the 
whole-rock <51 80 values (quartz preferentially incorporates 
uio relative to tourmaline). Data for tourmaline separates 
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are preferable, but pure separates are difficult to obtain for 
very fine-grained tourmalinites like those in the Sullivan 
area (Ethier and Campbell, 1977; Slack et al., 2000) and 
other greenschist fades terranes ( e.g., Slack, 1996). Hydro
gen isotope compositions of tourmalinites are ,only affected 
by minerals that contain OH- and/or H20 other than tour
maline (e.g., micas, amphiboles, chlorites, and days). Seal et 
al. (2000) interpreted a large range of whole-rock oDsMow 
values of -65 to -27 per mil for Sullivan area tourmalinites, 
in terms of precipitation mainly from evolved seawater. 

Other oxygen and hydrogen isotope analyses for tourma
lines related to stratiform mineralization are from tourma- . 
line separates. However, the data were derived from a variety 
of sample types that were not restricted to exhalative massive 
sulfide occurrences. Taylor and Slack (1984) reported 
s1sosMow and oDsMow values of 8.5 to 15.5 and -67 to -43 
per mil, respectively, for tourmalines from volcanogenic 
massive sulfide deposits in the Appalachian-Caledonian 
orogen; they interpreted these data in terms of evolved sea
water that had reacted extensively with high-1so footwall 
sedimentary rocks. Tourmaline from the Kidd Creek de
posit has somewhat lower values of 81sosMow (8.2 to 11.2 
per mil) and much higher values of oI>sMow (-48 to-13 per 
mil) that are believed to record early boiling and reaction 
with ISO-rich footwall sediments (Taylor et al., 1999). The 
lower SD values of the Appalachian-Caledonian tourmalines 
probably are due, at least in part, to incorporation of meta
morphic fluids in the tourmaline crystal structure during re
crystallization associated with postore deformation and re
gional metamorphism (Slack, 1996). 

Boron isotope studies of tourmalines associated with 
stratiform mineral deposits have focused on volcanogcnic 
massive sulfide and sedimentary-exhalative deposits. 
Palmer and Slack (1989) analyzed tourmalines from 60 vol
canogenic massive sulfide and sedimentary-exhalative de
posits and tourmalinites worldwide, and reported a range of 
811B values from -22.8 to 18.3 per mil. They interpreted 
these data as reflecting the combined influences of boron 
isotopic compositions of the boron source ( e.g., footwall 
rocks), water/rock ratios, temperatures of tourmaline for
mation, and metamorphic recrystallization. Detailed studies 
of tourmalines from the Broken Hill district of Australia 
(Slack et al. 1989, 1993b) suggest that, despite significant 
boron isotope fractionation during regional metamorphism, 
a }?rimary nonmarine evaporite signature is preserved in the 
8 1B values. This interr,retation was, in part, constrained by 
the correlation of /jl B with metamorphic textures and 
grade in the district. Boron isotope data for tourmalines 
from the Kidd Creek deposit show a 8 1B range from -13.6 
to -7.8 per mil, which probably reflects derivation of the 
boron from footwall basalts and/ or ultramafic rocks (Taylor 
et al., 1999; see also Slack and Coad, 1989). Although based 
in part on indirect evidence, this interpretation rests on the 
known boron isotopic compositions of altered basalts and 
ultramafic rocks, experimentally dete~mined tourmaline
fluid fractionations, and a calculated temperature of forma
tion for the tourmaline from oxygen isotope data (Taylor et 
al., 1999). The boron isotope analyses of tourmaline from 

volcanogenic massive sulfide and sedimentary-exhalative 
deposits in the Nagpur district, and Rampura~Agucha and 
Deri deposits, India, are-13.8 to-13.1 per mil (Bandyopad
hyay et al., 1993) and -16.4 to -15.5 per mil (Deb et al., 
1997), respectively. These isotope compositions largely 
record control by their respective footwall lithologies; sec
ondary effects are related to metamorphic re~rystallization. 

In summary, stable isotope studies of tourmaline in 
stratiform mineral deposits suggest that the boron is from 
various footwall lithologies and that the hydrothermal flu
ids were derived mainly from seawater. With the exception 
of Broken Hill, which appears to have a nonmarine evap
orite component in the district tourmalines, tourmalines 
from nearly all other massive sulfide deposits seem to have 
been deposited from evolved seawater. No magmatic water 
component has been unequivocally documented in any 
sulfide-related tourmalines studied to date. 

Apatite-Rich Rocks 
Concentrations of apatite occur in some meta-exhalites. 

The apatite is either a major component of apatite-rich 
stratiform units, or a minor component of other types of 
meta-exhalites, such as iron formations and tourmalinites .. 
Major stratiform Pb-Zn deposits that possess apatite or flu
orapatite concentrations include Broken Hill, Australia, 
and Howards Pass, Yukon Territory. At Broken Hill, fluora
patite occurs in banded magnetite iron formation and ac
counts for 3.4 to 5.4 wt percent P20 5 on a whole-rock basis 
(Eeson, 1971). Abundant fluorapatite is also present lo-: 
cally within the Broken Hill deposit, where P20 5 contents 
reach up to 7.5 wt percent in some samples (Stanton, 
1972); the Zn-rich B lode has ca. 2 percent fluorapatite 
and averages 0.9 wt percent P20 5 (Plimer, 1984). However, 
the concentration of apatite in other meta-exhalites (i.e., 
tourmalinite, coticule, iron formation, gahnite-bearing 
rocks) at Broken Hill is variable. For example, quartz-tour
maline-gahnite-garnet (Slack et al., 1993b) and quartz
tourmaline-apatite tourmalinites (Slack et al., 1996, table 
6) contain 0.18 and 3.25 wt percent P20 5, respectively. In 
the Howards Pass Pb-Zn deposit, Goodfellow (1984) re
ported multiple monomineralic fluorapatite laminae (ca. 
0.3 cm thick) within a carbonaceous chert unit (up to 50 
m thick) that directly overlies the deposit; fluorapatite 
also occurs interbedded with sphalerite and galena in the 
upper part of the Pb-Zn zone (W.D. Goodfellow, pers. 
commun., 1997). The volcanic-hosted massive sulfide de
posit at Vihanti, Finland, similarly has an apatite-rich 
hanging wall unit that contains elevated uranium in urani-
nite and apatite (Rehtijarvi et al., 1979). ' 

