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ABSTRACT 

 

 AbstractðIn the restructured electricity markets, the generators and the Independent 

System Operator (ISO) play important roles in the balance of electricity supply and demand. 

We consider a mixed integer bi-level model reformulated as a mathematical program with 

complementary constraints (MPCC) in which a single conceptual leader decides the 

transmission line expansion plan and generators plan for generation capacity expansion in the 

upper level. The overall objective is to maximize the total social welfare, which consists of 

buyer surplus, producer surplus and transmission rents. In the lower level, generators will 

maximize their operational profits by interaction with the ISO to decide their generation 

amounts. Meanwhile, the lower-level objective of the ISO is to maximize the social welfare by 

dispatching the electricity to satisfy demand and set the locational marginal prices (LMPs). 

Reformulating the complementarity constraints with binary variables results in a mixed integer 

program that can be solved to global optimality. However in reality, the demand and fuel cost 

will fluctuate with uncertainties such as climate change or natural resource limitations. A 

moment matching method for scenario generation can capture the uncertainties by producing 

a scenario tree. Then we combine the scenario tree with the mixed integer program to obtain a 

two-stage stochastic program where the first stage corresponds to the upper level investment 

decisions and the second stage represents the lower level operations. The extensive form of the 

stochastic program cannot be solved in our numerical example within a reasonable time limit. 

To reduce the computation time, a scenario reduction algorithm is applied to select fewer 

scenarios with properties similar to the original scenarios. Finally we solve the stochastic 

mixed-integer program with the Progressive Hedging Algorithm (PHA), which is a scenario-
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based decomposition heuristic. We compare the results of the stochastic program and a 

deterministic optimization using expected values. The capacity expansion plan obtained with 

the stochastic program has higher expected social welfare than the expected value solution. 

The stochastic program yields a solution that hedges against uncertainty by lower generation 

expansion levels and fewer transmission lines to be built. 
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CHAPTER 1  OVERVIEW 

 

1.1 Introduction  

 

A reliable, reasonably priced supply of electricity is essential to the quality of life for 

residents and industries. The supply of electricity is also the basis of a regionôs economy. Without 

it, factories and business cannot function normally. Electricity is not only a basic necessity, but it 

is also regarded as a product that can be produced, sold, and transported for the profits of the 

generation companies. Similar to most commodities, electricity is sold at both wholesale and retail 

levels. The main differences from usual commodities are its lack of economical storage and 

physical constraints that govern its transmission.  

Unlike other common energy sources such as fossil fuels, electricity must be used as it is 

being generated, or converted immediately into another form of energy. Although energy-storage 

technologies are being developed for offering wide ranges of power density and energy density, 

no single energy-storage technology has the capability to support enormous demand currently. In 

the future, the systems may be comprised of technologies such as electrochemical super capacitors, 

flow batteries, lithium-ion batteries, superconducting magnetic energy storage and kinetic energy 

storage [1]. Moreover, delocalized electricity production and different energy resources increase 

the difficulty of stabilizing the power network. Hence, electricity is difficult to store in the bulky 

and costly equipment [2]. Under these circumstances, how to regulate the power system over time 

is crucial in our modern society.  

Further, the long lead-time required to expand generation and transmission capacity 

requires long-term planning that takes uncertainties into account. In addition to providing a 
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sustainable power network, long-term capacity expansion planning significantly influences the 

development of market operations in short-term decision making. The decisions of expansion 

planning will determine our behavior of utilizing electricity for decades.  Therefore generation and 

transmission expansion planning should be carefully designed to satisfy future demand.   

In the early 1990s, most electric utilities in the U.S. owned the transmission lines and 

generation resources at the same time. They made all decisions concerning electricity production 

and distribution. However, the wholesale electricity market restructuring changed the 

organizational structure of the power provider from vertically integrated into different 

organizations, each organization with a separate function to maintain the balance of the market. 

The motivation of market design was to create an environment for competition in the electric 

power industry. Competition decreases the market power of each generation company. However 

the electricity market still needs coordination in another way to increase the social welfare as a 

new perspective. The independent system operator (ISO) has resulted for this purpose [3]. The 

ISO coordinates, controls and monitors the operation of the power system to maintain the 

reliability and economic benefits of the electricity network. But the ISO cannot build transmiss ion 

lines or power plants on its own. The ISO is a non-profit organization. 

The supply network for an electricity market includes the ISO and individual generation 

companies. The task of taking generation capacity investment and transmission expansion 

decisions has become an even more complex problem for the liberalized market because of the 

uncertainty of the competition.  One of the methods to analyze the strategic behavior of generation 

competitors is game theory [4]. Game theory describes the simultaneous behavior of each 

generation company, whose goal is to maximize its own profit. The competition can be formulated 

as an equilibrium problem with equilibrium constraints. Under the framework of game theory, we 
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can integrate generation and transmission expansion decisions with operational decisions among 

competitive generation companies.  In economics we focus on the equilibrium behavior only. A 

marketôs equilibrium is a useful guide for its behavior [5]. 

Long-term planning is subject to uncertainties in the electricity network. To develop an 

expansion plan that can be applied in the changed electric power industry environment is important 

and practical. Two important uncertain factors in the planning procedure are demand and fuel costs 

[6].   

The forecast of electrical demand is one of the important factors in a generation system 

analysis. The U.S. Energy Information Administration (EIA) projects the total electricity demand 

in the U.S. to grow by 28 percent (0.9 percent per year), from 3,839 billion kilowatthours in 2011 

to 4,930 billion kilowatthours in 2040 [7]. Electricity suppliers must invest in new generation units 

and transmission lines to ensure the reliability of the electricity network. New power plants will 

be constructed to keep up with the increasing demand, and will require transmission lines to convey 

power to the areas where the energy is required.  The ISO is responsible for transmission line 

planning [8].  

 For generation companies, the production cost mainly consists of fuel cost such as coal, 

natural gas and nuclear. The price of fuel is critical to decide the price of electricity and it fluctuates 

with uncertainties such as limitation of natural resources, economy and weather.  For example, the 

fuel cost of coal-fired generation accounts for 45 percent of total levelized cost at a 5 percent 

discount rate. The fuel cost of gas-fired generation accounts for nearly 80 percent [9] of levelized 

cost on average. However those fuel costs fluctuate with some factors of uncertainty, the electric ity 

wholesale price changes accordingly. Meanwhile, transmission congestion will affect the balance 
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of supply and demand in the electricity market. The ISO will dispatch the power flow to mainta in 

the reliability of the electricity market. Also the responsibility for the ISO is to set the locationa l 

marginal price (LMP) in each area. LMPs, defined as the least cost to serve the next increment of 

demand with power system operation constraints, reflect the value of energy at different locations. 

1.2 Problem Statement 

 

Considering both the investment and operational decision making, a mixed integer bi-level 

program model for capacity expansion in the integrated supply network for an electricity market 

was developed [10]. The upper level leader decides how to expand the capacity of generation and 

transmission expansion. Once the capacity expansion decisions are made, lower level decision 

makers make their optimal operating decisions toward their objectives.  

However, the model does not consider uncertainty for the lower level problems in the 

decision making. In this thesis, we consider the problem of how to incorporate the uncertainty in 

the form of a two-stage stochastic program. Because the deterministic optimization problem is 

formulated with known parameters, it almost invariably includes some unknown parameters in the 

real world. We are intrigued by investigating the decisions obtained by a stochastic program 

compared with those from the deterministic model. We also address the problems of how to apply 

an appropriate method to generate scenarios for stochastic program. The future uncertainties are 

represented by different future scenarios. If the number of scenarios is too large, we need to apply 

an appropriate scenario reduction method to decrease the number of scenarios to become solvable. 

Due to the large problem that results, we adopt a scenario-based decomposition method to solve 

the stochastic program. 
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1.3 Thesis Structure  

 

In Chapter 2, we review the literature on methodologies to solve the generation and 

transmission expansion problem. Also we introduce the scenario generation method and scenario 

reduction algorithm for capturing the uncertainty. The methodologies for solving stochastic 

programs and stochastic MPECs are discussed at the end.  Chapter 3 contains the process of 

building a two-stage stochastic program as well as notation used in our model. Then scenario 

generation and reduction methods are introduced. PHA is also described in this chapter. In Chapter 

4, our model is applied to a case study based on the New England electric power system. In Chapter 

5, a comprehensive summary of the thesis is made and limitations of the model and case study are 

mentioned. 
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CHAPTER 2 LITERATURE REVIEW  

 

2.1 Methodologies for Generation and Transmission Expansion Planning 

 

Generation expansion and transmission planning have been discussed extensively in the 

past few years. As the structure of the electricity market was reformed, mathematical programs 

have been developed greatly for model formulation [11]. In the restructured electricity market, 

generation companies submit bids to supply electricity at prices based on the fuel cost. The ISO 

manages the electricity transmission and sets the Locational Marginal Prices (LMP) to match 

supply with demand. Uncertainties become a key factor in generation and expansion planning. To 

capture the uncertainty of demand, reference [6] introduces the application of stochastic models in 

the generation expansion. A scenario-based multi-objective transmission line expansion planning 

model is introduced by [12].  Fuel and carbon price risk will impact the long-term investment 

decisions. However, the expansion planning procedure does not account for the behavior of 

competition among generators in the electricity market. 

Equilibrium models are more suitable for describing competitive behaviors in long- term 

planning [13]. In addition to the uncertainty of cost and demand, the behavior of the electric ity 

producers and consumers must be taken into account in the competitive market. Game theory is 

generally applied to describe the competitive environment for strategic decision making firms. All 

firms compete to offer generation services at a price set by the ISO, as a result of the interaction 

of all of them. The goal of market design is to create an efficient electricity market. Efficiency 

means the output is produced by the cheapest supplier and is consumed by the consumer most 

willing to pay . The ideal electricity generation amount is optimal for both supply and demand [5]. 

Under a particular market design, we can derive a competitive equilibrium which is efficient in the 
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electricity market [14]. The planner seeks for overall benefits to the electricity producers and 

buyers. In [15], the author provides a stochastic framework for evaluating the investment decisions 

and integrating scenarios into a single model  with security criteria and illustrates how the results 

from stochastic models differ from the deterministic model perspective. 

Game theory is a mathematical way to describe such strategic decision making behavior. 

The mathematical model is formulated with equilibrium constraints. One common economic 

model, Cournot competition, is applied to describe the competition among generation companies. 

