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ABSTRACT

Abstrac® In the restructuredelectricity markets the generators and the Independent
System Operator (ISO) play important roles in the balance of electricity supply and demand.
We consider a mixed integer -lbbvel model reformulated as mathematical program with
complementary anstaints (MPCC) in which a single conceptual leadedecides the
transmission line expansion plan and generators plan for generation capacity expansion in the
upper level The overall objective is to maximize the total social welfare, which consists of
buyer sirplus, producer surplus and transmission rentsthe lower level generators will
maximize their operational profts by interaction with the 1SO to decide ithgeneration
amouns. Meanwhile, thdower-level objective ofthe ISO is to maximize the sotiavelfare by
dispatching the electricity to satisfy demand aed the dcational marginal prices (LMF).
Reformulatingthe complementarity constraintgith binary variable results in a mixed integer
program that can be solved dgibbal optimality. Howewe in reality, the demand and fuel cost
wil fuctuate with uncertainties such asnwite change or natural resourgaitations. A
moment matching method for scenario generation can capture the uncertainties by producing
a scenario tree. Then wembine the scenario trewith the mixed integer programe obtaina
two-stage stochastic prograwhere the first stage corresponds to the upper level investment
decisions and the second stage represents the lower level opefi®mrtensive form of the
stochast program cannot be solved in our numerical example wihirasonable time limit
To reduce thecomputation time a enario reduction algorithm is applied to select fewer
scenarios with properties similaio the original scenarios. Finaly we solve tlgochastic

mixed-integer program with the Progressive Hedging Algorithm (PH#hich is a scenario
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based decomposttion heuristic. We compare the resulttheo$tochastic program and a
deterministic optimization usingxpected val® The capacity expamsi planobtained with
the stochastic progranmas higher expected social welfatlgan the expected value solution.
The stochastic program vyields a solutidhat hedges against uncertaintyy lower generation

expansion levels and fewer transmission linebetdouit



CHAPTER 1 OVERVIEW

1.1 Introduction

A reliable, reasonably priced supply of electricity is essential to the qualty of life for
residentsandindustries. The supply of electricity is also the basiarofe gi o n 6 s Withowito n o my .
it, factories ad businesscannotfunction normally. Electricity is not only a basic necesstty, but it
is also regarded as a product that can be produced, sold, and transpottezipfofits of the
generation companiesSimilar to most commoditis, electricity is soldatbothwholesale and retail
leveb. The main differences from usual commoditiesare its lack of economicalstorage and

physical constraintsthat govern its transmission

Unlike other common energyourcessuch as fossil fuels, electricity must be used &s
being generated, or converted immediat&ito another form of energyAthough elergystorage
technologies arbeing developed for offering wide ranges afwer density and energy density,
no single energgtorage technology has the capabittysupport enormous demarelrrently In
the future the systemsmnaybecomprisel of technologies such as electrochemical suppacitors,
flow batteries, lithiumion batteries superconducting magnetic energy storage and kinetic energy
storage[1]. Moreover, @localized electricity production and different energy resources increase
the difficulty of stabilizing he power networkHence electricity is dficult to store in the bulky
andcostly equipment2]. Under thee circumstances, how regulate the power systeaver time

is crucial in our modern society.

Further the long leadtime required to expand generation and tramission capacity

requires longterm planning that takesuncertainties into account In additon to provithg a



sustainable power network, lotgm capacity expansion planning significantly influences the
development of market operatorn shortterm decision making.The decisions of expansion
planning wil determine our behavior of utilizing electricity for decadBserefore generation and

trangnission expansion planning should be carefully desiga satisfy future demand.

In the early 1990s, mostlectric utiities in the U.S.owned the transmission lmeand
generationresourcesat the same timeThey madeall decisions concerning electricty productian
and distribution However, the wholesale electricity market restructuring changed the
organizational structure of theoower provider from vertically integrated into different
organizations, each organization with a separate function to maifta balance of the market.
The motivation ofmarket design was to create an environmeat competitin in the electric
power industry. Competition decreasebe market power of each generation company. However
the eletricity market stil needgsoordiration in another wayo increase the social welfargs a
new perspective The independent system operator (ISO) has resulted idopulhpose[3]. The
ISO coordinates, controls and monitorsthe operation of th@ower system to maintain the
reliability and econmic benefits othe electricity network.But the ISO cannotbuild transmission

lines or power plarg onits own. ThelSO is a norproft organization.

The supply network for an electricity market includes the ISO and individual generation
companies. The task of taking generation capacity investment trangmission expansion
decisions has become an even more complex problem for the liberalized market because of the
uncertainty othe competition. One of the methods to analyze the strategic behavior of generation
competitors is game theorjd]. Game theory describes themultaneous behavior ofeach
generation companyvhosegoal is to maximize its owproft. The competitioncan be formulated

asan equilibrium problem with equilibrium constraints. Under the framework of gameythse



can integrate generation and transmission expansion decisions with operational decisions among
competitive generation companiesn economics we focus on the equiibrium behadoly. A

mar ket 6s equilibrium ig.a useful guide for i

Longterm planningis subject touncertainties in the electricity networRo develop a
expansion plathat can beppliedin thechanged electric power industry environment is important

and practical. Two important uncertdectors in the planning procedure are demand and fuel costs

[6].

The forecast of electrical demand is one of the imporfaators in ageneratn system
analysis. ThdJ.S. Energy Information AdministratiorEfA) projects the total electricity demand
in the U.S. to grow by 28 percent (0.9 percent per year), from 3,839 bilion kiowatthours in 2011
to 4,930 billion kilowatthours in 20[7]. Electriaty suppliers must investin new generatio runits
and transmission linego ensure the reliability ahe electricity network New power plants will
be constructed to keep ugttwthe increasing demandnd wil requiretransmission lines to convey
power to the areas where the energy is requirdtle ISO isresponsible for transmission line

planning [8].

For generation comp@s, the production cost mainly consists of fuel cost such as coal,
natural gas and nuclear. The price of fuel is critical to deciderit®e @f electricity and itfluctuates
with uncertainies such as limitation of natural resources, economy and weather. For example, the
fuel cost of coafired generation accounts for 4fercent of total levelized costta 5 percent
discount rate. The &l cost of gadired generation accounts for nearly 80 perd@htof leveized
coston averageHowever those fuel costs fuctuate witbme factors aincertainty, thelectricity

wholesale price changes accordingMeanwhile transmission congestion wil affect the balance



of supply and demand in the electricity markete ISO wil dispatch the power flow to maintain
the reliability of the electricity marke#lso the responsibility forthe ISO is to set theotaional
marginal price (LMP) in eachreaLMPs, defined as the least cost to serve the next increment of

demand with power system operation constrairgdect the value oknergy at different locations

1.2 Problem Statement

Considering both the investment and operational decision making, a mixed intdgee|bi
program model for capacity expansion in the integrated supply network for an electricity market
was developed10]. The upper level leader decides how to expand the capacity of generation and
transmission expansion. Once the capacity expansion decisions are made, lowdedsieh

makers make their optimal operating decisions towled objectives.