The abundant apatite and fluorapatite associated with 
some exhalative ores probably records either chemical 
precipitation in a submarine brine pool or plume fallout. 
Evidence in support of this hypothesis comes mainly 
from the Howards Pass deposit, where the P20 5 content 
of the hanging wall unit decreases laterally away from the 
deposit and the fluorapatite forms distinctive spherical 
structures (Goodfellow, 1984) of apparent primary ori
gin. Support for chemical precipitation is also provided 
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by the local occurrence of elevated P2O5 values (ca. 1.0 wt 
% ) in some Fe-rich sediments of the Red Sea (Hendricks 
et al., 1969). In both areas, the apatite or fluorapatite has 
apparently precipitated from anoxic waters due to a lack 
of coeval carbonate deposition (Le., availability of Ca2+) 
and possibly to a decrease in pH (Goodfellow, 1984). 

Quartz-Gahnite Horizons 

Gahnite (ZnAl
2
O4), or zindan spinel (Zn,Fe,Mg(Al2O4)), 

occurs in quartz-gahnite-almandine-sphalerite-pyrrhotite 
rocks that envelope B and C lodes of the Broken Hill de
posit, Australia. It is believed to have formed by desulfida
tion of sphalerite by reactions of the type (Spry and Scott, 
1986a; Zaleski et al., 1991; Spry, 2000): 

Fe:Al2Si3O 12 + ZnS + S2 = ZnAl2O 4 
almandine sphalerite gahnite 

+ 3FeS + 3SiO2 + 0 2• (1) 
pyrrhotite quartz 

Such reactions are considered to be responsible for 
the formation of gahnite in metamorphosed massive sul
fide deposits in general, and have led to the suggestion 
that gahnite can be used as an exploration guide (Sheri
dan and Raymond, 1984; Sandhaus and Craig, 1986; 
Spry and Scott, 1986a, b). Despite the spatial relation
ship between sulfide and gahnite at Broken Hill, sulfide
free quartz-gahnite rocks occur intermittently over 100 
km throughout the Willyama Complex. This widespread' 
gahnite probably did not form by desulfidation of spha
lerite, but the quartz-gahnite rocks are nevertheless re
garded as having an exhalative hydrothermal (premeta
morphic) component (Spry and Scott, 1986a), an 
interpretation partly based on the spatial association of 
quartz-gahnite rocks enveloping B and C lodes in the 
stratigraphic footwall of the Broken Hill lode. Segnit 
(1961) suggested the following gahnite-forming reac
tion for these rocks: 

2Al2Si2O5(OH) 4 + ZnO = 
kaolinite zindte 

ZnA1
2
O 4 + Al

2
SiO5 + 3SiO

2 
+ 4H2O. (2) 

gahnite sillimanite quartz 

Segnit proposed that· the ZnO originally was adsorbed 
on kaolinite but this relationship has not been recognized 
in natural settings. Riviere et al. (1985) reported a spatial 
association between aluminous clays and Zn-hydroxide. Al
ternatively, Zn derived from exhalative processes may have 
subsequently been linked to organic or phosphatic mater
ial. Zinc can be incorporated in Zn-Fe (Al-poor) spinels 
that formed near active hydrothermal vents Qedwab and 
Boulegue, 1986); The high quartz to gahnite ratios in 
most of the quartz-gahnite rocks of the Willyama Complex, 
and elsewhere, suggests that the exhaled Zn was swamped 
by hydrothermal silica. 

To account for the common spatial relationship be
tween gahnite and spessartine in the Willyama Complex 

(e.g., Angus mine) and Namaqualand complex, South 
Africa, an alternative reaction should be considered. The 
following is a modification of that proposed by Bernier et 
al. (1986) for the formation of gahnite at Montauban-Les 
Mines, Quebec: . 

2ZnMn
3
Or3H

2
O + 4Al2Si2O5 (OH) 4 -= 

chalcophanite kaolinite 

2ZnAl2O 4 + 2Mn3Al2Si3O12 + 2SiO2 
gahnite spessartine quartz 

(3) 

Staurolite-Bearing Rocks 

Zincian staurolite has been documented in metamor
phosed massive sulfide deposits, exhalites, alteration 
zones, and pelites and is considered to be a potential ex
ploration guide for massive sulfides (e.g., Sandhaus and 
Craig, 1986; Spry and Scott, 1986b; Huston and Patterson, 
1995). In sulfide-free rocks, Zn stabilizes staurolite to up
per amphibolite fades where it may contain as much as 13 
wt percent ZnO (Soto and Azaiion, 1993). In massive sul
fide deposits, meta-exhalites, and related alteration zones 
staurolite typically contains between 5 and 9 wt percent Zn, 
generally in the presence of quartz, (e.g., Sandhaus and 
Craig, 1986; Spry and Scott, 1986b; Huston and Patterson, 
1995). Utilizing AFM plots, Froese and Moore (1980) and 
Zaleski et al. (1991) showed that, in quartz-bearing rocks 
in contact with sphalerite and/ or gahnite, the elevated Zn 
stabilizes staurolite and prevents its breakdown during 
metamorphism. These AFM plots may be seen elsewhere 
in this volume (Spry, 2000; figs. 9a, b). 