It is a necessary step beyond the monopoly model and explains the role of market share in the 

determination of market power [5] and also it allows for convenient calculation. A consensus 

seems to have emerged that considering generators as Cournot competitors is appropriate in the 

restructured electricity market. However, Yao et al. [16] assume the generation companies do not 

anticipate the impact of their production decisions on congestion charges. A collection of models 

which incorporated game theory is discussed in [17] and one of them is a Cournot model that 

includes investments in new generation capacity. The competition concerning generation capacity 

is formulated by its own Mixed Linear Complementarity Problem (LCP). Mathematical Programs 

with Equilibrium Constraints (MPEC) is used in solving expansion planning for electricity markets. 

A bi-level formulation is introduced for long-term generation capacity investment decisions 

considering uncertainty of the investments of other generation companies. The bi-level model is 

formulated as an MPEC and transformed into a Mixed Integer Linear Program (MILP) [18].  

Transportation of fuel to the integrated supply electricity market is considered by [10, 19, 

20]. The authors construct a mixed integer bi-level programming model for fuel supplier, the ISO 

and individual generation companies. The fuel supplier delivers the fuel to the generation company 

considering the transportation cost. The ISO sets the LMP and allocates the power flow in the 
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transmission network. As for the generation companies, they purchase the fuel from the fuel 

supplier and decide the amount of generation [19]. The deterministic model is a Mathematica l 

Program with Complementary Constraints (MPCC). The authors of [10] provide a reformula t ion 

of the problem to obtain the global optimal solution with binary variables.. In this thesis, we will 

modify this model to consider uncertainty under the framework of the integrated electricity market. 

2.2 Scenario Generation and Reduction M ethodologies 

 

As mentioned before, uncertainty is a principal factor in the generation and transmiss ion 

planning. A stochastic program results from capturing the uncertain parameters of determinis t ic 

model as probabilistic scenarios.. The most common approach to scenario generation is to directly 

sample from a specific distribution. But the large scale of sampling could generate time and cost 

consuming issues. By using a specified marginal distribution and correlation matrix one can 

approximate the original distribution for sampling [21]. A method of estimating a scenario tree 

approximation to a stochastic process is presented by minimizing the distance of objective function 

[22]. From the statistical perspective, [23] formualtes a decision model for generating scenarios 

with internal sampling or finding a simple discrete approximation of the given distribution that 

could be used as model input . The basic idea is to minimize the distance between computed and 

specified statistical specifications. This method is called moment matching. Scenario generation 

methods are illustrated by [24] including sampling from specified marginal and correlations, path-

based method, optimal discretization and moment matching method. 

 In this thesis, we would like to explore an approximation for the probability distribut ion 

with discrete distribution. One of the heuristics is presented by [25] that generates a discrete joint 

distribution corresponding to specified statistical specifications such as the first four margina l 
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moments and correlations. The advantage of the method is not to consider the exact probability 

distribution of the stochastic parameters. 

 A large number of scenarios might limit the tractability of solution. Several scenario 

reduction methods have been developed during the past years. Forward selection and backward 

reduction algorithms are two common scenario reduction methods. In power management, 

scenario reduction algorithm is applied for solving computational complexity and time limitat ion. 

A smaller number of scenarios is selected with redistributed probability which improves the 

efficiency of computation time without losing significant difference between reduced scenarios 

and original scenarios. Through a scenario tree construction algorithm and scenario reduction 

algorithm, the stochastic parameters can be well approximated [26]. We will adopt forward 

selection as our scenario reduction algorithm because the number of reduced scenarios is small 

enough to compute. 

2.3 Methodologies for Solving Stochastic Programs 

 

After we obtain the scenarios from a scenario generation method, we incorporate these 

uncertainties into deterministic model. The deterministic model becomes s stochastic program. 

Stochastic program are frequently applied in long-term planning. A common methodology for 

solving multi-stage stochastic programs for energy planning uses duality in Benders 

decomposition to derive a piecewise linear function to approximate the expected cost function [27].  

Including a large number of realizations in the extensive form of a stochastic program 

might make it too large to solve in finite time or resources. Benders decomposition can improve 

the performance of solving stochastic program [28]. On the other hand, the Progressive Hedging 
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Algorithm (PHA) can be applied for solving mixed integer multistage stochastic program [29]. In 

PHA, decomposition is used to divide the problem into smaller and more manageable sub-

problems. When the first stage decisions have converged to within an acceptable tolerance interva l, 

the optimal solution is be obtained. Progressive Hedging aggregate the solutions of scenario 

problems with modified cost function to progressively cause the probability-weighted average 

solution to become feasible and optimal eventually. 

2.4 Stochastic MPECs for Long-term Energy Planning 

 

The electricity market modeling can be classified into optimization problem for one firm, 

market equilibrium for all firms and simulation model. A stochastic model is developed for a single 

firm optimization model in [13]. A bi-level model is built to assist a generation company for its 

long-term generation capacity investment decisions. In the upper level, the objective is to choose 

the investment decisions to maximize expected profits. The lower level is constructed by 

equilibrium through a conjectured-price response formulation. To include uncertainty in future 

demand and the investments decisions of other generation companies, the bi-level problem can be 

solved as a linear mixed integer bi-level program which is converted to an equivalent single- leve l 

mixed integer problem [30]. A similar approach is applied in solving the medium-term decision 

problem faced by power retailer. The uncertainty includes future pool price, client demand and 

rival retailer price [31]. A strategic producer making decisions on generation investment is 

represented through a bi-level model with market clearing. The large scale mixed integer linear 

program is solved by a branch-and-cut method considering with demand variations [17]. Wind 

energy is discussed extensively in recent years. The authors of [32] consider wind power 

investment and transmission planning with MPEC. The goal is to identify the optimal wind 
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projects and network improvement. The stochastic MPEC can be reformulated as a mixed-integer 

linear program solved also by branch-and-cut method. The authors take the production variability 

and uncertainty of wind facilities, future decline in wind power investment cost, and financial risk 

into account. They propose a risk-constrained multi-stage stochastic program with MPCC in [33]. 

Hence the stochastic bi-level model can be solved by a reformulation technique.   

2.5 Summary 

 

 Longïterm capacity planning in restructured electricity markets has been addressed 

recently in terms of mixed integer bi-level programming models. The upper level decision maker 

will decide the investment in generation capacity and transmission expansion first. In the lower 

level, the generators will decide the optimal generation amount and the ISO will dispatch the 

supply to meet the demand under a game theoretical model. The equilibrium solutions are derived 

among the interactions with generation companies and the ISO. Fuel suppliers are considered in 

the integrated electricity market. With the transformation of MPCC for bi-level model, the model 

can be solved in either a nonlinear programming reformulation or a binary variable reformula t ion 

[10, 14, 20]. 

 However, in [10], the uncertainty in the long-term capacity planning is not considered in 

the equilibrium model. Uncertainty will affect the outcome of planning over long time period. In 

[18, 30, 31], the stochastic MPCC is discussed for long-term investment planning. The uncertainty 

of price, demand and investment decisions of other generation company are included. The 

uncertainties in fixed-demand levels and fuel costs have not been considered previously in 

stochastic MPCC models. Our thesis is focused on the combination of bi-level programming and 
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stochastic programming by binary variable reformulation to obtain the optimal solutions under 

uncertainty.  
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CHAPTER 3 METHODS AND PROCEDURES 

 

 In this chapter, we present the modified capacity expansion planning model in determinis t ic 

form based on [10]. Meanwhile we also adopt the binary variable reformulation of 

complementarity constraints from [10] in order to achieve global optimality. Then we incorporate 

uncertainty concerning fixed-demand levels and fuel costs to convert the deterministic model into 

stochastic program. According to the information about demand and fuel cost, we apply a scenario 

generation algorithm to generate possible scenario outcomes. In the case study, the number of 

scenarios is too large to allow the solution of the stochastic program in a reasonable amount of 

time. To achieve tractability, we implement a scenario reduction algorithm to decrease the number 

of scenarios so that we can compute a solution with reasonable resources. Finally, the progressive 

hedging algorithm (PHA), a scenario-based decomposition heuristic, is used for solving the mixed 

integer stochastic program. The model formulation and notation are summarized in Section 3.1. 

The deterministic model and its MPCC reformulation are illustrated in Section 3.2 and Section 3.3, 

respectively. The two-stage stochastic program is formed in Section 3.4. Also the scenario 

generation and reduction algorithms are introduced in Section 3.5. Finally the PHA we use to solve 

the model is presented in Section 3.6. 

3.1 Model Formulation and Notation 

3.1.1 Model Formulation 

 

First, we build the deterministic model formulation based on [10] which is a bi-level model for 

a conceptual leader making capacity expansion decisions in the upper level while generation 

companies and the ISO search for their own optimal solutions in the wholesale market in the lower 

level. We also modified the model in [10] to add the fixed-demand level into consideration as in 



14 

[19] to ensure the reliability in the regional electricity market. Moreover, different types of 

generation technologies are considered in our model to help us understand how to allocate capacity 

in an appropriate portfolio. The time frame in our model is also different from [10].  The 

uncertainties in different seasons are included in our model to illustrate how the seasonal variations 

affect our decisions. For the convenience of calculation, the model is based on a weighted average 

hour across seasons. All of the expansion costs are estimated on an hourly basis.  

Second, the bi-level model becomes a MPCC upon replacing the lower level optimiza t ion 

problem with its Karush-Kuhn-Tucker (KKT) conditions, and then the binary variable 

reformulation is introduced to convert the MPCC to a mixed integer program (MIP) that can be 

solved to global optimality [10].  

 Finally, uncertainties of fixed-demand level and fuel cost are included in the form of 

probabilistic scenarios, which converts the MIP to a two-stage stochastic program. In the first stage, 

the conceptual leader makes the generation and transmission expansion decisions. In the second 

stage, the ISO and generation companies will react to the expansion decisions by maximizing their 

own objective functions in different scenarios. 