However, the model does not consider uncertairfoy the lower level problemsn the
decision making. In this thesis, we considee problemof how to incorporate the uncertainip
the form of a two-stage stochastic prograrBecause # deterministic optimization problem is
formulated with known parameters, it aimost invariably includes some unknown parameters in the
real world. We are intrigued by investigatinghe decisionsobtained by astochastic program
compare with those from thaleterministic modelWe also address the problenishaw to apply
an appropriatemethod to generate scenarios for stochgstigram. The future uncertaintiesre
represented by different future scenaritighe number of scenarios is too large, needto apply
an appropriatescenario reduction method to decreasentimber of scenarioso become solvable
Due to tle large problenthat results we adopi scenaricdbased decompositon method to solve

the stochastic program.



1.3 Thesis Structure

In Chapte 2, we review the lterature on methodologies to solve the generation and
transmission expansion problem. Also we introduce the scenario generation methsmnario
reduction algorithm for capturing the uncertainty. The methodologies for solving stetha
prograns and stochastic MPEE€ are discussd at the end Chapter 3 contains thprocessof
building a two-stage stochastic program as wad notation used in our modelThen scenario
generationand reductionmethod arentroduced.PHA is alsodescibedin this chapterin Chapter
4,our model is applied ta case study based on the New Englaedtrid power systermn Chapter
5, a comprehensive summary of the thesis is naadklimitations of the modelnd case studgre

mentioned



CHAPTER 2 LITERATURE REVIEW

2.1 Methodologies forGeneration and Transmission Expansion Planning

Generation expansion and transmission planning have been discussed extensively in the
past few years. As the structure of the electricity mavkaes reformed, matbmaticd prograns
have been developed greatlipr model formulation[11]. In the restructured electricty market,
generation companies submit bids to supply electricity at prices based on the fuel cost. The 1SO
manages the electricity transmission and sets the Locational Marginas Rifiide@) to match
supply with demad. Uncertainties become a key factor in generation and expansion plafoing.
capture the uncertainty of demanéference[6] introduces theapplication ofstochastic modsglin
the generation expansior scenariebased mukbbjective transmission line expansion planning
model is introduced by12]. Fuel and carbon price risk wil impact the letagm investme nt
decisions. However, the expansion planningroceduredoes not account for the behavior of

competition among generators in the electricity market.

Equilibrium models are more #able for describing competitive behaviors in long-term
planning [13]. In addition to the uncertainty f @ost and demandhe behavior of the electricity
producersand consumers must be taken into accaurthe competitive market. &ne theory is
generally applied to describe the competitive environment for strategic detiking frms. All
frms competeto offer generation services at a price set by the ISO, as a result of the interaction
of all of them. The goal of market design is tweatean efficient electricity marketEficie ncy
meansthe output is produced by the cheapest supplier and is consoynd@ consumer most
wiling to pay . The ideal electricity generation amount is optimal for both supply and d¢&jand

Undera particular market design, we can derive a competiteguilbrium which is efficientin the



electricty market [14]. The planner seeks for overall benefts to #lectricity produces and
buyers. In [15], the author provides a stochastic framework for evaluating the investment decisions
and integrating scenarios into a single model with security crieghilustrates howvthe results

from stochastic modeldiffer from the deterministicmodel perspective.

Game theory isamathematicalway to describe such strategic decision makighavior
The mathematical model is formulated with equilbrium constrai@»e common economic
model, Cournot competition is applied to describe the competi among generation companies.
It is a necessary step beyond the monopoly model and explains the role of market share in the
determination of market powgb] and also ttallows for convenient calculationA consensus
seems to ha& emerged that considering generators as Cournot compeditapgoropriatein the
restructured electricity markelowever, Yao et al.[16] assumethe generation companies do not
anticipate the impact of their production decisions on congestion ch@rgedection ofmodels
which incorporated game theoly discused in [17] and one of thems a Cournot modelthat
includes investments in new gerténa capacity The competitionconcerninggeneration capacity
is formulated by its own Mixed Linear Complementarity Prolofe (LCP). Mathematical Program
with Equilibrium Constraint§MPEC) isused in solving expansion plannifigy electricity markes.
A bi-level formulation is introduced for lorigrm generation capaciy investment decisions
considering uncéainty of the investment®of other generation compas. The bievel model is

formulated as an MPEC and transformed mtdlixed Integer Linear Program (MILHLS].

Transportation of fuel to the integrated supply electricity market is considergtD o,
20]. The authors consttti a mixed integer Hevel programming model for fuel suppliethe ISO
and individual generation companies. The fuel supplier delvers the fuel to the generatjpango

considering the transportaton co$he ISO ses the LMP and allocate the power flow in the



transmission network. As for the generation companies, they purchase the fuethdrdnel
supplier and decide the amount of generati@d]. The deterministic modelk a Mathematical
Program with Complementary Constraints (MPCTe authos of [10] provide areformulation
of the problem to obtain the global optimal solution with binary variablesthislrthesis, we will

modify this model to consider aartainty under the framework of timegrated electricity market.

2.2 ScenarioGeneration and Reduction M ethodologies

As mentioned before, uncertainty is a principal factor in the generation and transmission
planning. A stochastic programesulis fromcaptuing the uncertainparametersof deterministic
model as probabilistic scenariosThe nost common approadio scenario generatiois todirectly
samplefrom a specific distribution.But the large scale of sampling could generate tiamel cost
consuming issues By using a specified marginal distribution and correlation madne can
approximate the original distributionfor sampling [21]. A method of estimating acenariotree
approximation to a stochastic process is presented hyizing the distance of objective function
[22]. From the statistical perspectiv§23] formualtes a decision model for generating scenario
with internal sampling or findim a simple discrete approximation of the given distribution that
could beuseal asmodelinput . The basic idea is to minimize the distance betweeemputed and
specified statisti@al specifications. This method is called moment matchin§cenario generation
methodsareilustrated by[24] including sampling from specified marginal and correlations, path

based method, optimal discretization and moment matching method.

In this thesis,we would ke to explore an approximation for the probabilty distribution
with discrete distribution.One of theheuristis is presented bj25] that generas a discrete joint

distribution corresponding to specified statstispecifications such athe first four marginal



moments and correlationsThe advantage of the method is not to consider the exact probability

distribution of the stochastic parameter

A large number of scenarios might lmit the tractability of solution. Several scenario
reduction methods have been developed during the past fewgard selection and backward
reduction algorithns are two common scenario reduction methods power maagement,
scenario reduction algorithm is applied for solving computational complexity and time limitation.

A smaller number of scenarios iselected with redistributed probabilitywhich improves the
eficiency of computation time without losing signifitadifference between reduced scenarios

and original scenarios. Through scenario tree construction algorithm and scenagiduction
algorithm, the stochastic parameteran be well approximate [26]. We wil adopt forward
selection as our scenario reduction algorithm because the number of reduced scenarios is small

enough to compute.

2.3Methodologies forSolving StochasticPrograms

After we obtain the scenarios fromscenario generation method, we incorporate these
uncertainties into deterministic model. The deterministic model becsméschastic program.
Stochastic progranare frequentlyappled in longterm planning. A common metbdology for
solving multi-stage stochastic prograsn for energy planning uses dualty in Benders

decompositionto derive apiecewiselinear function to approximatehe expected cost functiofi27].