For some zincian staurolite occurrences, it is difficult to 
identify the protolith of the host rock because of the grada
tional nature of the staurolite-bearing lithologies. For ex
ample, zincian staurolite occurs along the margins of the 
massive sulfides at Dry River South, Queensland, in rocks 
that were regarded by Huston and Patterson ( 1995) to be 
altered metavolcanic rocks. Although more common in al
teration zones than in meta-exhalites, zincian staurolite 
has been reported in a banded garnet-chlorite-gahnite 
rock that surrounds and is along strike from the small An
gas Pb-Zn deposit, South Australia, and was interpreted by 
Both et al. ( 1995) as a meta-exhalite, Zincian staurolite also 
occurs as a prograde mineral in iron formation hosting the 
Gamsberg deposit, South Africa (Spry and Scott, 1986b), 
and as a product of the retrograde breakdown of gahnite in 
meta-exhalative quartz-gahnite rocks at Kraaifontein, 
South Africa (Moore and Reid, 1989). 

In evaluating reasons for the elevated zinc content of stau
rolite associated with metamorphosed massive sulfide ores, 
Spry and Scott ( 1986b) proposed that, similar to gahnite, Zn
rich staurolite forms through desulfidation of sphalerite. 

Exploration Guides 

Iron formations have been used in exploration for con
cealed massive sulfide deposits in several ways: (1) spatial 



188 SPRY ET AL. 

distribution. (presence/absence) with respect to sulfide 
deposits; (2) abundances of minerals (e.g., Peter and 
Goodfellow, 1996b); (3) bulk geochemical variations 
(e.g., Peter and Goodfellow, 1994); (4) variations in the 
composition of mineral phases; and (5) variations in stable 
isotope compositions (e.g., Peter and Goodfellow, 1993). 
Similar approaches have been proposed for coticules 
(Spry, 1990) and tourmalinites (Slack, 1982, 1996). 

Iron formations 

Spatial distribution: Stanton ( 1972) was the first to make 
the observation that iron formations are spatially related to 
massive sulfide mineralization. Later, Stanton ( 1976a, p. 
B46) suggested that the association of certain iron forma
tions with stratiform lead-zinc deposits "may provide a pow
erful tool in exploration for deposits of this kind." Al
though many iron formations are discontinuous and only 
cover an area slightly greater than that of the massive sul
fides, some examples exist where the metamorphosed iron 
formations are much more extensive ( e.g., Bathurst-Peter 
and Goodfellow, 1996b; Broken Hill-Plimer, 1988a; 
Mattagami-Davidson, 1977). 

Mineral abundance variations: Variations in the presence 
and/ or abundance of certain minerals in iron formation 
may reflect proximity to massive sulfide mineralization. 
The rationale for this hypothesis is that the mineralogy is 
controlled by the so-called fades of iron formation, which 
is in turn controlled by redox conditions at the site of pre
cipitation (James and Howland, 1955). Figure 14 is a pro
portional symbol map of siderite abundance (determined 
by X-ray diffraction; XRD) in iron formation samples 
from the Brunswick belt; it shows that this mineral is most 
abundant in and around known deposits (as well as several 
other areas). Utilizing this approach, Peter and Goodfel
low ( 1996b) showed that the localized abundance of 
siderite, ankerite, calcite, dolomite, magnetite, stilpnome
lane, apatite, and pyrite was an aid in the exploration for 
concealed mineralization in the Brunswick belt. 

At Broken Hill, Australia, the apatite-bearing iron for
mations generally occur closer to mineralization than the 
quartz-magnetite rocks (Stanton, 1976a). At the Broken 
Hill-type Pegmont Pb-Zn deposit, Queensland, there is an 
increase in the abundance of garnet in iron formation as 
the deposit is approached (Vaughan and Stanton, 1986). 

In the Cues Formation (Thackaringa Group), strati
graphically hundreds of meters below the main Broken Hill 
Pb-Zn-Ag lodes, a lateral fades change over 700 m strike 
length is observed (Plimer, 1988a). An inner sulfide-fades 
sequentially gives way to a Mn fayalite Mn-Ca-Fe garnet
sphalerite-galena assemblage (carbonate-sulfide fades), a 
Mn hedenbergite-Fe-Mn-Ca garnet-cummingtonite-spha
lerite assemblage (silicate-sulfide fades), and an outer Mn 
hedenbergite-Fe-Mn-Ca garnet-magnetite assemblage (sili
cate-oxide fades). 

Bulk geochemical variations: The aim is to search for favor
able geochemical patterns in iron formation that are indica-
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tive of spatially associated sulfide mineralization. Difficulties 
include the selection of background values and the possible 
presence of nonhydrothermal (predominantly detrital elas
tic) material that can weaken or dilute the hydrothermal 
component (i.e., potential anomaly). This, eff~ct can be less
ened by using a ratio of the concentration of a hydrothermal 
element (e.g., Fe or Mn) over that of a detrit:al element (e.g., 
· Al or Ti). Simple geochemical patterns, tyj:>ifieg by a bullseye 
pattern, could be complicated if the iron formation formed 
from plume fallout in the presence of strong bottom cur
rents. Furthennore, folding can make the interpretation of 
anomalies difficult and distort resultant vectors. 

In the Bathurst camp, elements and element ratios that 
serve as useful indicators of known sulfide deposits, and 
which could be employed in the search for concealed 
mineralization, include: FeT + Mn/ Al, FeT /Ti, FeT /Mn, 
Fe T + Mn, Ba/Ti, Ba/ Al, P /Ti, Sr /Ti, Pb, Cu, Cu/ ( Cu + Pb 
+ Zn), Pb/Zn, Pb/(Cu +Pb+ Zn), S, Ag, As, Au, Ag/Cu, 
Bi, Cd, Hg (Fig. 15), In, Sb, Te, Tl, Mo, Eu/Eu*, 
1/(Ce/Ce*), Se, Co, Ni, F, and CL Increases in these val
ues occur with proximity to sulfides over distances of up to 
2 km (Peter and Goodfellow, 1994, 1995). 