3.1.2 Notation 

 

         Sets 

ὔ :  Electricity nodes in the power network, indexed by i, j  

Ὕὶ: Transmission lines from node i to node j, indexed by ij  

S:      Scenarios, indexed by s 

Ὕȡ      Time periods in second stage, indexed by t 
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G:     The set of technologies for power plants, indexed by g  

Upper level decision variables: 

            ὲὠȟ     ὋὩὲὩὶὥὸὭέὲ  ὧὥὴὥὧὭὸώ ὥὪὸὩὶ ὩὼὴὥὲίὭέὲ Ὢέὶ ὫὩὲὩὶὥὸέὶ Ὥ ύὭὸὬ ὸὩὧὬὲέὰέὫώ Ὣ ὓὡ  

ᾀ        ὄὭὲὥὶώ ὨὩὧὭίὭέὲ ὺὥὶὭὥὦὰὩ Ὢέὶ ὲὩύ ὸὶὥὲίάὭίίὭέὲ ὰὭὲὩ Ὢὶέά ὲέὨὩ Ὥ ὸέ ὲέὨὩ Ὦ 

Lower level decision variables:  

ή          ὈὩάὥὲὨ ίὥὸὭίὭὪὭὩὨ ὥὸ ὩὰὩὧὸὶὭὧὭὸώ ὲέὨὩ Ὥ Ὥὲ ὴὩὶὭέὨ ὸ ὓὡὬ 

—          ὠέὰὸὥὫὩ ὥὲὫὰὩ ὥὸ ὩὰὩὧὸὶὭὧὭὸώ ὲέὨὩ Ὥ Ὥὲ ὴὩὶὭέὨ ὸ  

              Ὢ     ὉὰὩὧὸὶὭὧὭὸώ Ὢὰέύ έὲ ὸὶὥὲίάὭίίὭέὲ ὰὭὲὩ Ὢὶέά ὲέὨὩ Ὥ ὸέ ὲέὨὩ Ὦ Ὥὲ ὴὩὶὭέὨ ὸ ὓὡ  

             ώȟ         ὉὲὩὶὫώ ὫὩὲὩὶὥὸὩὨ ὦώ ὫὩὲὩὶὥὸέὶ Ὥ ύὭὸὬ ὸὩὧὬὲέὰέὫώ Ὣ Ὥὲ ὴὩὶὭέὨ ὸ ὓὡ  

              –          ὖὶὭὧὩ ὥὸ ὸὬὩ ὶὩὪὩὶὩὲὧὩ ὩὰὩὧὸὶὭὧὭὸώ ὲέὨὩ Ὥὲ ὴὩὶὭέὨ ὸ ΑȾὓὡὬ 

           ‰         ὔέὨὥὰ ὩὰὩὧὸὶὭὧὭὸώ ὴὶὭὧὩ ὴὶὩάὭόά ὥὸ ὩὰὩὧὸὶὭὧὭὸώ ὲέὨὩ Ὥ Ὥὲ ὴὩὶὭέὨ ὸ ΑȾὓὡὬ     

Parameters 

              ὥ          ὍὲὸὩὶὧὩὴὸ έὪ ὩὰὩὧὸὶὭὧὭὸώ ὨὩάὥὲὨ ὴὶὭὧὩ ὥὸ ὲέὨὩ Ὥ ὥί ὥ ὰὭὲὩὥὶ ὪόὲὧὸὭέὲ έὪ ήόὥὲὸὭὸώ  

              ὦ          ὛὰέὴὩ έὪ ὩὰὩὧὸὶὭὧὭὸώ ὨὩάὥὲὨ ὴὶὭὧὩ ὥὸ ὲέὨὩ Ὥ ὥί ὥ ὰὭὲὩὥὶ ὪόὲὧὸὭέὲ έὪ ήόὥὲὸὭὸώ 

             ὴ          ὝὬὩ ὰέὧὥὸὭέὲὥὰ άὥὶὫὭὲὥὰ ὴὶὭὧὩ έὪ ὲέὨὩ Ὥ Ὥὲ ὴὩὶὭέὨ ὸ ΑȾὓὡὬ 

Ὣὧȟ     ὍὲὺὩίὸάὩὲὸ ὧέίὸ Ὢέὶ ὫὩὲὩὶὥὸὭέὲ ὩὼὴὥὲίὭέὲ Ὥὲ ὫὩὲὩὶὥὸέὶ Ὥ ΑȾὓὡȾὬ  

ὸὧ       ὍὲὺὩίὸάὩὲὸ ὧέίὸ Ὢέὶ ὸὶὥὲίάὭίίὭέὲ ὰὭὲὩ ὩὼὴὥὲίὭέὲ Ὢέὶ ὰὭὲὩ ὭὮ ΑȾὓὡȾὬ 
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—     ὓὥὼὭάόά ὺὥὰόὩ Ὢέὶ ὺέὰὸὥὫὩ ὥὲὫὰὩί 

—      ὓὭὲὭάόά ὺὥὰόὩ Ὢέὶ ὺέὰὸὥὫὩ ὥὲὫὰὩί 

               ὠȟ      ὋὩὲὩὶὥὸὭέὲ ὧὥὴὥὧὭὸώ ὥὸ ὫὩὲὩὶὥὸέὶ Ὥ ύὭὸὬ ὸὩὧὬὲέὰέὫώ Ὣ ὓὡ  

             ὑ       ὅὥὴὥὧὭὸώ έὪ ὸὶὥὲίάὭίίὭέὲ ὰὭὲὩ ὭὮ ὓὡ  

             ὄ       ὔὩὫὥὸὭὺὩ ίόίὧὩὴὸὥὲὧὩ έὪ ὸὶὥὲίάὭίίὭέὲ ὰὭὲὩ ὭὮ Џ    

  r Discount rate     

             ὲ Weight parameter for period t in one scenario  

 Ὗȟ  Upper bound for generation level in state j with technology g  

Scenario Parameters 

             ὧȟ
ȟ        ὊόὩὰ ὧέίὸ ὥὸ ὫὩὲὩὶὥὸέὶ Ὥ ύὭὸὬ ὸὩὧὬὲέὰέὫώ Ὣ Ὥὲ ὴὩὶὭέὨ ὸ ΑȾὓὡὬ   

              ὒ
ȟ
          ὊὭὼὩὨ ὨὩάὥὲὨ ὰὩὺὩὰ ὥὸ ὲέὨὩ Ὥ Ὥὲ ὴὩὶὭέὨ ὸ ὓὡ   

              ὴὶέὦ         ὖὶέὦὥὦὭὰὭὸώ ὸὬὥὸ ίὧὩὲὥὶὭέ ί έὧὧόὶί 

3.2 Deterministic Model 

 

First we will introduce the deterministic model of the electricity supply network from [10] 

omitting the fuel supplier considered in that paper. In the upper level, a conceptual leader decides 

the expansions with different types of technology for generators and transmission line owner. The 

model provides an expansion plan guideline from a global perspective. The expansion of 

transmission line is determined by introducing binary variables.  
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At the lower level, the ISO and generators will seek for optimal solutions for each own 

objective function at the same time. The existence of an equilibrium is proved by [14] in the 

electricity network model. The ISO is responsible for maintaining the balance of the electric 

network that generators will satisfy at least the fixed-demand level. Meanwhile the goal for ISO is 

to maximize the total social welfare and for generators is to maximize its own profit.  

       The total social welfare is comprised of the total buyer surplus, producer surplus and 

transmission rents. Welfare measures are based on the prices and quantities of demand satisfied at 

each node [20]. Producer surplus at node j  in period t is defined as the profit less the generation 

cost in (1). 

ὖὛ ὴВ ώȟ В ὧȟώȟ                                           (1)     

The classic tool for measuring welfare change is buyerôs surplus. The buyer surplus BS  is 

defined as the area to the left of the demand curve between prices associated with a price movement 

[34]. . The consumer demand curve measures how much the consumer is willing to pay. The 

difference between the maximum willingness to pay and what the consumer actually pays or a 

given quantity is the buyerôs surplus [5]. Buyer surplus is an important criterion to measure market 

efficiency. If the sum of profit and buyer surplus is maximized, the market is efficiently operating. 

The buyer surplus is shown in Fig 1. Therefore for each buyer at node j  in period t it is computed 

as in (2). 

2 21
( ) ( )( ) ( ) ( )

2

j

j

q

t t t t t t t t

j j j j j j j j j j j j j j j j j j

L

BS a b s ds a b q q L a b L a b q L b q L= + - + - + + - - =- -ñ      

(2) 
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Fig.1. Buyer surplus 

 

 The amounts of transmission rents are the total transmission charges based on nodal price 

difference multiplied by the power flow on the line. The total transmission rents TTr in period t 

are defined in (3). 

( )t t t

t ji i j

ji L

TTr f p p
Í

= -ä       (3) 

The goal of the ISO is to maximize the welfare, which is the total consumer willingness-

to-pay less the sum of all the generation costs. It is equivalent to the summation of consumersô 

surplus, producersô surplus, and transmission rents. Given
t t t

ji j j

i

f y q= -ä , the power flow from 

node j  is equal to the generation amount less the demand. The total social welfare SW in period t 

can be represented as in equation (4). 

2 2

, , , ,

1 1
( ) ( ) ( )( )

2 2

t t t t t t t t t t

t j j g j g j g j j j j j g j i j

j g g j i j g

SW p y c y b q b L y q p p= - + - + + - -ä ä ä ä ä ää            

(4)                                                                                                                 

 



19 

Because the total demand to be satisfied must equal the total amount of generation for the 

balance of the electricity market, it impliesВή В ώȟȟ  and we use it to recalculate the 

transmission rent in (3) as (5). 

, , ,

,

( )( ) ( ) ( )

( )

t t t t t t t t t t t

t j g j i j j j j j g j g j i

j i g j g j g i

t t t t

j j j j g

j g

TTr y q p p p q p y y q p

p q p y

= - - = - + -

= -

ä ää ä ä ää ä

ä ä
 

(5) 

Finally the total social welfare is (2) + (3) + (5) which is derived in equation (6). 

2 2

, ,g

1 1
( )
2 2

t t t t t

t j j j j j j j g j

j g

SW b q a q b L c y= + + -ä ä       (6) 

Upper level 

 The objective function (7) of the upper level includes the total social welfare less the 

generation and transmission expansion cost with the constraint (8) that the new generation capacity 

level is greater than or equal to the original capacity level. The total social welfare is computed by 

a weight parameter multiplying total social welfare in each time period t. For generation expansion 

and transmission expansion decisions, we assume the decisions are based on a single hour. The 

generation expansion decision variables are assumed to be continuous variables. The transmiss ion 

line expansion decisions are assumed to be binary variables. It is consistent for us to compare the 

investment decisions in the first stage and operation decisions in the second level. 
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ὸὧ

ᶰ

ὑᾀ                                                                 χ 

                 ὠȟ ὲὠȟ Ὗȟ               ᶅ Ὦɴ ὔȟᶅ ὫᶰὋ                                      (8) 

Lower level 

In the lower level, a Cournot model is adopted to formulate the strategic behavior of 

generation companies. Based on the fuel cost, generators decide the generation amount to inject 

into the electricity market to compete with each other. Because the total electricity generation 

amount would affect the LMP in different nodes, [10] assumes that the generators decide the LMP 

at the reference node. The ISO behaves similarly as in a Bertrand model to set price premia relative 

to the reference node [10]. The price premia are regarded as constants by each generator. In [14], 

the authors already proved an equilibrium exists in the restructured electricity market under these 

assumptions. Our model continues using these assumptions in the model formulation on an hourly 

basis. 