Including a &rge number ofrealizations in the extensive form o& stochastic program
might make ittoo large to solvan finite time or resourcesBenders decompositionan improve

the performanceof solving stochastic prografi28]. On the other handhe Progressive Hedging
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Algorithm (PHA) canbe appliedfor solving mixed integer multistage stochastic progf2j. In
PHA, decomposttionis used to divide the problem into smaller and more manageable sub
problems.Whenthe first stage decisisrhave convergedto within anacceptable tolerance interval,
the opimal solution is be obtained.Progressive Hedging aggregate the solutions of scenario
problems with modified cost functioio progressively cause therobabiityweighted average

solution to become feasible and optinealentually

2.4 Stochastic MPECs for Longterm Energy Planning

The electricity market modeling can be classified into omdition problem for one firm,
market equilbrium for all frms and simulation modalstochastic model is developed fasingle
frm optimization modelin [13]. A bilevel model is built to assist a generation company for its
long-term generation capacity investment decisions. In the upper level, the objecthvehisse
the investment decisiondo maximize expected profits. The lower level is constructed by
equiibrium through a conjecturgatice response formulation. To include uncertainty in future
demand and the investments decisions of other generation complamiesievel problemcan be
solved as dinear mked integer blevel programwhich is converted to an equivalent sinfeve |
mixed integer problenj30]. A similar approach is applied in solving the meditenm decision
problem faced bypower retailer. The uncertainty includes future pool price, client demand and
rival retailer price[31]. A strategic producer making decisions on generation investment is
represented througl bi-level modelwith market clearing. The large seamixed integer lnear
programis solved bya branchandcut methodconsidering with demand variationg7]. Wind
energy is discussed extensively in recent yedtge authors ofl32] consider wind power

investment and transmission planning with MPEC. The goal is to identify the optimal wind
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projects and network improvement. The stochastic MPEC can be reformulated as-iatenged
inear program solved aldoy branchandcut method. The authotakethe production variability

and uncertainty of wind facilities, future decline in wind power investment cost, and financial risk
into account. They propose a risknstrained muitstage stochastic program with ME@ [33].

Hence the stochastic -leivel model can be solved layeformulation technique.

2.5 Summary

Long term capacity planning in restructured electricity mearkbhs been addressed
recently in terms ofmixed integer blevel programming model The upper level decision maker
wil decide the investment in generation capacity and transmission expansionn fifst lower
level, te generators wil decide the optimal generation amount tlEexdSO wil dispatch the
supply tomeet thedemand undeagame theoretical model. The equiibrium solutions are derived
among the interactions with generation companies tlaatSO. Fuel suppliers are considered in
the integrated electricity market. With the transformation of MPCC #@vbl model, the model
can be solved ieither anonlinear programming reformulation abinary variable reformulation

[10, 14, 20].

However, in [10], the uncertainty in the loagrm capacity plannings not considezd in
the equiibrium model Uncertainty will affect the outcomeof planning overong time period. In
[18, 30, 31], the stochastic MPCC is discussed for {t&ign investment planning. The uncertainty
of price, demand and investment decisions of other generation company are included. The
uncertainties infixed-demand leves and fuel cost have not beenconsideed previously in

stochastic MPCC model Our thesis is focused on the combination détel programming and
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stochastic programming by binary variable reformulation to obtain the optimal solutiuder

uncertainty
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CHAPTER 3 METHODS AND PROCEDURES

In this chaptey we present the modified capacity expansion planning modigtérministic
form based on[10]. Meanwhile we also adopt the binary variable refoatimh of
complementarity constraints frofil0] in order to achieve global optimality. Then we incorporate
uncertainty concerning fixedemand levels and fuel costs to convert the deterioinmebdel into
stochastic program. According to the information about demand and fuel cost, we apply a scenario
generation algorithm to generate possible scenario outcomes. In the case study, the number of
scenarios is too large to allow the solution of shechastic program in a reasonable amount of
time. To achieve tractabilty, we implement a scenario reduction algorthm to decrease the number
of scenarios so that we can compute a solution with reasonable resources. Finally, the progressive
hedging algathm (PHA), a scenaribased decomposition heuristic, is used for soling the mixed
integer stochastic program. The model formulation and notaton are summarized in Section 3.1.
The deterministic model and its MPCC reformulation are ilustrated in S&tfband Section 3.3,
respectively. The twastage stochastic program is formed in Section 3.4. Also the scenario
generation and reduction algorithms are introduced in Section 3.5. Finally the PHA we use to solve

the model is presented in Section 3.6.

3.1 Model Formulation and Notation

3.1.1 Model Formulation

First, we build the deterministic model formulation basedll@hwhich is a bilevel model for
a conceptual leder making capacity expansion decisions in the upper level whie generation
companies and the ISO search for their own optimal solutions in the wholesale market in the lower

level. We also modified the model [40] to add the fixeelemand legl into consideration as in
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[19] to ensure the reliability in the regional electricity market. Moreover, different types of
generationtechnologes are considered in our model to help us understand how to allocate capacity
in an appropriate portfolio. The time frame in ouodal is also dlerent from [10]. The
uncertainties in different seasca® included in our model to ilustrate htre seasonal variations
affect our decisions. For the convenience of calculationmtigel is based on a weighted average
hour acrosseasonsAll of the expansion costs are estimated on an hourly basis.

Second, the Hevel model becomes a MPCC upon replacing the lower level optimization
problem with its KarustKuhn-Tucker (KKT) conditos, and then the binary variable
reformulation is introduced to convert the MPCC to a mixed integer program (MIP) that can be

solved to global optimality10].

Finaly, uncertainties of fixedlemand level and fuel cost are included in the form of
probabilistic scenarios, which converts the MIP to a$tage stochastic program. In the first stage,
the conceptual leader makes the generation and transmission expawgongl In the second
stage, the 1ISO and generation companies wil react to the expansion decisions by maximizing their

own objective functions in different scenarios

3.1.2 Notation

Sets

0 : Electricity nodes in the power network, indexgd, |

“Yi : Transmission lines from node i to node j, indexed by ij

S:  Scenarios, indexed by s

“Y], Time periods in second stage, indexed by t
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3.2 Deterministic Model

First we wil intraduce the deterministic model of the electricity supply network ffa6j
omitting the fuel supplier considered in that paper. In the upper level, a conceptualdecides
the expansiosn with different types of technology for generators and transmission line owner. The

model provides an expansion plan guideline from a global perspective. The expansion of

transmission line is determined Iogroducing binary variable.
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At the lower level, the ISO and generators wil seek for optimal solutions for each own
objective function at thesame time.The existence of an equilbriuns proved by[14] in the
electricty network model. The ISO is responsible for maintaining tHand® of the electric
network that generators wil satisfy at least the fideuinand level. Meanwhile the goal for ISO is

to maximize the total social welfare and for generators is to maxiitsizevn profi.