Numerous other studies have applied iron formation 
geochemistry to the rxploration for sulfide deposits. At 
Matagami, Quebec, Davidson ( 1977) noted increases in 
Cu, Zn, and other metals in Key tuffite as the massive sul
fides were approached. Sakrison (1967) found that only 
Zn, Pb, and Cd were significantly higher in the cherty tuff 
around the Lake Dufault deposit at Noranda, Quebec. At 
the Willroy no. 4 deposit, Manitouwadge, anomalous trace 
element contents in iron formation only occur a few me
ters from ore, but Ag and As are anomalous up to approx
imately 200 m away (Siriunas, 1979). Kalogeropoulos and 
Scott (1983) determined that trace element distribution 
patterns in Kuroko tetsusekiei were not useful mineraliza
tion vectors; the irregular patterns are believed to reflect 
multiple hydrothermal vent sources situated along linear 
structures. In the vicinity of the L0kken and H0ydal mas
sive sulfides in Norway, concentrations of Zn, As, Sb, Hg, 
and Ge in jasper-type iron formation are highest near the 
deposits, suggesting a proximal hydrothermal origin 
(Grenne and Slack, 1997). At Gairloch, Scotland, quartz
magnetite schist immediately above the sulfides contains 
higher levels of Cu and Zn than that distant from the ore 
horizon (Jones et al., 1987). 

Stanton (1976a) stated that there was no discernible, 
regular, along-strike variation for any element (whole-rock 
basis) within the banded iron formations at Broken Hill, 
Australia. However, ·Lottermoser (1991) demonstrated 
that proximal exhalites have elevated Ag, Au, Sb, As, and 
W concentrations. At Fairmile, in the Mt. Isa region of Aus
tralia, Taylor and Scott (1982) found that maximum base 
metal and Ba contents occur within the thickest portion of 
the iron formations, whereas the bulk Ca contents in
crease along strike away from this portion. 

Mineral composition variations: Variations in the chemical 
composition of mineral phases in iron formation may assist 
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inset map of Figure 14. 

exploration for massive sulfide deposits. For example, at 
the Millenbach mine, Noranda, Fe/ (Fe + Mg) ratios of 
chlorite and whole-rock FeO/(FeO + MgO) ratios in the 
Main Contact tuff decrease with proximity to massive sul
fides; also, ilmenite is replaced in massive sulfide by rutile 
and/ or titanite, with the most manganiferous ilmenite oc-
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curring closest to the sulfides (Kalogeropoulos and Scott, 
1989). At Broken Hill, Australia, Stanton (1976a) noted an 
increase in the MnO, MgO, and CaO (with a concomitant 
decrease in FeO) contents of garnets in, above, and along 
strike from the main lode banded iron formation as the ore 
is approached. Stanton and Vaughan (1979) found a varia
,tion in the Mn content of garnet and fayalite in iron for
mation at the Pegmont Pb-Zn deposit; samples distal from 
ore are Fe-rich (and Mn-poor) compared to those proximal 
to ore (Mn-rich and Fe-poor). They also identified system
atic variations in the chemistry of hornblende, character
ized by increases in Ca+ Na + Kand Fe ( and corresponding 
decreases in Mg), as ore is approached. Similarly, the high
est Mn contents of clinopyroxene occur nearest to the ore, 
whereas more Fe-rich compositions are farther away 
(Vaughan and Stanton, 1986). Stumpfl (1979) noted that 
Mn contents of sphalerite at the Gamsberg and Broken Hill 
deposits in South Africa are highest in the upper parts of 
the mineralized horizon and in the vicinity of magnetite
garnet rock. Lipson and McCarthy (1977) found that the 
Mn content of garnets increases with decreasing strati
graphic distance from the Broken Hill (South Africa) ore
bodies (both from the hanging wall and footwall). 

A detailed study of the compositions of minerals in iron 
formation along the Heath Steele belt, New Brunswick 
(Peter and Goodfellow, 1996b, 1997; Peter, unpub. data) 
shows the following minerals, elements, and/ or element 
ratios to be of exploration interest: chlorite (Fe, Mn, Sr, 
and Na contents, Fe/Mn ratio, Fig. 16); stilpnomelane (1:<e 
and Mn contents, Fe/Mn ratio); magnetite (Fe2+, Fe3+, Si 
contents); siderite (Mn content, Fe/Mn ratio); and spha
lerite (Mn content, Fe/Mn ratio). 

Stab/,e isotope variations: Few studies have investigated varia
tions in stable isotope ratios of constituent minerals and 
bulk samples of iron formation in the exploration for con
cealed mineralization. Whole-rock 8 80SMOW values de
crease from 9 per mil for ore horizon tuff to 5.1 per mil for 
tetsusekiei in the Japanese Kuroko deposits over a distance 
of0.5 km from ore (Scott et al., 1983); 8 80 values also de
crease with proximity to the massive sulfides (range 4.0 to 
18.7%0; Kalogeropoulos and Scott, 1983). A reconnais
sance study of sulfides and carbonates within iron formation 
in and around the Brunswick no. 12 deposit (Peter and 
Goodfellow, 1993; Peter, unpub. data) shows that sulfides 
immediately overlying the deposit have higher 8"4S values 
than those from distal iron formations. This is probably due 
to incorporation of greater amounts of reduced seawater 
sulfate (28%0) in the immediate vicinity of the deposit. 
Lower 8"4S values farther from the deposit reflect mixed 
sources of sulfur from reduced seawater sulfate and bacteri
ogenic sulfur. Carbonate minerals in iron formations imme
diately overlying the Brunswick no. 12 deposit also have 
higher 8 3C values than those from distal iron formations. 