ISOôs decision problem          

 

-ÁØ
ȟȟ
В ὦή ὥή ὦὒᶰ                                                                                      (9) 

                           

   ίȢὸȢ   ή ВὪ ВὪ   В ώȟ       ᶅὮɴ ὔȟὸɴ Ὕ     ὴ                                                  (10) 



21 

  — —                                  ᶅὮɴ ὔȟὸɴ Ὕ           a π                                          (11) 

— —                            ᶅὮɴ ὔȟὸɴ Ὕ            a π                                                   (12) 

 Ὢ ὄ — — ρ ᾀ ὓ π  ᶅὭὮɴὝὶȟὸɴ Ὕ      g  π                                   (13)                           

ὄ — —   Ὢ ρ ᾀ ὓ π  ᶅὭὮɴὝὶȟὸɴ Ὕ      g  π                                   (14) 

Ὢ ᾀὑ                        ᶅὭὮɴὝὶȟὸɴ Ὕ      l π                                                       (15) 

Ὢ ᾀὑ                    ᶅὭὮɴὝὶȟὸɴ Ὕ       l π                                           (16) 

ὒ ή                              ᶅὮɴ ὔȟὸɴ Ὕ     z  
  
π         (17)                                                                       

For the ISO, the objective (9) is to maximize the total social welfare by dispatching the 

power flow in order to match the supply with demand [10]. We only consider the objective function 

related to the ISOôs decision variables from total social welfare. The variable in brackets after each 

constraint represents the dual variable of the constraint. For each node, the sum of net injections 

and load will equal the generation amount. The constraint (10) is the flow balance equation. 

Locational marginal price (LMP) is defined as the least cost to serve the next increment of demand 

with power system operating constraints [35].The dual variable  ὴ is the LMP at node j. The 

voltage angle in Direct Current Optimal Power Flow (DCOPF) model has limitations [35]. The 

two constraints (11) and (12) are the upper and lower bounds on voltage angle. Constraints (13) 

and (14) represent the physical characteristics of transmission grids, in terms of a lossless 

linearized direct current approximation. For each transmission line, the thermal capacity is 

bounded for the power flow. The two constraints (15) and (16) are the limitations of capacity of 
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each transmission line. Constraint (17) is the relationship between the fixed-demand level and 

satisfied demand. The satisfied demand must be greater than or equal to the fixed-demand level.  

Generator  Ὥôs decision problem 

                                         ÍÉÎ
ȟ ȟ

  В – ‰ ὧȟ  ώȟ                                               (18)                                                                                                                            

    ίȢὸȢ       В ώȟ –В В
z   

В В ώȟ
   ᶅὭɴ ὔȟ    b  

  
                          (19)                                  

ώȟ ὲὠȟ     ᶅ  Ὥɴ ὔȟὫᶰὋȟὸɴ Ὕ         [‘ȟ π                                                            (20)                                                               

ώȟ π     ᶅ  Ὥɴ ὔȟὫᶰὋȟὸɴ Ὕ                                                                                            (21)                                                              

The objective function (18) is the LMP less the fuel cost times the generation amount which 

is defined as the profit of generator. The LMPs in other nodes are defined as the LMP of reference 

node plus the premia decided by ISO [10]. ISO is still the price setter by making decision on price 

premium. The reference bus price is the decision of all generation companies from the competition 

on production quantity [16]. The equation (19) represents the balance of total demand and total 

generation in terms of the residual demand. We can derive it from the ISOôs KKT conditions [19]. 

The constraint (20) shows the relationship of the electricity generated amount less than or equal to 

the generation expansion level. The deterministic model is formulated from (1) ï (21). 

In the next section, we reformulate the deterministic model as a MPCC. It can be converted 

into MPCC-Nonlinear Program reformulation (MPCC-NLP), Single-Level Mixed Integer 

Quadratic Program (1-Level MIQP) or MPCC-Binary Variables Reformulated Mathematica l 

Program (MPCC-BIN).  We will adopt MPCC-BIN to reformulate the problem which guarantees 

global optimality [10].  
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3.3 Mathematical Program with Complementary Constraints 

 

In the bi-level model, the lower level optimization can be reformulated equivalently in terms 

of complementarity constraints by applying the KKT conditions to each playerôs optimization 

problem [10]. The transformation can change the original deterministic mathematical program into 

an equivalent Mathematical Program with Complementarity Constraints (MPCC) with a mixed 

integer quadratic objective function [19].  

The full set of constraints is as follows: 

ISOôs problem 

ὥ ὦ ή ὴ z   π       ᶅὮɴ ὔȟὸɴ Ὕ                                                                    (22) 

a a В ὄȟᶰ g g В ὄȟᶰ g g π    ᶅὮɴ ὔȟὸɴ Ὕ          (23)                           

ὴ ὴ g g l l π     ᶅὭὮɴὝὶȟὸɴ Ὕ                                                   (24) 

ή В Ὢᶰ В Ὢᶰ В ώȟ ᶅὮɴ ὔȟὸɴ Ὕ                                                        (25) 

π — — a π     ᶅὮɴ ὔȟὸɴ Ὕ                                                                               (26)                                                                                  

π — — a π       ᶅὮɴ ὔȟὸɴ Ὕ                                                                          (27) 

π ὄ — — Ὢ ρ ᾀ ὓ g π  ᶅὭὮɴὝὶȟὸɴ Ὕ                                         (28) 

π ὄ — — Ὢ ρ ᾀ ὓ g π   ᶅὭὮɴὝὶȟὸɴ Ὕ                                     (29) 

π ᾀὑ Ὢ l π     ᶅὭὮɴὝὶȟὸɴ Ὕ                                                                           (30) 

^

^

^

^

^
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π ᾀὑ Ὢ l π     ᶅὭὮɴὝὶȟὸɴ Ὕ                                                                           (31) 

π z    ὒ ή π     ᶅὮɴ ὔȟὸɴ Ὕ                                                            (32) 

Generatorôs problem 

π В ώȟ – ‰ ὧȟ b  ʈȟ π     ᶅὮɴ ὔȟὫᶰὋȟὸɴ Ὕ                                 (33)                                                         

В ώȟ В
 
b   ᶰ π     ᶅ Ὦɴ ὔȟὸɴ Ὕ                                                                     (34) 

π ʈȟ ὲὠȟ ώȟ π     ᶅὮɴ ὔȟὫᶰὋȟὸɴ Ὕ                                                                   (35)                                                                                  

Îὠȟ ὠȟ      ᶅὮɴ ὔȟὫᶰὋȟὸɴ Ὕ                                                                                           (36) 

To solve the problem more efficiently and to obtain the global optimal solution, we 

converted MPCC into an equivalent mixed integer quadratic program by introducing binary 

variables Ê and large parameters M [10]. Consider a generic complementary constraint r and e 

as follows: 

      π ὶ̂Ὡ π               (37) 

The reformulation of (37) is as follows:  

 π ὶ ὓʆ                                                                                          (38) 

 π Ὡ ὓ ρ ʆ                                                                                (39) 

^

^

^

^
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 After the reformulation steps from (37)-(39), we establish a MPCC with binary variable 

reformulation model in (40)-(57) from previous constraints. The binary variable reformula t ion 

introduces integer variables in the lower level.  

π — — ὓʆ     ᶅὮɴ ὔȟὸɴ Ὕ                                                                                (40) 

π a ὓ ρ ʆ    ᶅὮɴ ὔȟὸɴ Ὕ                                                                      (41) 

π — — ὓʆ     ᶅὮɴ ὔȟὸɴ Ὕ                                                                (42) 

π a ὓ ρ ʆ    ᶅὮɴ ὔȟὸɴ Ὕ                                                                                 (43) 

π ὄ — — Ὢ ρ ᾀ ὓ ὓʆ      ᶅὭὮɴὝὶȟὸɴ Ὕ                                       (44) 

π g ὓ ρ ʆ     ᶅὭὮɴὝὶȟὸɴ Ὕ                                                            (45) 

π ὄ — — Ὢ ρ ᾀ ὓ ὓʆ      ᶅὭὮɴὝὶȟὸɴ Ὕ                                   (46) 

π g ὓ ρ ʆ     ᶅὭὮɴὝὶȟὸɴ Ὕ                                                                       (47) 

π ᾀὑ Ὢ ὓʆ     ᶅὭὮɴὝὶȟὸɴ Ὕ                                                       (48) 

π l ὓ ρ ʆ )    ᶅ ὭὮɴὝὶȟὸɴ Ὕ                                                            (49) 

π ᾀὑ Ὢ ὓʆ     ᶅὭὮɴὝὶȟὸɴ Ὕ                                                       (50) 

π l ὓ ρ ʆ )    ᶅ ὭὮɴὝὶȟὸɴ Ὕ                                                            (51) 

π ὒ ή ὓʆ    ᶅὮɴ ὔȟὸɴ Ὕ                                                               (52) 
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π z  
  
ὓ ρ ʆ     ᶅὮɴ ὔȟὸɴ Ὕ                                                               (53) 

π ώȟ ὓ ρ ʆȟ    ᶅὮɴ ὔȟᶅὫᶰὋȟὸɴ Ὕ                                                                       (54) 

π – ‰ ὧȟ b    ʈȟ ὓʆȟ    ᶅὮɴ ὔȟὫᶰὋȟὸɴ Ὕ                                         (55)    

π ʈȟ ὓ ρ ʆȟ     ᶅὮɴ ὔȟὫᶰὋȟὸɴ Ὕ                                                                        (56)                                                                                             

π Îὠȟ ώȟ ὓʆȟ     ᶅὮɴ ὔȟὫᶰὋȟὸɴ Ὕ                                                                     (57)          

 We set the values for M in each inequality as follows. First roughly estimate the largest 

possible values for the upper bound of equilibrium constraints which is equivalent to estimating 

the upper bounds of the dual and primal variables. For estimating the value of dual variables, we 

use individual node without transmission line network in order to find the variation in social 

welfare for ʆ . On the other hand, removing the fixed-demand level can help us find the variation 

of social welfare for ʆ. If the generation cost is 0, we can find the variation of social welfare for 

ʆ. While there is no limitation for generation level, we can find the variation of social welfare 

for ʆ. At the end, we examined the M if it is binding. When it is binding, we add certain value to 

solve the model again. As a result of trial and error, the range of M is from 5500~10000 in the case 

study. 