The total social welfare is comprisedf the total buyer surplus, producer surplus and
transmission rents. Welfare measures are based on the prices and quantities of demand satisfied at
each nodd20]. Producer surplus at nogdlén periodt is defined as the profit less the generation

cost in (1).
0Y 1 B w; B (1)

The classic tool for measuring welBXige <cha
defined as tharea to the left of the demand curve between passeciated with a price movement
[34]. . The consumer demand curve measures how much the consumer is wiling to pay. The
difference between the maximum wilingss to pay and what the comsar actualy pay®r a
gven quanttyi s t he b u[]eBuy@rssurpdus is gnlimpatant criterion to measure market
eficiency. If the sum of profit and buyer surplus is maximized, the market is efficiently operating.
The huyer surplus is shown in Fig 1. Therefore for each buyer atjnodperiodtit is computed
asin (2).

1

BSJ:';‘Q‘ thydsca pa(a B (ja; gl a;, B -L 5i b'=a; )L

2)
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Fig.1. Buyer surplus

The amounts of transmission rents are the total transmissiageshbased on nodal price

difference muliplied by the power flow on the line. The total transmission Ténté periodt

are defined in (3).

TTE =8 ftji(pti _ptj) (3)

jifL

The goalof the ISO is to maximize the welfare, which is the total consumidiingness

topay |l ess the sum of al l the generation COSt s

surplus, producegssurplus, and transmission rents. Ggefh'; =y', -q', the power fow from
i

nodej is equal to the generation amouess the demandrhe total social welfaréSWin periodt

can berepresented as in equation (4).

SW=A (8 &%, -G, &) + @b 5 A0 BCA¥A B P

(4)
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Becaus the total demand to be satisfied must equal the total amount of generation for the

balance of the electricity market, it implésy B ; w; and we use it to recalculate the

transmission rent in (3) as (5).

=4 & &, 4)8 #) =E4q b B) Cava w- p
:a(ptthj 'ptj ayj'g)

()

Finally the total social welfare is (2) + (3) + (5) which is derived in equation (6).
TP B 1 . o .
SW= a (5 t? ‘;1 +a q _2+ JbiL f a ty,g) (6)
J g

Upper level

The objective function (7) of the upper level includes the total social welfare less the
generation and transmission expansion cost with the constraint (8) that the new generation capacity
level is greatethan or equatto the original capaty level. The total social welfare is computed by
aweight parameter multiplying total social welfare in each time peériBdr generation expansion
and transmission expansion decisions, we assume the deas®msmsed on a single hodihe
generationexpansion decision variables are assumed to be continuous variables. The transmission
ine expansion decisions are assumed to be binary varidblesconsistent for us to compare the

investment decisions in the first stage and operation decisions se¢bed level.
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Lower level

In the lower level, a Cournot model is adopted to fdmteu the strategic behavior of
generation companies. Based on the fuel cost, generators decide the generation amount to inject
into the electricity market to compete with each other. Because the total electricity generation
amount would affect the LMP inifidrent nodes[10] assumes that the generators decide the LMP
at the reference node. The ISO behaves similarly as in a Bertrand model to set price prevaa rel
to the reference nodd(]. The price premia are regarded as constants by each generdtbf], In
the authors already proved an equilbrium exists in the restructured electricity market usder the
assumptions. Ounodel continues using these assumptions in the model formulation on an hourly

basis.

| SO6s decision problem

-vé\BJN -0 O -®b (9)

i8R BQ BQ B®: 1Q@0MYY A (10)
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_ 17O OfN Y a Tl (11)
_ |y Ghon Y a Tt (12)
M 6 — — p a ¥ Tl QYN Y g Tt (13)
6 — — M p & O Tl QYN Y g Tt (14)
M Ao QYN Y/ Tt (15)
M auv IO Yo Y Tt (16)
0 n Ly 6N Yz T (17)

For the ISO, the objective (9) is to maximize the total social welfare by dispatching the
power flow in order to match the supply with deméahd]. We only consider the objective function
related to the | SO6s decision variables from
constraint represents the dual variable of the constraint. For eachttrdeim of net injections
and load wil equal the generation amount. The constraint (10) is the fow balance equation.
Locational marginal price (LMP) is defined as the least cost to serve the next increment of demand
with power gstem operating constrant/35].The dual variable ) is the LMP at node j. The
voltage angle in Direct Current Optimal Power Flow (DCOPF) model has Imitatji@8 The
two constraints (11) and (12) are the upper and lower bounds on voltage angle. Constraints (13)
and (14) represent the physical characteristics of transmission grids, in terms of a lossless
nearized direct current approximation. Forcleatransmission line, the thermal capaciy is

bounded for the power flow. The two constraints (15) and (16) are the limitations of capacity of

t
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each transmission line. Constraint (17) is the relationship between theldkremhd level and

satisfied demandThe satisfied demand musegreater tharor equal tathe fixeddemand level.

Generator@s deci snion proble

| ETB — % @ (18)

N h

h
g8 Bw, -B— B——— BB @ |"®0FR b (19)
O &y VO ORQ @GO Y [, T (20)
wp T 1 GRQY Qo Y (21)

The objective function (18) is the LMP less the fuel cost times the generation amount which
is defined as the proft of generator. The L&A® other nodesredefined as the LMP of reference
node plus theorema decided by ISQ10]. ISO is stil the price setter by making decision on price
premium. The reference bus price is the decision of all generation companies froompegtito n
on prodution quantity [16]. The equation (19) represents the balanceotaf demand and total
generation in terms of the residual d g¥a nd .
The constraint (20) shows the relationship of the electricity generated amouthiafessequal to

the generation expansion level. The deterministic model is formulated frain(41).

In the next section, we reformulathe deterministic model as a MPCC. It can be converted
into  MPCGNonlinear Program reformulation (MPCELP), SingleLevel Mixed Integer
Quadratic Program {Level MIQP) or MPCGCBInary Variables Reformulated Mathematical
Program (MPCGEBIN). We wil adoptMPCGC-BIN to reformulate the problem which guarantees

global optimality [10].
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3.3Mathematical Program with Complementary Constraints

In the bilevel model, the lowelevel optimization can be reformulated equivalently in terms
of complementarity constraints by applying tr
problem[10]. The transformation can change the original deterministic mathematical program into
an equivalent Mathematical Program with Complementarity Constraints (MPCC) with a mixed

integer quadratic objective functiofi9].

The full set of constraints is as follows:

| SO0s problem

G Onf R oz 9w OO Y (22)

a a By, 0 g g Br. 6 g9 g m oYY (23)

n n g g |/ / m QYo Y (24)
n B.Q B, Q B ;! jmN"Y (25)
T — —" a T VOGN Y (26)
n — —a m 170 Ny (27)
né — — Q p ad g Tl QYN Y (28)
n 6 — — Q p a 0 g mw!OQUYRY (29)

moago QN m LOOYRN Y (30)
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n oz 0 f m 1oy TY (32)

Generatords problem

m Bw:" — % & b t; 7w 1QOKNTGonNY (33)
B & B. —b 1 1@ 0GRNTY (34)
T ot Ewp ®p TV ORQ don Y (35)
Toyp wf 1@ GAQv "OQon~ Y (36)