Coticu/,es 

The Fe and Mn (and in some localities, Si) components 
of coticules almost undoubtedly derive from hydrothermal 

sources, therefore these elements are indicators of fossil 
zones of hydrothermal activity. This suggests that coticules 
warrant attention in the search for various economic com
modities such as base metal sulfides, gold, and tungsten, 
with which they are spatially associated. However, Spry 
(1990) pointed out that coticules do not always directly in
dicate ore because they are found in a variety of geological 
settings. Even in the Broken Hill district where coticule 
units (specifically garnetites and varieties of quartz gar
netites) are abundant, distinguishing coticules spatially re
lated to ore from those lacking an applicable spatial rela
tionship is a daunting task. However, .it should be noted that 
garnet-rich rocks possessing a variety of minerals (i.e., ap
atite, gahnite, biotite, feldspar, cordierite, feldspar, or silli
manite, in addition to quartz and garnet) are spatially re
lated to the largest deposit in the Willyama Complex, 
Broken Hill, whereas minor sulfide occurrences are spatially 
associated with coticules dominated by quartz and garnet. 
In this context, garnet-rich rocks from the Pinnacles deposit 
in the Broken Hill area are predominantly garnetite and 
quartz garnetite ( coticule), but garnet-quartz-magnetite 
and garnet-hematite rocks also occur in the near vicinity of 
ore (Parr, 1992). Similarly, coticules associated with the 
Aggeneys deposits are mineralogically variable and contain 
such minerals as magnetite, biotite, feldspar, grunerite, sul
fides, apatite, gahnite, and muscovite (Spry, 1990). 

The composition of garnet in coticules is not a particu
larly good indicator of ore because spessartine-, alman
dine-, and grossular-rich varieties are found in the same 
ore deposit (e.g., Broken Hill, Pinnacles, and Aggeneys), 
in places within alternating bands. 

Apart from bulk and trace element studies of coticules, 
other geochemical data are fairly limited. Unlike iron for
mations and tounnalinites, which have been the subjects of 
stable isotope studies (e.g., S, B, C, and 0), there is a paucity 
of such work on coticules. Of all the geochemical parameters 
that have been utilized in the study of coticules, perhaps the 
most useful parameter from an exploration standpoint is the 
presence of positive Eu anomalies. Where not negated by 
elastic material, such anomalies may record a component of 
high-temperature (>250°C), end-member hydrothermal flu
ids that is indicative of close proximity to a fossil vent site 
(e.g., Lottermoser, 1989, at Broken Hill, Australia). 

The depositional environment must also be carefully 
thought about when utilizing coticules as an exploration 
guide to ore. Like iron formations and tourmalinites, cotic
ules may be considered in terms of a brine pool model versus 
a plume fallout model. Those coticules spatially associated 
with volcanogenic massive sulfide or sedimentary exhalative 
deposits are likely to have formed in brine pools, whereas 
coticules unrelated to such deposits perhaps formed by 
plume fallout since metalliferous sediment on the modern 
sea floor contains abundant Fe and Mn. Detrital clays are the 
likely source of Si and Al. 

Tourmalinites 

Tourmalinites may be useful exploration guides for a va
riety of exhalative mineral deposits. Most tourmalinites 
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are unrelated to mineralization, but some show a close as
sociation with deposits of base metals, silver, gold, tung
sten, cobalt, and/or uranium (e.g., Slack, 1996). Tourma
linites associated with base metal mineralization may be 
stratiform, or strata-bound but not stratiform. The dis
tinction is critical, because the latter type develops by sul>
sea-floor replacement without a preferred stratigraphic 
position, whereas the former type includes exhalative 
tourmalinites that constitute time-stratigraphic markers 
(Slack, 1993b; Slack et al., 1993b). Thus, in the explo
ration for sedex-type Pl>-Zn ores, exhalative tourmalinites 
can be considered better prospecting guides because they 
may occur at the same stratigraphic level as the deposit. 
Nevertheless, stratiform tourmalinites can also form by 
subsea-floor replacement of favorable beds, particularly 
near feeder zones and growth faults that serve as channel
ways for hydrothermal fluids. Determining the origin of 
stratiform tourmalinites is, therefore, fundamental to 
evaluating their exploration potential. In this context, 
the case should be noted of tourmalinite associated with 
the strata-bound Sullivan deposit, the tourmalinite form-

ing as discordant to concordant (bedded) units in the 
footwall, ore zone, and hanging wall. Formation of the 
tourmalinites and spatially associated coticules involved 
replacement and exhalative processes contemporaneous 
with deposition of the sulfides and the enclosing sedi
ments (Slack et al., 2000). The discordant variety of tour
malinite formed where B-rich hydrothermal fluids re
acted with aluminous sediments beneath the 
sediment-seawater interface. Exhalative processes formed 
most of the concordant tourmalinites and coticules. 

Criteria for the identification of exhalative tourmalinites 
are based mainly on empirical mineralogical and chemical 
data. Favorable mineralogical data include the presence of 
abundant Mn-rich garnet (or closely associated coticules) 
and/ or apatite. The premise is that these minerals primar
ily record exhalative (rather than inhalative) contribu
tions of Mn and P, respectively, from hydrothermal plume
"type precipitates (e.g., Spry, 1990). The presence of 
abundant sulfide minerals can also be favorable, but care 
must be taken (utilizing field and petrographic observa
tions) to determine whether the sulfides were introduced 
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synchronously with, orlater than, the tourmaline. 
Geochemical studies may aid in the identification of some 