3.4 Two-stage Stochastic Program 

 

Before we generate the scenarios according to the historical data, we can reformulate the 

deterministic model into a two-stage stochastic model. The index s represents the scenario. Here 

we selected fixed-demand level and fuel cost as stochastic parameters. The deterministic model 

can be expanded as an extensive form of the two stage formulation.  In the objective function, we 
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consider the weighted time periods for each scenario. The second stage objective function is 

calculated by expected value of total social welfare in all scenarios. The model as follows: 

Objective function 

ÍÁØ
ȟ
 Ὁ ὲ

ρ

ς
ᶰ

ὦήȟ ὥήȟ
ρ

ς
ὦὒȟ ὧȟώȟ

ᶰᶰ

Ὣὧȟ ὲ

ᶰ

ὠȟ ὠȟ
ᶰ

ὸὧ

ᶰ

ὑ ᾀ  

                                                                                                           (58)                          

Variables and parameter constraints (22)-(25), (34), (40)-(57) are included with scenario 

index s except first stage decision variables and parameters. Constraint (8) is also included in the 

two-stage stochastic program. 

3.5 Scenario Generation and Reduction Algorithms 

 

Now we would like to introduce how to generate the scenarios for our stochastic program. The 

uncertain parameters are fixed-demand level, ὒȟ, and fuel cost, ὧȟ
ȟ

 , for natural gas because 

demand forecasting is the most unstable key factor in power system planning and generation cost 

is mostly driven by fluctuating fuel cost. A moment matching method is applied in this thesis, 

using the historical data to create the scenarios that approximate the distribution of uncertaint ies. 

Its advantage is in using statistical specifications to approximate the original distribution without 

exactly knowing the true probability distribution. If the number of scenarios is too large to allow 

solution of the stochastic program in a reasonable amount of time, we need to apply a scenario 
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reduction algorithm. Here we use fast forward selection because it requires less computation time 

than other methods to identify a small number of outcomes to represent the original scenario set. 

3.5.1 Scenario Generation Algorithm 

 

A stochastic program is a mathematical program considering uncertain information. It is 

difficult to accurately describe the future event that will occur. To capture the characteristics of 

uncertain quantities we use statistical properties to describe the possible outcomes in the future. 

Therefore the continuous probability distributions that may contain potential original data can be 

approximated by a discrete distribution with a finite number of scenarios. The discretiza t ion 

procedure is called scenario generation [36].  

Sampling directly from the distribution is the most intuitive way to generate scenarios. It only 

needs historical data without assumptions on the distribution. As long as the sample size is large 

enough, the distribution could be close to the real distribution. However, larger samples may result 

in computational issues and redundant costs wasted. A small sample may not correctly describe 

the true distribution. 

In our thesis, we select moment matching method for scenario generation because it generates 

scenarios efficiently under limited time and cost by using statistical information. This method was 

introduced by [23, 25]. Given a set of statistical specifications such as mean, variance, skewness 

and correlation, it presents a method based on nonlinear programming which can be used to 

generate a limited number of discrete scenarios that satisfy the specified statistical properties. The 

objective function is to minimize the distance between the statistical properties of the generated 

outcomes and the specified properties. The general description of the model can be described as 

follows: 
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ÍÉÎ
ȟ
В ύᶰ .Ὢὼȟ“ Ὓ                                                 (59) 

                           

ίȢὸȢ В “.Ώ ρ                                                       (60) 

“ π                                                                    (61) 

 

The set Ƀ is the set of all specified statistical properties. Ὓ  is the specified value of 

statistical property Ὥ in Ƀ. Let ὼ be the possible values of random vector to be generated and “ be 

the corresponding probability vector. The mathematical expression Ὢὼȟ“  computes statistica l 

property Ὥ in Ƀ.  We want to build  ὼ and “ so that the statistical properties of the approximating 

distribution match the specified statistical properties. In the constraints, we enforce that the sum 

of probability equals one. The matrix Ώ consists of zeros and ones whose number of rows equals 

the length of “ and the number of columns equals to the number of nodes in the scenario tree. In 

Chapter 4 we will use real demand data and natural gas prices to generate scenarios by moment 

matching method in the numerical example. 

 Also, reference [23] proposed an approach to decide the number of branches from each 

node of the scenario tree according to the degrees of freedom. Assume D is the dimension of each 

scenario node vector. D+1 becomes the number of random variables at a node including the branch 

probability.  (D+1)ý would be the total number of final degree of freedoms where ý is the number 

of branches. We would like to select ý such that (D+1) ý -1 is greater or equal to the number of 

statistical specifications. The smallest value of ý  is the number of branches we choose [22]. 
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3.5.2 Scenario Reduction Algorithm 

 

 When the outcomes of scenario generation are too many to control, how to reduce the 

scenarios without losing the characteristics of original scenarios is the purpose of a scenario 

reduction algorithm. Due to the large number of scenarios generated, we adopt the forward 

selection algorithm [26] which is appropriate when the number of preserved scenarios is small. 

The reason we consider fast forward selection is to efficiently compute a smaller number 

of outcomes to represent the original scenario set. The idea of the algorithm is to compare the 

distances of scenario pairs then select the smallest distance between the scenario pairs. The 

probability is recalculated for the preserved scenarios.  

For a two-stage stochastic program with uncertain right hand side parameters in the 

constraint and uncertain cost in the objective function, we define a distance function c between 

scenarios as in (62) from [37]. The parameter  ύ  could be the mean of probability measure. 

ὧύȟύ ḳÍÁØ ρȟȿύ ύȿȟȿύ ύȿȿȿύ ύȿȿ                                                   (62) 

Given original distribution {ύȟύȟȣύ  with probability ὴ where d=1,éN, in forward 

selection, we optimally choose one scenario at a time, u, to retain, where u solves (63). 

ÍÉÎ
ᶰ ȟȣ

В ὴὧύȟύ                                                                                          (63)  

The fast forward selection algorithm [38] is implemented by Python code [39]. 
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3.6 Progressive Hedging Algorithm 

 

 Because the extensive form of the stochastic mixed integer program is too large to solve, 

we apply PHA. PHA has been successfully applied as a heuristic to solve stochastic programs with 

integer variables by decomposing the problem into scenario subproblems. PHA aggregates the 

solutions with modified cost in the objective function progressively obtaining optimal solutions. 

Here we define a solution for a scenario subproblem as admissible if it satisfies the constraints for 

that scenario. In a two-stage stochastic program, a solution is implementable if the first-stage 

decisions are the same for every scenario. A solution is feasible if it is both admissible and 

implementable. Under certain conditions, the average solution will be admissible in each scenario. 

The goal of PHA is to apply the cost function modification progressively to cause the average 

solution to be implementable and, thus, optimal eventually.   

 Here we are going to introduce the algorithm of PHA in [29]. Suppose we are solving a 

two-stage stochastic program with the following objective function and constraints (64)-(68). 

Ὢ ὼǲ represents the cost function in the first stage with constraints Ὣ ὼǲ and the first stage 

decision variable ὼǲ. ὗὼǲȟύ  is the recourse function in the second stage with scenario w. The 

objective function consists of  Ὢ ώύȟύ  with constraint Ὣ ὼǲȟώύȟύ  and the second stage 

variable ώ. 

ÍÉÎὪ ὼǲ Ὀὼǲ                                                                   (64) 

ίȢὸȢὫ ὼǲ πȟ    Ὥ ρȟȣά                                                          (65) 

Ὀὼǲ Ὁ ὗὼǲȟύ                                                                  (66) 

ὗὼǲȟύ ÍÉÎὪ ώύȟύ                                                      (67) 
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ίȢὸȢὫ ὼǲȟώύȟύ πȟ    Ὥ ρȟȣά                                          (68) 

Under this structure, the Progressive Hedging Algorithm follows the steps below: 

Step 0. Suppose some implementable solutions ὼǲ, some initial multiplier ”, and r>0. 

Let v=0. Go to Step 1. Let ὼǲ ὼǲ. 

Step 1. Let ὼǲ ȟώ  for w=1,é,W solve (69)-(71). Let ὼǲ ὼǲ ȟȟȣȟὼǲ ȟ  where 

ὼǲ ȟ В ὴὼὼǲ ȟ Ὢέὶ ὥὰὰ ύ ρȟȣȟὡ. 

ÍÉÎᾀ В ὴ Ὢ ὼǲ Ὢ ώȟὯ ” ȟ ὼǲ ὼ ὶȾς ὼǲ ὼǲ (69)                                                                    

ίȢὸȢὫ ὼǲ πȟ    Ὥ ρȟȣά ȟύ ρȟȣὡ                                                (70) 

 Ὣ ὼǲȟώύȟύ πȟ    Ὥ ρȟȣά ȟύ ρȟȣὡ                                                   (71) 

Step 2. Let ” ” ὶὼǲ ȟ ὼǲ . If ὼǲ ὼǲ and ” ” then stop; ὼǲ and ” 

are optimal. Otherwise, let v=v+1 and go to Step 1. 

 However, a variety of critical issues arise when implementing PH. The authors of [29] 

investigate these issues and describe algorithmic innovations in decision variables. The choice of 

the multiplier ”  is crucial.  In [29] it is recommended to choose it as given in (72) where  ὼǲ  

is the largest solution among the scenarios and ὼǲ  is the smallest solution in the initial iteration: 

”Ὥ
ǲ ǲ

                                                   (72) 

 The ” to the continuous variable is defined in (73): 
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Ὂέὶ ὧέὲὸὭὲόέόί ὺὥὶὭὥὦὰὩ ”Ὥ
 В ȿǲ ǲӶȿᶰ ȟ

                             (73) 

 This selection heuristic can achieve a satisfactory tradeoff between computation speed and 

solution quality [29]. 

 In addition, PHA can measure a bound on the optimal objective function value in any 

iteration. According to [40], the following result (74)-(75) shows the implicit lower bound 

Ὀ” for objective value ᾀᶻ in a minimization problem. For the maximization problem, we 

consider the negative value of the lower bound in the minimization problem as the upper bound of 

objective value in maximization problem. 

ÍÉÎᾀύ Ὢ ὼǲ Ὢ ώȟὯ ”  ὼǲ                                        (74) 

Ὀ” В ὴ ᾀύ ᾀᶻ                                                                (75) 
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CHAPTER  4 CASE STUDY 

4.1 Introduction of ISO-New England 

In this chapter, we will implement our model in a case study of the New England region. 

The Independent System Operator of New England (ISO-NE) divides its service area into eight 

zones. The eight zones are Maine (ME), New Hampshire (NH), Vermont (VT), Connecticut (CT), 

Rhode Island (RI), Southeastern Massachusetts (SEMA), West Central Massachusetts (WCMA) 

and Northeast Massachusetts (NEMA). In the case study, the eight zones are regarded as eight 

nodes, each having demand and electricity supply. The geographic map of New England is shown 

in Fig. 2.  