To solve the problem more efficiently and to obtain the global optimal solution, we
converted MPCC into an equivalent mixed integer quadratic program by introducingy bina

variabls E and large parametemM [10]. Consider a generic complementary constraiaind e

as follows:
m i"Q m (37)
The reformulation of (37) is dsllows:
m i 0f (38)

nQop | (39)
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After the reformulation steps from (3739), we establish a MPCC with binary variable
reformulation model in (46]57) from previous constraints. The binary variable reformulation

introduces integer variables in tlwver level

mn —  — 0 17 Ghon Y (40)
ma 0p J 1’0 GhoN Y (41)
mn — — 0 170 GFon Y (42)
ma 0p [ 17 FoN Y (43)
moé — — " p a0 Of 10OQYNY (44)
nm g 0p | QYo Y (45)
m 6 — — " p a0 0 10OQYiONY (46)
m g Op [ 1OQYiONTY (47)
m a0 Q Of 10OWYiyY (48)
m / 0 p [ ) ! QQvioy Y (49)
moao Q Of 10OWYyY (50)
m / 0 p [ ) ! QYN Y (51)

T of Of @GRy (52)



26

m Z Op [ VOOmNTY (53)
m oo 0p [y 17@GHQ QN Y (54)
T - % & b ty; 0fy '@ 0ORQ Gon"Y (55)
Tty O0p [y O OGHNQONY (56)
m o Tep @ 0fy 1@ OR Tov Y (57)

We set the values favl in eachinequality as follows. First roughly estimate the largest
possible values for the upper bound of equiibrium constraints which isatesivio estimaing
the upper bounds of the dual and primal variables. For estimating the value of dual variables, we
use indvidual node without transmission line network in order to find the variation in social
welfare for[ .Onthe other hanademoving the fixeddemand level can help us find the variation
of social welfare for[ . If the generation costis O, we can find the variation of social welfare for
J . Whie there is no limitation for generation level, we can find th@ti@n of social welfare
for [ . At the end, we examined ti\if it is binding. When it is binding, we add certain value to
solve the model agaims aresult of trial and error, the range Mfis from 5500~10006 the case

study

3.4Two-stage Stchastic Program

Before we generate the scenarios according to the historical data, we can reformulate the
deterministic model into a twetage stochastic model. The indexepresents the scenario. Here
we selected fixedlemand level and fuel cost asdtastic parameters. The deterministic model

can be expanded as an extensive form of the two stage formulation. In the objective function, we
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consider the weighted time periods for each scendii@ condstage objective function is

calculated by expedfevalue of total social welfare in all scenarios. The model as follows:

Objective function
Al & Pant oot Poof O G
h N c c N N
Q:):\ E(x)ﬁ d)ﬁ O(:) L O

(58)

Variables and parametaronstraints (22)(25), (34), (40)(57) are included with scenario
index sexcept frst stage decision variables and parameters. Constraint (8) is also included in the

two-stage stochastic program.

3.5Scenario Generation and Reduction Ajorithms

Now we would like to introduce how to generate the scenarios for our stochastic program. The
uncertain parameters are fixdemand level,0 F‘, and fuel cost(f)ﬁﬁ , for natural gas because

demand forecasting is the most unstable key factor in power system planning and generation cost
is mostly driven by fluctuating fuel cost. A moment matching method is appligtisithesis

using the historical dat® createthe scenarioghat approximate thelistribution of uncertainties.

Its advantage is in using statistical specifications to approxithateriginal distribution without

exactly knowing the true probability distriban. If the number of scenarios is too large to allow

solution of the stochastic program in a reasonable amount of time, we need to apply a scenario
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reduction algorithm. Here wasefast forward selectiorbecause it requires less computation time

than otler methods to identify small number of outcomes to represent the original scegati

3.5.1 Scenario Generation Algorithm

A stochastic program is a mathematical program considering uncertain information. It is
difficult to accurately describe the futu event that wil occur. To capture the characteristics of
uncertain quantties we use statistical properties to describe the possible outcomes in the future.
Therefore the continuous probabiity distributioti®t may contain potentiadriginal data caie
approximated by a discrete distribution with a finite number of scenarios. The discretization

procedure is called scenario generat|®@8].

Sampling directly from the distribution is the most intuitive way to generate scenarios. It only
needs historical da without assumptions on the distribution. As long as the sample size is large
enough, the distribution could be close to the real distributitowever, larger samples may result
in computational issues and redundant costs wasted. A small sample n@yrecty describe

the true distribution.

In our thesis, we select moment matching method for scenario generation because it generates
scenarios efficiently under limited time and cost by using statistical information. This method was
introduced by[23, 25]. Given a set of statiséi¢ specifications such as measmriance, skewness
and correlation, it presents aetimod based on nonlnear programming which can be used to
generate a limited number of discrete scenarios that satisfy the specified statistical properties. The
objective function is to minimize the distance between the statistical properties of théegknera
outcomes and the specified properties. The general description of tkeé candbe described as

follows:
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iﬁEBN 0 . Qaff Y (59)
88 B “0Q p (60)
“m (61)

The set B is the set of "™al k thes geefiedi valueea stat

statistical property n B wbe the piossible values of random vector to be generatetl lamd

the corresponding probabiity vector. The mathematical expre&iofit computes statistical
propertyQ n B. We warth“t so thao thebstatisticad properties of the approximating
distribution match the specified statistical properties. In the constraints, we ethfardee sum

of probabilty equals one. The matrRRconsists of zeros and ones whose number of rowssqual

the length of* and the number of columns equals to the number of nodes in the scenario tree. In
Chapter 4 we wil use real demand data and natural gas prices to generate scenarios by moment

matching method in the numerical example.

Also, reference[23] proposed an approach to decide the number of branches from each
node of the scenario tree according to the degrees of freedom. ABsentbe dimension of each
scenario node vectoR+1 becomes the number of random variables at a node inclucgrigrathch
probability. O+1)y would be the total number of final degree of freedoms wiéehe number
of branches We would like to selec§ such that(D+1) y -1 is greater or equal to the number of

statistical specifications. The smallest valuey a§ the number of branches we cho$28).
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3.5.2 Scenario Reduction Algorithm

When the outcomes of scenario generation are too many to control, how to reduce the
scenarios withat losing the characteristics of original scenarios is the purpose of a scenario
reduction algorthm. Due to the large number of scenarios generated, we adopt the forward

selection algorithm[26] which is appropriate when the number of preserved scenarios is small.

The reason we consider fast forward selectioto sficiently compute @amaller number
of outcomes to represent the orinscenario set. The idea of the algorthmtoiscomparethe
distances of scenario pairs then select the smallest distance between the scenario pairs. The

probabilty is recalculated for the preserved scenarios.

For a twaestage stochastic program with an@in right hand side parameters in the
constraint and uncertain cost in the objective function, we define a distance fuodietween

scenarios as in (62) frofi37]. The parameterd could be the mean of probabiity measure.
ooy kT AGhY) U shY Uss 0SS (62)

Given original distribution § h) F 0  with probabiity fy whered= 1 ,Néin forward

selection, we optimally choose one scenario at a timég retain, wherau solves (63).
[ KII;ETB n oo h (63)

N

The fast forward selectiomalgorithm [38] is implemented by Python cogfe9)].
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3.6 Progressive Hedging Algorithm

Because thextensive form of the stochastic mixed integer program is too large to sole,
we applyPHA. PHAhas beesuccessfully applied as a heuristic to solve stochastic programs with
integer variablesby decomposing the problem into scenario subprobleRidA aggregates the
solutons with modified cost in the objective function progressively obtaining optimal solutions.
Here we define a solutiofor a scenario subproblerms admissible itt satisfies the constraints for
that scenario In a twostage stochastic pragn, a solution is implementable if the fisttage
decisions are the same for every scenafiosolution is feasible if it is both admissible and
implementable.Undercertain conditions, the average solution wil be admissible in each scenario.
The goal ofPHA is to apply the cost function modification progressivédycausethe average

solution to be implementable artthus, optimal eventually.