exhalative tourmalinites. Such tourmalinites are locally 
characterized by elevated Fe (nonsulfide), Mn, and/or Pon 
a whole-rock basis (Slack et al., 1993b). In addition to the Mn 
and P, high Fe contents (in tourmaline) are believed to de
rive from exhalative sources. Anomalous concentrations of 
these elements can be identified on Harker-type diagrams 
(e.g., Fe2OIvs. SiO2), in wl:iich compositions of the tourma
lihites are compared with those of unaltered precursor sedi
ments (or volcanic rocks) of the study area (Slack et al., 
1993b). An alternative approach is through the use of dia
grams (e.g., Fig. 13) that evaluate relative contributions of 
metalliferous, terrigenous, and pelagic sediments in tourma
linites. Such diagrams readily identify exhalative compo
nents not necessarily discernible on Harker-type plots and 
tourmalinites that are potentially useful as exploration 
guides. An important caveat, however, is that Fe-rich tourma
linites can also form through metasomatic processes in the 
contact aureoles of granitic intrusions, including pegmatite 
bodies (e.g., London et al., 1996). A second caveat is that, in 
elastic metasedimentary terranes having an anorogenic (A
type) granite and/ or rhyolite provenance, tourmalinites 
that formed under low fluid/rock conditions may be Fe-rich 
due to high Fe/Mg ratios inherited from the primary sedi
ments ( cf. Slack and Stevens, 1994) . 

Mineral chemistry can be useful but is not a panacea in 
evaluating the exploration favorability of tourmalinites. 
This is because the compositions of tourmalines in tour
malinites may reflect one or more parameters including: 
(1) the bulk composition of the host rock prior to tourma
linization; (2) the nature and amount of exhalative metal
liferous sediment (if any); (3) the relative contribution of 
Fe-rich end-member hydrothermal fluid and entrained 
Mg-rich seawater; ( 4) the fluid/rock ratio of the hy
drothermal system; and (5) the extent of Mg enrichment 
induced by sulfide-silicate reactions during regional meta
morphism. Although the occurrence of relatively Fe-rich 
tourmaline is associated with some strata-bound sulfide 
mineralization (e.g., Plimer, 1988b), several studies have 
shown that, in general, Mg-rich tourmalines are character
istic of volcanogenic and sedimentary exhalative sulfide 
deposits (Taylor and Slack, 1984; Beaty et al., 1988; 
Hellingwerf et al., 1994; Jiang et al., 1998). 

In situ trace element analyses of tourmalines have poten
tial use in exploration. Proton microprobe studies of 23 
metamorphosed massive sulfide deposits (Griffin et al., 
1996) indicate that tourmalines related to massive sulfide 
and sedex deposits have distinctive trace element signa
tures that survive metamorphic recrystallization; also, that 
the base metal proportions of the tourmalines generally 
match those of the related deposits. The presence of high 
base metal contents (up to 195 ppm Cu, 2,800 ppm Pb, and 
4,160 ppm Zn) in tourmalines from the Kidd Creek, Bro
ken Hill (Australia), and Sazare (Japan) deposits serve to 
discriminate ore-related tounrlaliriite from those of barren 
rocks in these areas (Griffin et al., 1996). However, Griffin 
et al. (1996) identified high base metal values from tour-

malinites in areas apparently lacking associated base metal 
sulfides. Griffin et al. (1996) suggested that, rather than 
considering high individual contents of Cu or Pb or Zn of 
tourmalinites as exploration guides, the combination · of 
high Zn/Fe ± Cu ± Pb serves as a better guide. They 
showed that a systematic relationship exists between base 
metal proportions in· tourmalines and metallogeny of the 
host massive sulfide deposit, regardless of metamorphic 
grade. This consequently suggests that the analyzed tour
malines retain a strong chemical signature of their original 
hydrothermal formation. Benefits of this trace element ap
proach may be enhanced in the future through the use of a 
laser-ablation ICP-MS microprobe (e.g., Jacksoti et al., 
1992) for determining a wider suite of trace elements for a 
much lower cost (Griffin et al., 1996). 

Isotope studies may have some exploration potential in 
the evaluation of tourmalinites. Oxygen isotope data can 
document the high formational temperatures (>200°C) of 
tourmalinites that might preferentially be associated with 
submarine-hydrothermal feeder zones, as opposed to low
temperature tourmalinites ( <200°C) that may only reflect 
basin dewatering and a lack of associated mineralization 
(see Slack, 1993b, 1996). Insights into fluid/rock ratios of 
the tourmalinizing process can also be obtained through 
oxygen isotope studies. Boron isotope analyses, integrated 
with oxygen isotope data on the same samples, might fur
ther constrain the temperatures and fluid/rock ratios of 
tounnalinite-forming reactions (Jiatig, 1998), and provide 
evidence of potentially related mineralization. 

Zincian spine!- or zincian staurolite-bearing rocks 

Zincian spine! and zincian staurolite that form by desul
fidation and deoxidation mechanisms involving spha
lerite have been proposed as useful indicators of proxim
ity to metamorphosed massive sulfides (Spry and Scott, 
1986a,b). Sandhaus and Craig (1986) also considered 
gahnite an exploration guide by emphasizing its mechan
ical and chemical resistance to weathering, and its preser
vation in the heavy mineral fraction of stream sediment, 
saprolite float, and gossan. Gandhi (1971) reported the 
presence of gahnite in soil samples 170 m from the Ma
mandur base metal prospect, India, whereas Bernier et al. 
(1986) noted its utilization as an indicator mineral to ore 
in glacial till of the Montauban area, Quebec. Gahnite is 
so abundant in several localities in Proterozoic rocks of 
the southern Rocky Mountains (Colorado) that it poten
tially constitutes an ore mineral (Sheridan and Raymond, 
1984), in much same way that Zn oxides and silicates were 
ore minerals at the Franklin and Sterling Hill deposits, 
New Jersey. 