  

Fig.2. ISO-NE Electricity Regions [41] 
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ISO-New England is an independent and non-profit corporation. Its responsibility is to 

meet the electricity demands of the regionôs economy and oversee the day-to-day reliable operation 

of New Englandôs power generation and transmission system. The goals of ISO-New England 

include designing, administering and monitoring the regionôs competitive wholesale electric ity 

market and power system planning. Higher generation capacity and more transmission investment 

have made improvements in the reliability of electricity supply to each region in New England in 

the past years. ISO-New England has created substantial cost savings in these areas by 

transmission investment and new power plant projects. It saves over 40% of the value of the 

wholesale electric energy market from 2008 to 2012 [42]. The ISO does not own power plants or 

transmission lines but it has responsibility to develop the market incentives and operating rules for 

the electricity market. 

The 2013 Regional Electricity Outlook [42] said that one of the challenges for ISO-New 

England is the potential for reduced operational performance due to increasing reliance on natural 

gas as a fuel source for power plants. The regionôs growth depends on the supply of natural gas, 

especially during the winter months when the priority for natural gas supply is to heat New 

Englandôs homes and businesses. The limited supply and rising price of natural gas becomes a 

major challenge for managing the electric grid. Hence, generation expansion plan and transmiss ion 

investments considering natural gas power plants are discussed in this chapter. 

Now we introduce the electricity network in New England. In Fig. 3, we use node 1 as ME, 

node 2 as NH, node 3 as VT, node 4 as CT, node 5 as RI, node 6 as SEMA, node 7 as WCMA and 

node 8 as NEMA. The solid lines are the existing transmission lines according to the private 

communication from the ISO-NE.  The dashed lines are candidate transmission lines for future 
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transmission expansion chosen by the random selection of pairs of regions not already connected 

directly. 

3.VT

2.NH

1.ME

7.WCMA

4.CT 5.RI

8.NEMA

6.SEMA

 

Fig.3. Transmission network in New England 

 

 Natural gas has become the dominant fuel for generating electricity in New England. In 

2012, 52 percent of energy was produced by natural gas power plants [42]. One of the reasons for 

the dominance of natural gas is the relatively low cost compared to crude oil. Moreover, its clean 

burning nature is more environmentally friendly than coal or nuclear power plants. New 

technology of gas-fired power plants has also improved the efficiency of electricity production 

[43]. Therefore, we consider two types of natural gas power plants with uncertainty for natural gas 

price in the New England area. 
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4.2 Assumptions 

 

 In our case study, we made the following parameter assumptions.  The first stage decision 

variable of generation expansion is assumed to be continuous for the convenience of calculat ion. 

We consider four different types of power plants in the future investment plan. The four types of 

power plants are Advanced Combined Cycle (Advanced CC), Advanced Combustion Turbine 

(Advanced CT), Nuclear, and Onshore wind, where the energy resources of Advanced CC and 

Advanced CT are both natural gas. Advanced CT is usually reserved for peak hours. Because we 

believe natural gas will become the main energy resource of the future, we focus on these two 

power plant types in our case study. As nuclear power still remains the second largest supplier of 

electricity, the nuclear power plant should be taken into account. Also wind energy is considered 

in our case study. However, wind energy does have limitations regarding its transmission line and 

location. We assume wind energy in period 1 of scenario 1 generates 2% of the total demand. 

Therefore we set the upper bound of wind energy capacity at 400MW in all scenarios.  

One reason that natural gas fueled power plants have become more and more popular is 

their lower carbon emissions compared to coal fueled power plants. The natural gas fueled power 

plant is the largest source of power supply in New England. Nuclear energy is also an essential 

source of electricity in New England area. The safety of the operation for nuclear power plays a 

vital role. It also addresses the political and environmental issues. But the nuclear power supply is 

still the second largest source in New England. Recently renewable energy has been promoted by 

government energy policy. Wind power is a clean electricity resource to be developed.  Onshore 

wind farms can be built close to the electrical grid and the cost of building is lower than nuclear 

power plant.    
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 The costs of power generating technologies can be divided into investment and generation 

costs. The investment is the amount of money required to build the power plant, and the generation 

cost is the cost of operating and maintaining the power plant as well as fuel costs.   

Finally, we consider only the peak hours in three seasons because peak hours have the most 

significant effect on reliability of electricity market in each season: Summer, Winter, and 

Spring/Fall. For each time period, we generate equally likely scenarios for demand and natural gas 

price. The data of demand and natural gas price are collected in year 2011. We assumed the 

investment decisions are made in 2011 and the operational decisions are made in 2021. 

4.3 Investment Cost 

 

 The generation investment cost for the power plant is based on the capital expenditure 

profile in [44]. The investment cost is calculated by using overnight build cost to multiply the 

capital expenditure percentage for each year. Then we apply the discount rate to achieve the present 

value. Finally we sum the cost of each year to transform the investment cost for generation 

expansion into equivalent annual payments. The overnight cost and capital expenditure profile are 

illustrated in Table 1 and Table 2 respectively.  

 For instance, to compute the annualized investment costs for Advanced CC, we mult ip ly 

the overnight capital cost by the capital expenditure percentage for each year. For each year, the 

discount rate is considered to calculate the present value. Then we sum the present value for every 

year. The present value of the investment cost is shown as follows:

6 6
6

2

1023 10 0.5 1023 10 0.25
1023 10 0.25 974865.65 ($ / )

(1 0.05) (1 0.05)
MW

³ ³ ³ ³
³ ³ + + =

+ +
                             (76)                                 
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 Then we obtain equivalent annual costs over a 10-year horizon using the capital recovery 

factor. 

10

10

0.05 (1 0.05)
974865.65 63,416.41 ($ / )

(1 0.05) 1
MW

³ +
³ =

+ -
                                            (77)                                                                              

Table 1.Overnight Cost of Power Plants [45] 

 

Power plant Overnight Capital Cost ($/MW) 

Advanced CC $1,023,000 

Advanced CT $676,000 

Nuclear $5,530,000 

Onshore Wind $2,213,000 

Table 2.Capital Expenditure Profile [44] 

 

Year Advanced CC Advanced CT Nuclear Wind 

1 0.25 0.50 0.01 0.50 

2 0.50 0.50 0.01 0.50 

3 0.25  0.01  

4   0.01  

5   0.01  

6   0.02  

7   0.03  

8   0.20  

9   0.30  

10   0.30  

11   0.10  

 

We then divide the results by 8760 hours to obtain an equivalent hourly cost in $/MW/h. 

The result of generation investment cost is in Table 3. 
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Table 3. Generation Investment Cost 

 

Power plant Generation Investment Cost ($/MW/h) 

Advanced CC $7.23 

Advanced CT $4.90 

Nuclear $22.00 

Onshore Wind $17.49 

 

For the candidate transmission lines, NH to RI, NH to SEMA, VT to CT, and CT to SEMA, 

were randomly selected. The conceptual leader will decide whether to expand transmission lines 

among these candidates. We represent the connection point in each zone by assuming they fall in 

the following cities: Portland (ME), Concord (NH), Burlington (VT), Hartford (CT), Providence 

(RI), Plymouth (SEMA), Worcester (WCMA) and Boston (NEMA). These cities were selected 

from private communication with ISO-NE.  

Table 4. Locations for transmission line 

 

Zone NH VT CT RI SEMA 

City Concord Burlington Hartford Providence Plymouth 

 

The type of candidate transmission line is 500kV. The unit investment cost of the 

transmission line is 1,854,000 ($/mile) [46] . We consider the life of transmission line as infinite, 

and the annualized investment cost is calculated as the distance times the unit investment cost and 

the interest rate.  

Table 5. Investment cost of candidate transmission line 
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Candidate NH-RI NH-

SEMASS 

VT-CT 

Distance(miles) 116.00 107.00 236.00 

Cost($/MW/h) 122.75 113.22 249.73 

 

 The total generating capacity of each zone is obtained by the private communication from 

ISO-New England. Also, the slope and intercepts of demand curves are assumed by roughly 

estimating the maximum value of demand according to the inverse demand function in Table 6. 

Table 6. Data for capacity, slope and intercept 

 

Electricity 

Nodes 

Total Capacity ὠ 

(MW) 

Slope of demand 

price ὦ 

($/MWh/MWh) 

Intercept of demand 

price ὥ 

($/MWh) 

ME 407.50 -0.08 200.00 

NH 2249.50 -0.07 210.00 

VT 630.00 -0.095 190.00 

CT 2208.40 -0.045 360.00 

RI 3640.50 -0.095 237.50 

SEMA 1986.00 -0.09 315.00 

WCMA 1277.50 -0.09 324.00 

NEMA 1603.70 -0.07 322.00 

 

The thermal capacities of all transmission lines are assumed to be 650 MW. The related 

parameters are shown in Table 7. 
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Table 7. Data for Transmission Lines 

 

 

Transmission Line 

Transmission 

Capacity ὑȟ (MW) 

Negative Susceptance 

ὄ (ɱ ) 

 

ᾀ  

(1,2) 650 40 1 

(2,3) 650 40 1 

(2,7) 650 40 1 

(2,8) 650 40 1 

(3,7) 650 40 1 

(4,5) 650 40 1 

(4,7) 650 40 1 

(5,6) 650 40 1 

(5,7) 650 40 1 

(6,7) 650 40 1 

(6,8) 650 40 1 

(7,8) 650 40 1 

(2,5) 400 40 Candidate 

(2,6) 650 40 Candidate 

(3,4) 650 40 Candidate 

 

4.4 Uncertainties 

 

4.4.1 Demand 

 

 For every year from 2002 through 2012, ISO-NE provides the hourly loads in each zone 

[47]. We adopt the load data in 2011 as our data set. We separated this yearôs hours into three parts: 

Summer, Winter and Spring/Fall. The Summer season contains the months of July to September, 

and the Winter season includes December, January and February. The rest of the months are 

classified as the Spring/Fall season. For each part of the year, hours can be classified as peak hours 

and off-peak hours. ISO-NE defines peak hours as 7:00 am through 11:00 pm on all non-holiday 

weekdays. The off-peak hours are defined as the weekday hours between 11:00 pm and 7:00 am 
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and all of Saturdays, Sundays and Holidays [48].  The percentage of hours in each time period in 

a year is illustrated in Table 8. 

Table 8. Time periods in a year 

 
Summer 

Peak 

Summer  

Off-Peak 

Winter 

Peak 

Winter  

Off-Peak 

Spring & 

Fall Peak 

Spring & Fall 

Off-Peak 

Hour (hr) 1,105 1,103 1,020 1,164 2,159 2,233 

Percent (%) 12.6 12.6 11.6 13.2 24.5 25.5 

 

For each zone, we compare the load in peak hours and off-peak hours in each season. For 

example, Fig. 4 represents peak hour load versus off-peak hour of ME in three time periods. 