Here we are going to introduce the algorthm of PHAZ8]. Suppose we are solving a
two-stage stochastic program with the folowing objective function and constraints(6(4)
"Q obrepresents the cost function in the first stage with constrdiitsband thefirst stage
decision variablecbn 6Bz is the recourse function in the second stage with scemaribhe
objective function consists 60 w0 ) with constraint’Q o 0 Y and the second stage

variable «

I EQ bz O bz (64)
[ &8Q Dz mh Q pMB & (65)
0 Dz O 0 ¢hz (66)

~

Oddz | ERQ @O (67)
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Under this structure,hé Progressive Hedging Algorithm follows the steps below:
Step 0 Suppose some implementable solutiaidzsome initial multiplier” , andr>0.

Let v=0. Go toStep 1Letabz Gz

Step 1Llet ¢z fdy  for w= 1, W solve (69)(71). LetcDz  ¢Dz "M kbz"  where

zh B 1y bz Q¢ doa ps ho.

iEd B / Qdz Qo " " wz o (T Dz Dz (69)

88Q bz h Q pBa v pB® (70)

Qaoaav W 1™ Q pBad N pB® (71)
Step2Llet” ” i dz" Dz .Ifdz dDand” " then stoppband”

are optimal. Othense, letv=v+1 and go toStep 1

However, a variety of critical issues arise when implementing PH. The auwhd2g]
investigate these issues and describe algorthmavations in decision variableshe choice of
the multiplier ” is crucial. In[29] i is recommended to choose it as gvan(72) where obz

is the largestsolution amongthe scenaris andabz is the smallest solutiorin the initial iteration

T Q Dz Dz (72)

The” to the continuous variable is defined (V3):
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"Of Wé £ 0 QDEE b Ra @ - (73)
B . s Dz Dzsh

This selection heuristic can achieve a satisfactory tradeoff between computation speed and

soltion quality [29).

In additon, PHA can measure a bound on the optimal objective function value in any
teration. According to[4(], the following result (74)75) shows the implicit lower bound
O " for objective valued” in a minimization problem.For the maximization problem, we
consider the negative value of the lower bound in the minimization problem as the upper bound of

objective value in maximization problem.
i Eh0 "QazQOhQ " bz (74)

o' BAab & 75)
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CHAPTER 4 CASE STUDY

4.1 Introduction of ISO-New England
In this chapter, we wil implement our model in a case studhe@New England region.
The Independent System Operator of New England -(NE) divides its service area into eight
zones. The eight zones are Maine (ME), New Hampshire (NH), Vermont (VT), ConhdCiT),
Rhode Island (RI), Southeastern Massachusetts (SEMA), West Central Massachusetts (WCMA)
and Northeast Massachusetts (NEMA). In the case study, the eight zones are regarded as eight
nodes each havingdemand and electricity supply. The geograpinap ofNew England is shown

in Fig. 2.

¥ NEW |
HAMPSHIRE

W MR S S

Fig.2. ISONE Electricity Regions[41]
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ISO-New England is an independent and -pooft corporation. Its responsibijit is to
meet the electricity demands etd-day rbli@le opergtiom n 6 s
of New Englandds p omission sygstem. eTheagbals ol8O-NewrEdglandr a n' s
i nclude designing, admi ni sdorepetiive gholeaale deleamoittyi t o r |
market and power system planning. Higher generation capacity and more transmission investme nt
have made improvements in the reliability of electricity supply to each region in Bhgland in
the past yearslSO-New England has created substantial cost savings in these areas by
transmission investment and new power plant projects. It saves oven#d# value ofthe
wholesale electric energy market from 2008 to 22 The ISO does not own power plants or
transmission lines but it has responsibility to develop the market incentives and operating rules for

the electricity market.

The 2013 Regional Electrigit Outlook [42] said that one of the challenges for KB@w
England is the potential for reduced operational performance due to incredsince ren natural
gas as a fuel source for power plants. The re
especialy during the winter months when the priority for natural gas supply is to heat New
Engl andds h o reg Jhe lmnited supgl and risegs grice of natural gas becomes a
major challenge for managing the electric grid. Hergeneration expansion pland transmission

investments cordering natural gas power plardgse discussed in this chapter.

Now we introduce the electricityetwork in New England. In Fig. 3, we use node 1 as ME,
node 2 as NH, node 3 as VT, node 4 as CT, node 5 as RI, node 6 as SEMA, node 7 as WCMA and
node 8 as NEMA. The solid lines are the existing transmission lines according to the private

communicationfrom the ISONE. The dashed lines are candidate transmission lines for future
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transmission expansion chosen by the random selection of pairs obregio already connected

directly.

Fig.3. Transmission network in New England

Natural gas has become the dominant fuel for generating electricity in New England. In
2012, 52 percent of energy was produced by natural gas power[g@nt®ne of the reasons for
the dominance of natural gas is the relatively low cost compared to crude oil. Moreover, its clean
burning nature is more environmentally friendly than coal or nuclear power plants. New
technology of gadred power plants has also improved the efficiency of electricity production
[43]. Therefore, we consider two types of natural gas power plants with uncertainty for natural gas

price in the New England area.
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4.2 Assumptions

In our case study, we made the following patemassumptions. The first stage decision
variable of generation expansion is assumed to be continuous for the convenience of calculation.
We consider four different types of power plants in the future investment plan. The four types of
power plants are dvanced Combined Cycle (Advanced CC), Advanced Combustion Turbine
(Advanced CT), Nuclear, and Onshore wind, where the energy resources of Advanced CC and
Advanced CT are both natural gas. Advanced CT is ustedigrved for peak hosir Because we
beleve mtural gas wil become the main energy resource of the future, we focus on these two
power plant types in our case study. As nuclear power stil remains the second largest supplier of
electricity, the nuclear power plant should be taken into account. witgb energy is considered
in our case study. However, wind energy does have limitations regarding its transmission line and
location. We assume wind energy in period 1 of scenario 1 generates 2% of the total demand.

Therefore we set the upper bound of wewkergy capacity at 400MW in all scenarios.

Onereason that natural gas fueled power pldiive become more and more popular is
their lower carbon emissios 1 compared to coal fueled power p&anThe natural gas fueled power
plant is the largessource ofpower supply in New England. Nuclear energy is also an essential
source of electricity in New England area. The safety of the operation for nuclear power plays a
vital role. It also addresses the poltical and environmentalsis8ue the nuclear powenpply is
stil the second largest source in New England. Recently renewable energy has been promoted by
governmentenergy policy. Wind power is a clean electricity resource to be developed. Onshore
wind farns can be built close to the electrical grid ahd cost of building is lower than nuclear

power plant.
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The costs of power generating technologies can be divided into investment and generation
costs. The investment is the amount of money required to buid the power plant, and the generation

cost isthe cost of operating and maintaining the power plant as well as fuel costs.