Several workers have suggested that the composition of 
zincian spinel reflects its host environment and that it 
therefore serves as a useful guide to ore. Ririe and Foster 
(1984) and Bernier et al. (1987) showed that the Zn con
tent of gahnite increases with proximity to the Zn deposits 
at Cotopaxi, Colorado, and Montauban, Quebec. Spry and 
Scott (1986a; Fig. 12) demonstrated that the composition 
of zincian spine! associated with metamorphosed massive 
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sulfide deposits (including meta-exhalative gahnite-quartz 
rocks) can be discriminated from spinels in pegmatites, alu
minous metasediments, and marbles. Spinels in marbles 
are enriched in spinel sensu stricto (MgAl2O 4), aluminous 
metasediments in hercynite (FeAl2O4), and massive sul
fides and pegmatites in gahnite (ZnAl2O4). Zincian spinels 
in the last two geological settings can be discriminated be
cause those in pegmatites generally contain less than 5 
mole percent of the spinel molecule, whereas those associ
ated with massive sulfides typically contain between 5 and 
20 mole percent spinel. There is an overlap between the 
compositional fields of zincian spinels in massive sulfide de
posits and aluminous metasediment compositions. Zincian 
spinels with the following range of compositions (55-90 
mole % ZnAl2O 4, 10-40 mole % FeAl2O 4, and 5-20 mole% 
MgAl

2
O

4
), are considered to be the best guides to ore 

(Spry and Scott, 1986b). 
Spry and Scott (1986a) proposed that the Zn content of 

staurolite, similar to zincian spine!, might be a useful 
guide to metamorphosed sulfide ores. Trembath (1986), 
Huston and Patterson (1995), and Both et al. (1995) sup
ported this concept by showing that staurolite is enriched 
in Zn with proximity to the Anderson Lake (Manitoba), 
Dry River South (Queensland), and Angas (South Aus
tralia) base metal sulfide deposits, respectively. Huston 
and Patterson (1995, fig. 5) derived a TiO2-ZnO scatter
gram that supposedly distinguished staurolite associated 
with massive sulfides from staurolite occurring in other en
vironments. However, their conclusion must be treated 
cautiously because their results, when combined with data 
from sources including meta-exhalites and alteration 
zones, show that staurolite has a wide variation in TiO2 
content regardless of geological environment (Fig. 17). 
Nevertheless, staurolite in massive sulfide deposits gener
ally contains 4 to 9 wt percent ZnO, whereas staurolite in 
meta-exhalites and alteration zones contains 0.5 to 5.0 wt 
percent ZnO and Oto 7 wt percent ZnO, respectively, thus 
suggesting that Zn content, rather than Zn combined with 
Ti, is a better discriminator of proximity to ore. Although 
staurolite in metasedimentary rocks can have ZnO con
tents greater than 4 wt percent, examples are few when 
compared with those genetically related to ore-forming 
processes. The latter generally occur in rocks metamor
phosed to upper amphibolite fades, where Zn content in
creases the stability of staurolite to higher pressures, or in 
rocks deficient in quartz. 

Summary 

General conclusions 

The spatial relationships between meta-exhalites, in par
ticular iron formations, and various hydrothermal ore de
posits have been known for over 20 years and have long 
been considered as potential guides to exploration (e.g., 
Stanton, 1972). However, since the middle 1970s, there 
have been several hundred documented examples of meta
exhalites spatially associated with hydrothermal ore de
posits. Furthermore, the spatial and genetic relationships 
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FIG. 17. TiO2-ZnO plot for staurolite from different geological settings 
(metamorphosed massive sulfide deposits, meta-exhalative gahnite
quartz rocks, pegmatites, aluminous metasediments, and marbles). Data 
sources: Nemec (1978), Stoddard (1979), Froese and Moore (1980), 
Sandhaus (1981), Nesbitt (1982), Bottrill (1983), Hiroi (1983), 
Purtschellar and Mogesie (1984), Spry (1984), Ward (1984a, b), Miyake 
(1985), Schumaker (1985), Dutrow et al. (1986), Holdaway et al. (1986), 
Leopolt and Franz (1986), Trembath (1986), 1reloar (1987), Tusiku et al. 
(1987), Bristol and Froese (1989), Froese et al. (1989), Moore and Reid 
(1989), Zaleski (1989), Bernier (1992), Cook (1993), Goodman (1993), 
Soto and Azafi6n (1993), McElhinney (1994), Cesare and Grobety 
(1995), Huston and Patterson (1995), Rosenberg (1998). Modified after 
Huston and Patterson (1995). 

among coticules, tourmalinites, and hydrothermal ore de
posits have gained acceptance, partly reflecting a dramatic 
increase in the number of geochemical analyses (specifically 
major and trace element) of meta-exhalites. The use of in 
situ microbeam techniques (e.g., proton microprobe, laser
ablation ICP-MS microprobe) on certain minerals in meta
exhalites holds great potential as a tool to aid in prospecting 
for hydrothermal ore deposits, including metamorphosed 
sulfide ores. Such techniques have usefully documented 
the trace element signatures of original hydrothermal for
mation for tourmaline in tourmalinites from metamor
phosed massive sulfide (e.g., Griffin et al., 1996). Whether 
such signatures can be identified from garnet in coticules, 
gahnite in quartz-gahnite horizons, and zincian staurolite in 
staurolite-bearing rocks is yet to be determined, but mi
crobeam techniques hold great promise. 

Major and trace element (including REE) data demon
strate that iron formations, coticules, and tourmalinites 
spatially associated with metamorphosed hydrothermal 
ore deposits contain variable contributions of detrital ma
terial and hydrothermal components. The hydrothermal 
component is generally greater than 70 percent for iron 
formations, approximately 30 to 70 percent for coticules, 
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and less than 30 percent for tourmalinites ( excluding con
tributions from B). Of the major constituents of meta-ex
halites, Fe, Mq, B, P, and Zn generally have a hydrothermal 
source, whereas Al and Ti are from detrital elastic material. 
Silica can have hydrothermal and/ or detrital sources. 
Variability in physicochemical conditions (e.g., T, /o2, pH, 
ionic strength, fs2, .fe,02) partly account for the presence or 
absence of layering in the meta-exhalite, the proximity of 
the meta-exhalite to the, hydrothermal sulfide deposit, 
and the mineralogy of the, exhalite. Other contributing 
factors to these parameters include detrital input, the 
amount of hydrothermal input via venting, fluid/rock ra
tio, bottom current drift, and the degree of basin isolation 
from elastic sedimentation. 