Similar figures for the rest of the zones are collected in the Appendix. According to the figures, in 

each season the peak hours have higher average load than off-peak hours. The highest load in the 

Summer occurs in Connecticut and the lowest load is in Vermont. Moreover, the loads in Summer 

and Winter are higher than in Spring/Fall.     
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Fig.4. ME Peak load vs. Off Peak load in (a) Summer, (b) Winter, (c) Spring/Fall 

 The statistical specifications for Summer peak hours in 2011 of demands in each zone such 

as mean, variance and skewness are illustrated in Table 9. The maximum value of mean and 

variance is in Connecticut. The minimum value of mean and variance is in Vermont. The moment 

matching method is based on this information, as well as the corresponding data for peak and off-

peak hours in each season, to generate scenarios. We have eight random demands and three 

statistical specifications for moment matching method.  
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Table 9. The statistical specifications of demand for Summer Peak in each zone 

 

Statistical 
Specifications ME NH VT CT RI SE WC NE 

Mean 1510.15 1649.74 748.55 4597.57 1235.32 2296.84 2493.45 3731.32 

Variance 20.65 54.15 4.59 602.65 46.91 172.20 129.15 312.89 

Skewness -0.18 0.25 0.09 0.31 0.24 0.25 0.36 0.30 

 

The growth of electricity demand has slowed since the 1950s in the U.S. The reason for 

the relatively slow growth is technological efficiency gains to offset increasing demand. According 

to [42], the total electricity demand is projected to grow by 28 percent by 2040 with a growth rate 

of 0.9 percent per year. Therefore, we assume 0.9 percent as our annual demand growth rate to 

find our fixed-demand levels in the operational year 2021. The rest of the demand data are shown 

in the Appendix. 

4.4.2 Natural Gas Price 

 

 Natural gas price fluctuates according to economic growth or advanced drilling technology 

because technology improvements reduce the drilling cost and operation cost while achieving 

similar output [49]. Both factors are hard to predict. Moreover, fuel cost uncertainty for natural 

gas is significantly higher than uranium and cleaner for the environment in the long-term. Coal has 

had more stable price variability than natural gas but coal is also the largest contributor to 

greenhouse gas emissions. Therefore we select the price of natural gas as our stochastic parameter 

and main energy resource for our model in the New England area. 

 In 2012, natural gas prices for electric power reached a new record low since 2002 with 

the spot price at Louisianaôs Henry Hub averaging $2.81/MMBtu. Low natural gas prices resulted 

in greater reliance on natural gas for power generation while more older coal-fired power 
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generations retired in the past few years [50]. Natural gas has become an attractive energy source 

in New England area. The processes of unit conversions to generation cost and calculation of 

generation cost is shown in (78)-(80). Generation cost involves the variable operation and 

maintenance cost and fuel cost. Therefore the price of natural gas accounts for most of the 

generation cost. 

   Α   ϳ

Ȣ
 ὴ   Αὓὓὄὸόϳ                                        (78) 

  ϳ
ὌὩὥὸὶὥὸὩ  ὓὓὄὸόὓὡὬϳ                            (79)                                                                                                                 

Ὣὧ  ὴ   z ὌὩὥὸὶὥὸὩ  ὠὥὶὭὥὦὰὩ ὕǪὓ         (80)                                                                      

The wholesale natural gas price in New England is the sum of the Henry Hub price and a 

basis differential. This is similar for all locations in the U.S. The basis differential can be defined 

as the difference between the Henry Hub price and the corresponding spot price for natural gas in 

a specific location [51]. The basis differential variation depends on the distance between different 

destinations. For the absence of data in EIA concerning the price of natural gas to generate 

electricity [45] in Maine and New Hampshire, we assume the basis difference is the same as in 

Vermont.  The Henry Hub price only provides daily data to the EIA. We assume the Henry Hub 

hourly price is the same as the corresponding daily data. Therefore we can derive the basis 

differential by calculating the monthly natural gas price and subtracting the monthly Henry Hub 

price. The hourly natural gas price can be obtained by adding the assumed hourly Henry Hub price 

to the averaged basis differential in 2011. Additionally, the inflation rate is assumed to be 5% per 

year from 2011 to 2021. 
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The statistical specifications for Summer peak hours of natural gas price in each zone such 

as mean, variance, skewness and the correlation with demands are illustrated in Table 10. The 

maximum value of mean is in Maine, New Hampshire and Vermont. The minimum value of mean 

is in Connecticut. The natural gas prices are similar in each zone.  

Table 10.The statistical specifications of natural gas price for Summer Peak in each zone 

 

Statistical 
Specifications ME NH VT CT RI SE WC NE 

Mean 3.90 3.90 3.90 3.54 3.73 3.63 3.63 3.63 

Variance 0.05 0.05 0.05 0.06 0.04 0.07 0.07 0.07 

Skewness -0.10 -0.10 -0.10 -0.01 0.26 0.38 0.38 0.38 

Correlation 

with demand 0.40 0.26 0.27 0.34 0.26 0.24 0.26 0.21 

 

4.5 Scenario Generation and Reduction Application 

 

 We have eight zones and each zone has two random variables: demand and natural gas 

price. The total number of random variables is therefore sixteen, as shown in (81). The statistica l 

properties we consider here are mean, variance, skewness and the correlations between demand 

and price in each zone. The total number of specified statistical properties is 56 as shown in (82). 

According to (59)-(61), we obtain the number of outcomes is 4 in each combination of season and 

hour type. 

I =16 (8 zones, two random variables)                                                                                        (81) 

|O|={16*mean,16*variance,16*skewness, 8 correlations}=56                                                   (82) 

 There are three periods in one scenario, which consists of fixed-demand and natural gas 

price for each zone in peak hours of Summer, Winter and Spring/Fall. The total number of 
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scenarios is τ φτ in the stochastic model, each having probability 1/64. The number of 

scenarios is too large for solution of the stochastic program to be tractable. Here we adopt fast 

forward selection to select 5 scenarios as our preserved scenario sets and redistribute the 

probability. 

 The preserved scenario probabilities are illustrated in Table 11. The expected fixed demand 

levels and generation costs are illustrated in Table 12 and Table 13. The fixed demand levels and 

fuel costs are detailed in the Appendix. 

Table 11. Probability for preserved scenarios 

 

 Probability 

Scenario 1 0.07 

Scenario 2 0.14 

Scenario 3 0.30 

Scenario 4 0.33 

Scenario 5 0.16 

Table 12. Expected fixed demand level 

 

Node Summer Winter Spring/Fall 

1 1414.53 1576.10 1157.23 

2 1633.40 1682.66 1155.53 

3 726.02 795.34 581.63 

4 4789.73 4565.29 2982.55 

5 1186.43 1174.12 802.36 

6 2233.03 2220.15 1413.35 

7 2636.60 2643.22 1774.70 

8 3634.05 3494.95 2558.10 
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Table 13. Expected generation costs of Combined Cycle and Combustion Turbine 

 

 Summer Winter Spring/Fall 

1.cc 34.88 40.83 33.59 

1.ct 58.31 67.33 56.35 

2.cc 32.8 42.05 32.92 

2.ct 55.15 69.18 55.33 

3.cc 36.35 42.47 34.77 

3.ct 60.53 69.82 58.14 

4.cc 33.65 44.31 42.55 

4.ct 56.44 72.62 69.93 

5.cc 32.96 47.79 30.74 

5.ct 55.39 77.89 52.02 

6.cc 33.85 42.34 28.66 

6.ct 56.74 69.63 48.88 

7.cc 31.96 39.87 29.81 

7.ct 53.88 65.88 50.61 

8.cc 33.85 38.73 35.49 

8.ct 56.75 64.14 59.23 

 

4.6 Generation Cost 

 

 Generation cost includes the variable operation and maintenance (O&M) cost and fuel cost. 

We assume the inflation rate is 5%. For example, the nuclear fuel cost is $7.01/MWh [52]. The 

generation cost is calculated by multiplying the fuel cost by the heat rate and adding the variable 

O&M cost. Therefore we convert the nuclear cost into dollars per MMBtu by dividing by 3.413 

and multiply by the heat rate in Table 7. Finally we divide by 1000 to change the units into MWh. 

The generation cost for nuclear power plant is $28.88/MWh. The process is illustrated as follows: 

107.01 (1 0.03) 1
10464 28.88 ($ / )

3.413 1000
MWh

³ +
³ ³ =                                                        (83)                                                                               
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Wind power does not incur fuel cost or variable O&M cost. The generation cost for wind 

power is zero. The heat rate and variable O&M cost of each type of power plant is illustrated in 

Table 14 from [53].  

Table 14.The Heat Rates and Variable O&M Costs 

 

 Heat Rate (Btu/KWh) Variable O&M ($/MWh) 

CC 6430 $3.27 

CT 9750 $10.37 

Nuclear 10464 $2.14 

Wind N/A $0.00 

 

 Finally the generation cost is estimated by the sum of fuel cost and variable O&M cost. 

The generation cost for Advanced CT is the highest among these four types of power plants. Wind 

power has zero generation cost from [67]. The generation cost and demand of reduced scenarios 

are presented in the Appendix. 

4.7 Framework of Stochastic Program 

 

Here we only consider peak hours in each season because we want to ensure our planning 

can result in the most reliable power network. After the first stage decisions are revealed, the 

random outcomes are generated with Summer Peak period, Winter Peak period and Spring/Fa ll 

Peak period. The scenario framework is illustrated in Fig.5. We assume the proportion of hours 

represented during each period, ὲ , is 0.33 for convenience. But in reality we should change the 

proportion according to the length of each season. 



51 

Scenario
Summer 
Peak

Winter 
Peak

Spring / 
Fall Peak

Period1 Period2 Period3

 
Fig.5.The scenario framework 

 

Since the total number of scenario outcomes is 64, we adopt the fast forward scenario 

reduction algorithm to reduce the number of scenarios. The stochastic program structure is shown 

in Fig.6. 

First Stage 

Decisions:

Generation 

expansion 

Transmission 

expansion

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Second Stage 

Decisions:

Operations 

decisons

Second Stage 

Decisions:

Operations 

decisons

Second Stage 

Decisions:

Operations 

decisons

Second Stage 

Decisions:

Operations 

decisons

Second Stage 

Decisions:

Operations 

decisons

 

Fig.6. The framework of stochastic programming 
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4.8 Numerical Results 

 

 In our case study, we consider the demand and natural gas price in 2011 on a single hour. 

And we generate the scenarios in 2021 by modifying the scenarios generated for 2011 with future 

assumptions. The investment decisions are made in 2011 and operational decisions are made in 

2021. One hour represents a weighted average over the three seasons of Summer, Winter and 

Spring/Fall in peak hours.  