Finally, we consider only the peak hours in three seasons because peak hours have the most
significant effect on reliability of electricity market in each season: Summer, Wiatat
Spring/Fall. For each time period, we generate equaly likely scenarios for demand and natural gas
price. The data of demand and natural gas price are collected in year 2011. We assumed the

investment decisions are made in 2011 and the operatioosliode are made in 2021.

4.3 Investment Cost

The generation investment cost for the power plant is based on the capital expenditure
profile in [44]. The investment cost is calculated by using overnight buid cost to multiply the
capital expenditure percentage for each.yBagn we apply the disunt rate to achieve the present
value. Finaly we sum the cost of each yeartrémsform the investment cost for generation
expansion intcequivalentannual payments. The overnight cost and capital expenditure p@aHile

llustrated in Tablel and Table2 respectively.

For instance, to compute the annualized investment forsésdvanced CC, we multiply
the overnight capital cost by the capital expenditure percentage for each year. For each year, the
discount rate is considered to calculate the presdum. Then we sum the present value for every
year. The present value of the investment cost is shown as folows:

3 3
1023 16 20.05 3023 10 205 1023°10 .25
(1+0.05) (1+0.05)

974865.65 (MW (76)
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Then we obtain equivalent annual costs over e horizon using the capital recovery

factor.

0.05 (1 +0.05f

974865.65 -
(1+0.05§° -1

=63,416.41 (MW 77)

Table 1.0vernight Cost of Power Planf45]

Power plant Ovemight Capital Cost ($/MW)
Advanced CC $1,023,000
Advanced CT $676000

Nuclear $5,530,000
Onshore Wind $2,213,000

Table 2.Capital Expenditure Profi¢44]

Year Advanced CC Advanced CT Nuclear Wind
0.25 0.50 0.01 0.50
0.50 0.50 0.01 0.50
0.25 0.01
0.01
0.01
0.02
0.03
0.20
0.0
0.0
0.10

|

OO N O O] W DN

[EY
o

H
H

We then dide the results by 8760 hours to obtain an equivalent hourly cost in $/MW/h.

The result of generatiomvestment costis in Table
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Table 3. Generation Investment Cost

Power plant Generation Investment Cost ($/MW/h)
Advanced CC $7.23
Advanced CT $4.90
Nuclear $2200
Onshore Wind $17.49

For the candidate transmission lines, NHto RI, NHto SEMA, VT to CT, and CT to SEMA,
were randomly selected. The conceptual leader wil decide whether to expand transmission line
amongthese candidates. We represtiia connection point in each zone by assuming they fall in
the following cities: Portland (ME), Concord (NH), Burlington (VT), Hartford (CT), Providence
(RI), Plymouth (SEMA), Worcester (WCMA) and Boston (NEMA). These cities were selected

from private comranication with ISONE.

Table 4. Locations for transmission line

Zone | NH VT CT RI SEMA
City | Concord| Burlington | Hartford | Providence| Plymouth

The type of candidate transmission line is 500kV. The unit investment cost of the
transmission line is 1,854,00@$/mile) [46] . We consider the life fdransmission line as infinite
and the annualized viastment cost is calculated the distance times the unit investment cost and

the interest rate.

Table 5. Investment cost of candidate transmission line
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Candidate NH-RI NH- VT-CT
SEMASS

Distance(miles)| 116.00 107.00 236.00

Cost($/MW/h) 122.75 113.22 249.73

The totalgeneratingcapacity of each zone @btainedby the privatecommunicationfrom

ISO-New England. Alsg the slopeand intercepts oflemand curves are assumed by roughly

estimating the maximm value of demand according to the inverse demand fungetiorable 6.

Table 6. Data for capactty, slope and intercept

- . Slope of demand Intercept of demand
Electricity Total Capacityw . .
Nodes MW) price w price
($MWH/MWh) ($/MWh)
ME 407.9 -0.08 20000
NH 2249.9) -0.07 21000
VT 63000 -0.095 190.00
CT 2208.0 -0.045 36000
RI 3640.9 -0.095 237.9
SEMA 198600 -0.09 31500
WCMA 1277.9 -0.09 324.00
NEMA 1603.0 -0.07 32200

The thermal capacties of all transmission

parameters are shown in Tafle

nes are assumed to be 650 MW. The related
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Table 7. Data for Transmission Ligse

. Negative Susceptang
o | Tra_nsr!n|SS|on & (m ) &
Transmission Line | Capacityv ; (MW) :
1,2) 650 40 1
(2,3) 650 40 1
2,7) 650 40 1
(2,8) 650 40 1
(3,7) 650 40 1
(4,5) 650 40 1
4,7) 650 40 1
(5,6) 650 40 1
(5,7) 650 40 1
(6,7) 650 40 1
(6,8) 650 40 1
(7,8) 650 40 1
(2,5) 400 40 Candidate
(2,6) 650 40 Candidate
(3,4) 650 40 Candidate

4 4 Uncertainties

44.1 Demand

For every year from 2002 through 2012, FBE provides the hourly loads in each zone
[47]. We adopt the load data in 2011 asour datdéet. s e p ar at &odrs ittohthree parte ar 0 s
Summer, Winter and Spring/Fall. The Summer season contains the months of July to September,
and the Winter season includes December, January and February. The rest of the months are
classified as the Sprifiepll season. For each part of the year, hours can be classified as peak hours
and offpeak hoursISO-NE defines peak hours as 7:00 am through 11:00 pm on alaiolay

weekdays. The ofpeak hours are defined as the weekday hours between 11:00 prO@ram/
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and all of Saturdays, Sundays and Holid§48]. The percentage of hours in each time period in

a year is ilustrated in TabB.

Table 8. Time periods ina year
Summer | Summer | Winter Winter Spring & | Spring & Fall

Peak Off-Peak Peak Off-Peak | Fall Peak Off-Peak
Hour (hr) 1,105 1,103 1,020 1,164 2,159 2,233
Percent (%) 12.6 12.6 11.6 13.2 24.5 25.5

For each zone, we compare the load in peak hours amebaif houran eachseason. For
example, Fig.4 represents peak hour load versuspefik hour of ME in three time periods.
Similar figures for the rest of the zones are collected in the Appendix. According to the figures, in
each season the peak hoursehbigher average load than-ptak hours. The highest load in the
Summer occurs in Connecticut and the lowest load is in Vermont. Moreover, the loads in Summer

and Winter are higher than in Spring/Fall.
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ME Peak vs. Off-Peak (b)
T T T

Off-Peak
Il Peak
1000 1500 2000 2500
Load (MW)
ME Peak vs. Off-Peak (c)
I I
[ ]off-Peak
Il Peak

|
500

|
1000 1500 2000 2500
Load (MW)

Fig.4. ME Peak load vs. Off Peak load @ Summer, (b) Winter, (c) Spring/Fall

The statistical specifications for Summer peak hou011lof demands in each zone such

as mean, variance and skewness are ilustrated in Pablle maximum value of mean and

variance is in Connecticut. The minimm value of mean and variance is in Vermont. The moment

matching method is based this information as well as the corresponding data for peak ard off

peak hours in each seasdao, generate scenariodVe have eight random demands and three

statistical spcifications for moment matching method.
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Table 9. The statistical specifications of demand for Summer Peak in each zone

Statistical
Specifications| ME NH VT CT RI SE wC NE
Mean 1510.15 | 1649.74 | 748.55 | 4597.57 | 1235.32 | 2296.84 | 2493.45 | 3731.32
Variance 20.6 54.15 4.59 602.65 46.91 172.20 | 129.15 | 312.89
Skewness -0.18 0.25 0.09 0.31 0.24 0.25 0.36 0.30

The growth of electricity demand has slowed since the 1950s in the U.S. The reason for
the relatively slow growth is technological efficiency gains to bifsereasing demand. According
to [42], the total electricity demand is projected to grow by 28 percent by 2040 with a growth rate
of 0.9 pecent per year. Therefore, we assume 0.9 percent amnoualdemand growth ratéo
find our fixeddemand levsl in the operational year 20Z2The rest of the demand datse shown

in the Appendix.