Exploration applications 

Iron formations: Although all of the classical iron forma
tion types of James (1954) ar~ associated with metamor
phosed massive sulfide deposits, these deposits are most of
ten spatially associated with sulfide-predominant iron 
formation. Apart from the presence of individual sulfides, 
such as pyrite and pyrrhotite, no other mineral in iron for
mation is particularly diagnostic of the presence of nearby 
metallic sulfides. This is despite some massive sulfide dis
tricts ( e.g., the Brunswick belt-Peter and Goodfellow, 
1996b) having characteristic suites of minerals in iron for
mations that have proven to be useful indicators of ore. 
However, these minerals are not necessarily guides to ore 
in other districts. 

Elevated concentrations of many individual elements 
(particularly Cu, Pb, or Zn, but also S, Ag, As, Au, Bi, Cd, 
Hg, In, Sb, Te, Tl, Mo, Se, Co, Ni, F, and Cl) in iron forma
tions, have proven useful as indicators in several districts 
(e.g., Bathurst, Matagami, Lake Dufault, L0kken, lfoydal). 
However, metal ratios that exhibit increasing proportions of 
hydrothermal components to elastic components (e.g., FeT 
+Mn/Al, Fe1/Ti, Mn/Ti, Ba/Ti, Ba/ Al, P /Ti, Sr/Ti) are a 
more consistent indicator of ore. Positive Eu anomalies also 
serve as good guides to ore because they seemingly reflect 
decreasing temperatures of the hydrothermal fluid away 
from the hydrothermal vent(s) and/or changing redox 
conditions; they therefore potentially reflect proximity to 
nearby vents and vent-related sulfide mineralization. 

Variations in the chemical composition of. mineral 
phases in iron formations do not serve as a panacea in 
the guide for economic mineralization because individ
ual districts apparently exhibit different trends. Proximity 
to ore is reflected by changes in chlorite (Fe, Mn, Sr, and 
Na contents, and Fe/Mn ratio, Fig. 16); stilpnomelane 
(high Fe and Mn contents, and Fe/Mn ratio); magnetite 
(Fe2+, Fe3+, and Si contents); siderite (Mn content and 
Fe/Mn ratio); and sphalerite (high Mn content and 
Fe/Mn ratio) in the Heath Steele belt, New Brunswick. 
However, with the exception of increases in the Mn con
tent of various silicates ( e.g., garnet, pyroxenoids), 
which occur with proximity to the Broken Hill (Aus
tralia), Gamsberg, and Pegmont deposits, the increases 
are generally not found elsewhere. 

Coticuks: Although coticules that are dominated by gar
net and quartz can be associated with hydrothermal ore de
posits, particularly massive sulfide deposits, coticules with a 
variety of minerals (e.g., apatite, gahnite, tourmaline, bi
otite, feldspar, apatite) are commonly associated with the 
largest deposits (e.g., Broken Hill, Australia; Aggeneys; 
Gamsberg) and appear to be a potential guide to ore. The 
utilization of trace element contents of coticules as guides 
for hydrothermal ore deposits remains unclear, partly due 
to the lack of systematic studies around known deposits, 
and in turn due to the limited areal extent of coticules ( cf. 
tourmalinite and iron formation). However, the use of pos
itive Eu anomalies as a guide to ore appears to have 
promise in the same manner as for iron formations. 

Tourmalinites: Magnesian tourmalines are useful 
prospecting guides for massive sulfide deposits in most ge
ological environments (e.g., Slack, 1996). However, cau
tion must be exercised when using tourmaline composi
tions because Fe-rich tourmalines may be associated with 
some deposits (e.g., Broken Hill, Kidd Creek). Although 
exploration programs may focus on the distribution of 
tourmalinites in the field, several stream sediment studies 
have demonstrated the potential of Mg-rich tourmaline as 
an exploration guide to massive sulfides, due to its chemi
cal and mechanical stability and its relatively high specific 
gravity (Pavlides et al., 1982; Slack, 1982; Robinson et al., 
1988; Robinson, 1989). 

Great potential also exist,; for utilizing trace element 
contents of tourmaline in tourmalinites in the search for 
metamorphosed massive sulfide deposits. The combina
tion of high Zn/Fe ± Cu ± Pb serves as a guide to these de
posits (Griffin et al., 1996). 

Zincian spine[- or zincian staurolite-bearing rocks: Although 
zincian spinels and staurolites occur in a wide variety of ge
ological settings, those found in strata-bound horizons, 
particularly gahnite-quartz horizons, should be consid
ered excellent guides to ore. Zincian spinels with the fol
lowing range of compositions (55-90 mole % ZnA120 4, 

10-40 mole% FeAl20 4, and 5-20 mole% MgA120 4) are 
considered the best guides to ore (Spry and Scott, 1986b). 
By analogy, zincian staurolite with greater than 5 wt per
cent ZnO (or approximately >l Zn atom in the formula 
(Fe2,Zn,Mg)A11iSi,Al)80 44 (OH) 4) is an excellent indica
tor of close proximity to sulfides. The chosen staurolite 
formula is. based on the composition of zincian staurolite 
generally found in metamorphosed massive sulfide de
posits (e.g., Spry and Scott, 1986b; Huston and Patterson, 
1995). The compositions of zincian spinel and staurolite 
apply to outcrop, stream sediment, saprolite float, gossan, 
or glacial till, because staurolite and particularly gahnite 
are mechanically and chemically resistant to weathering. 
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