4.8.1 Progressive Hedging Algorithm Application 

 

 In this case study, we implemented the moment matching method  in GAMS 23.4 using 

CONOPT as NLP solver and PHA in GAMS 23.4 using CPLEX as MIQCP solver. The fast 

forward selection is implemented in Python 3.4 [39]. Computational experiments are executed on 

a desktop with Intel Pentium 4 CPU 3.40 GHZ and 4 GB RAM. The time for solving a scenario 

subproblem in GAMS ranges from 48 seconds to 2160 seconds. For each scenario the MIP has 

1,583 constraints and 1,186 variables, including 447 binary variables, and can take as much as one 

hour to solve. 

 However, our model includes integer solutions, so PHA is not guaranteed to converge to 

optimality. Still, we apply PHA in a certain number of iterations and then we use the aggregated 

solutions as our first stage solution. We then fix the aggregated first stage solution to solve for the 

second stage decisions in each scenario. The resulting objective value is our lower bound of the 

optimal (maximum) objective value. Also, in each PHA iteration we calculate an upper bound by 

calculating the objective value for individual scenarios considering the dual prices [40]. After 

deriving the objective value for each scenario, the average objective value is our upper bound in 
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maximization problem. By comparing lower bound and upper bound on the optimal objective 

value, we can understand how close we are to the true optimal solution.  

The aggregated solutions of generation expansion after 8 iterations are shown in Table 15. 

As for the transmission line expansion, all scenarios are consistent in deciding to build a 

transmission line from VT to CT. The minimum difference between upper bound and lower bound 

is from from the upper bound computed in iteration six and illustrated in Table 16 . The lower 

bound is only 1.1% different from the upper bound. 

Table 15. Aggregated generation expansion (MWh) 

 

Node CC CT NU WI 

1 266.11 0 0 329.80 

2 0.00 0 0 333.00 

3 1333.48 0 0 380.00 

4 2035.02 0 0 400.00 

5 0.00 0 0 400.00 

6 0.00 0 0 400.00 

7 152.02 0 0 393.50 

8 0.00 0 0 398.60 

 

Table 16. Objective value for the sixth iteration of upper bound and lower bound 

 

 Objective Value 

Upper Bound 1944887 

Lower Bound 1922483 

  

The bounds on the optimal objective function value from each iteration are shown in Table 

17. In iteration two and four, one scenario subproblem could not be solved within two hours. The 
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difference between the lower bound and upper bound fluctuates because the upper bound does not 

monotonically decrease. We only fixed the transmission line at iteration seven and stop because 

of large amount of computation time.  

Table 17. Bounds on objective value with different penalties 

 

Iteration Upper bound 

Lower bound 

Difference bounds 

Gap 

(%) 

1 1959957 1920278 39679 2.0 

2 1959099 -inf N/A N/A 

3 1963817 1923348 35751     1.8 

4 1994252 -inf N/A N/A 

5 1955621 1923358 32263 1.6 

6 1944887 1923028 21859 1.1 

7 1976226 1922483 53742 2.7 

 

For examining the scenario reduction result, we use the first stage average solutions at the 

last iteration fixed and optimize the second stage decisions in each of the 64 scenarios generated. 

The total expected objective value is $1,810,356. The difference from our lower bound objective 

value is 5.8 %. It shows that the scenario reduction with forward selection can represents most of 

the 64 scenarios. 

The second stage decisions of demand to be satisfied are shown in Fig. 7 for scenario one. 

The demand to be satisfied in period one (Summer) is higher than period two (Winter) and period 

three (Spring/Fall). Connecticut has the highest demand in our model. The results of the rest of the 

demand to be satisfied are illustrated in the Appendix. 
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Fig 7. Demand to be satisfied in second stage of scenario one from SP solution 

The LMPs in scenario one are shown in Fig. 8. It shows the price distributed without 

significant difference between each state. It ranges from $50/MWh to $81/MWh.  The rest of the 

LMPs  are also shown in the Appendix. 

 

Fig 8. LMPs in second stage of scenario one from SP solution 
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4.8.2 Expected Value Solution 

 

 In order to assess the value of planning for uncertainty, we consider solution of the 

deterministic expected value model. First we calculate the expected values of the random 

parameters. Then we solve the deterministic model with the expected value of the random 

parameters. The first stage solutions are obtained and we fix the first stage decisions in the 

stochastic program model.  Then we solve for the optimal second-stage solution in reduced 

scenarios. The resulting objective value represents the Expectation of the Expected Value Solution 

(EEV).   

 The first stage decisions of generation expansion are shown in Table 18. The generation 

expansion is higher than in the stochastic program solution. For the transmission line expansions 

decisions, in the EV solution we build only two transmission lines: NH-SEMASS and VT-CT.  

Table 18. EV solutions of generation expansion (MWh) 

Node CC CT NU WI 

1 1632.10 0.00 0.00 364.90 

2 1488.02 0.00 0.00 366.50 

3 1656.50 0.00 0.00 390.00 

4 1957.84 0.00 550.37 400.00 

5 0.00 0.00 0.00 400.00 

6 1062.79 0.00 0.00 400.00 

7 1592.33 0.00 0.00 396.50 

8 1041.89 0.00 0.00 399.30 

 

The second stage decisions of demand to be satisfied from expected value solution are 

shown in Fig. 9 for scenario one. The demand to be satisfied in period one (Summer) is higher 



57 

than period two (Winter) and period three (Spring/Fall). Connecticut has the highest demand in 

our model.  

 

Fig 9. Demand to be satisfied in second stage of scenario one from EV solution 

The LMPs from expected value solution are also derived in scenario one in the Fig.10. It 

shows the price distributed without significant difference between each state. The LMPs range 

from $56/MWh to $81/MWh. The average LMP in the EV solution for all nodes and seasons is 

3% higher than in the stochastic program solution.  
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Fig 10. LMP in second stage of scenario one from EV solution 

We calculate the expected buyer surplus, producer surplus and transmission rents along 

with investment costs in Table 19. The buyer surplus in stochastic program solution is higher than 

in the expected value solution by $55,906. Because there is a 51% probability that fixed demand 

will exceed the expected value, the buyer surplus in the EV solution is lower. The average price 

for all nodes and periods in the EV solution is larger by 3.3% than in the stochastic program 

solution. The expected producer surplus increases in the EV solution to compensate for the loss of 

buyer surplus. The expected producer surplus in the EV solution is $20,562 higher than in the SP 

solution. Because an additional transmission line is built in the EV solution, for some scenarios 

there is no congestion. Therefore the expected transmission rents are lower than in the stochastic 

program solution by $7,465.  
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Table 19.Comparison of objective value components in Stochastic Program (SP) and Expected 

Value (EV) solutions 

 

 

Expected  
buyer  

surplus 

Expected 
producer 

surplus 

Expected 
transmission  

rents 

Generation 
expansion  

cost 

Transmission 
expansion  

cost 

SP 1,368,852 661,777 13,263 121,160 249 

EV 1,312,946 682,340 5,797 142,047 362 

 

Comparing our generation expansion decisions the generation expansion in the SP solution 

is lower than in the EV solution. The total social welfare is higher in some scenarios for stochastic 

program solution.  

The expectation of the expected value solution (EEV) is obtained as $1,858,671. Finally 

the Value of the Stochastic Solution (VSS) is calculated as optimal objective function value minus 

EEV. However we do not have the optimal solution from limited iterations. The lower bound helps 

us evaluate the VSS. The VSS is at least $63,810 which is 3.4% of the EEV.  
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CHAPTER 5 CONCLUSION  

 

5.1 Summary 

 

We formulated a stochastic program to identify welfare-maximizing generation and 

transmission expansion plans in a restructured electricity network. The scenarios are generated by 

the moment matching method. The advantage of the moment matching method is that it does not 

require complete knowledge of the distribution of the random variables. Using historical data 

captures the statistical specifications to create a similar sample with simulated statistical properties. 

By including uncertainties in the lower level, the MIP is converted into a stochastic MIP (SMIP). 

Moreover, we also investigate generating scenarios for different time periods. Totally we consider 

64 scenarios at one time on a single hour basis. But because the size of the model is still too large 

to solve all scenarios simultaneously, we adopt the fast forward selection algorithm to reduce the 

scenarios into five scenarios with redistributed probability. Solving the model by PHA still 

requires a large amount of time but we can derive an upper bound on the maximum expected social 

welfare less investment cost in any iteration. This information provides a bound on how far from 

optimality our solutions are. The generation expansion level decisions in the stochastic program 

solution are lower than the corresponding levels in the expected value solution. Fewer transmiss ion 

lines are built in the stochastic program solution. Because of the variations in demand and fuel 

cost, the total expected social welfare from the stochastic program solution is approximately two 

percent larger with stochastic program solution and the investment cost is lower. 
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5.2 Limitations 

 

In our thesis, the fixed O & M cost is not considered along with generation investment cost. 

Overnight cost is the only factor we considered in the generation investment cost. If we consider 

the fixed O & M cost, the model is more close to the reality and our decision might change at the 

end.  In particular, including the fixed O&M cost associated with wind power might reduce the 

amount of wind generation expansion.  

As it is, we assume the wind power capacity expansion is constrained by assumptions. We may 

want to use as much wind energy as possible to meet Renewable Portfolio Standard (RPS). But 

because the wind energy is relatively cheap in our case study, we had to set an artificial upper 

bound on the wind energy capacity. Properly accounting for the fixed O&M cost might eliminate 

the need for this capacity cap.  However, we also do not include the production tax credit for wind 

power, which may actually result in a negative generation cost for wind power and encourage its 

use. 

The model does not consider the temporal constraints such as ramping constraints and the 

actual structure of supply function bid. But in the long term, the equilibrium model has been shown 

to approximate the behavior of generators. 

5.3 Future Research 

 

 During the process of generating scenarios, the data set plays an important role. The quality 

of the information gathered will affect the performance of the model. If the data are more reliable 

and complete, the scenarios are more useful. While the advantages in stochastic program are 

usually clear, constructing stochastic programs usually requires information that has not been 
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routinely collected. Distributions and basic parameter values might not be known. Approximations 

that deal with these difficulties by constructing models that use whatever information is known 

could be the only way to implement a stochastic program. The performance of different scenario 

generation and reduction methods could be tested in our model. Selecting a different number of 

scenarios selected might change our solution.  

 Different uncertainties could be considered in our model such as the weather variation for 

the wind energy production. The capacity factor for wind power should be included in the future 

research. The perspective of uncertainty results in a different expansion plan. Carbon emission is 

another popular issue currently. The production tax credits would affect the plannerôs investment 

decisions. Thus a more realistic model needs to be developed. 
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APPENDIX 

 

A.  Peak hour vs. Off-peak hour demand 
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