4.4.2 Natural Gas Price

Natural gas price fuctuates arding to economic growth or advanced driling technology
because technology improvements reduce the driling cost and operation cost whie achieving
similar output[49]. Both factors are hard to predict. Moreover, fuel cost uncertainty for natural
gas is significantly higher than uranium and cleaner for the environment in thedongCoal has
had more stable price variability thamatural gas but coal is also the largest contributor to
greenhouse gas emissions. Therefore we select the price of natural gas as our stochastic parameter

and main energy resource for our model in the New England area.

In 2012, mtural gas prices for ek powerreacheda rew record low since 200&ith
the spot price at Loui 8liVMdBia bosv natdral gasypriced tebuted v e r a

in greater relance on natural gas for power generaton whige older coatfred power
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generation retired in the past few yearf50]. Natural gashas become aattractive engy source

in New England arealhe processes of unit conversions to generation cost and calculation of
generation cost is shown in 8#(80). Generation cost involves the variable operation and
maintenance cost and fuel cost. Therefore the price of hagasa accounts for most of the

generation cost.

A i ADDGOO6 79)
" VQGHOR GO 006 GH WQ (79)
@ i 2’00 @ OR G0 OOl QDG Q (80)

The wholesale natural gas price in New England is the sum of the Henry Hub price and a
basis differential. Thigs similar for all locations in the U.S. The basis differential can be defined
as the difference between the Henry Hub price and the corresponding spot price for natural gas in
a specific location{51]. The basis differential variation depends on the distance between different
destinations. For the absence of data in EIA concerning the price of natural gasetate
electricity [45] in Maine and New Hampshire, we assume the basis difference is the same as in
Vermont. The Henry Hub price only provides daiy data to the EIA. We assume the Henry Hub
hourly price is the same dbe corresponding daily at. Therefore we can derive the basis
differential by calculating the monthly natural gas price and subtracting the monthly Henry Hub
price. The hourly natural gas price can be obtained by adding the assumed hourly Henry Hub price
to theaveragedbasis dierential in 2011 Additionally, the infation rate is assumed to be 55

year from 2011 to 2021.
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The statistical specifications for Summer peak hours of natural gas price in each zone such
as mean, variance, skewness and the correlaton with demamdisistated in TablelO. The
maximum value of mean is in Maine, New Hampshire and Vermont. The minimum value of mean

is in Connecticut. The natural gas prices are similar in each zone.

Table 10.The statistical specifications of natural gas price forrBammPeak in each zone

Statistical
Specifications)] ME NH VT CT RI SE wC NE
Mean 3.90 3.9 3.9 3.54 3.73 3.63 3.63 3.63

Variance 0.05 0.05 0.05 0.06 0.04 0.07 0.07 0.07

Skewness -0.10 -0.10 -0.10 -0.01 0.26 0.38 0.38 0.38
Correlation

with demand| 0.40 0.26 0.27 0.34 0.26 0.24 0.26 0.21

45 Scenario Generation and Reduction Application

We have eight zones and each zone has two random variables: demand and natural gas
price. The total number of random variables is therefore sixteen, as showk). iThg3 statistical
properties we consider here are mean, variance, skewness and the correlations between demand
and price in each zone. The total number of specified statistical properties is 56 as sh@yun in (8

According to (59)(61), we obtain the number oftitcomes is 4 in eadombination ofeasorand

hour type
| =16 (8 zones, two random variables) (81)
|O|={16*mean,16*variance,16*skewness, 8 correlations}=56 (82

There are three periods in one scenanbich consists of fixedlemand and natural gas

price for each zone in peak heunf Summer, Winter and Spring/Fall. The total number of
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scenarios  ist @ tin the stobastic model each having probabity 1/64The number of
scenarios is too large for solution of the stochastic program to be tractable. Here we adopt fast

forward selection to select 5 scenarios as our preserved scenario sets and redistribute the

probabity.

The presena scenario probabilties ailestrated in Table 1. The expected fixed demand
levels and generation costs are ilustrated in Table 12 and Tabkhd fixed demand leveland

fuel coss aredetded in the Appendix.

Table 11. Probabily for preserved scenarios

Probability
Scenario 1 0.07
Scenario 2 0.14
Scenario 3 0.2
Scenario 4 0.33
Scenario 5 0.16

Table 12. Expected fixed demand level

Node | Summer| Winter | Spring/Fall
1 1414.53| 1576.10, 1157.23
1633.0 | 1682.66] 1155.53
726.02 | 795.34| 581.63
4789.73| 4565.29] 2982.55
1186.43| 1174.12] 802.36
2233.03| 2220.15] 1413.35
2636.60| 2643.22| 1774.70
3634.05| 3494.95] 2558.10

OIN (O[O~ |WIN
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Table 1. Expectedgeneration costs of Combined Cycle and Combustion Turbine

Summer| Winter | Sping/Fall
1.cc 34.88 | 40.83 33.59
1.ct 58.31 | 67.33 56.35
2.cc 32.8 42.05 32.92
2.ct 55.15 | 69.18 55.33
3.cc 36.35 | 42.47 34.77
3.ct 60.53 | 69.82 58.14
4.cc 33.65 | 44.31 42.55
4.ct 56.44 | 72.62 69.93
5.cc 3296 | 47.79 30.74
5.ct 55.39 | 77.89 52.02
6.cc 3385 | 42.34 28.66
6.ct 56.74 | 69.63 48.88
7.cc 31.96 | 39.87 29.81
7.ct 53.88 | 65.88 50.61
8.cc 33.85 | 38.73 35.49
8.ct 56.75 | 64.14 59.23

4 6 Generation Cost

Generation cost includes the variable operation and maintenance (O&M) cost and fuel cost.
We asume the inflation rate §%. For example, theuclear fuel cost is $7.01/MWH52]. The
generation cost isalculated bymultiplying the fuel cost by the heat readd addingthe variable
O&M cost. Therefore we convert the nuclear cost into dollars per MMBtu by dividing by 3.413
and multiply by the heat rate in Table 7. Finally we divide by 1000 to changeithento MWh.

The generation cost for nuclear power plant is $28.88/MWh. The process is ilustrated as follows:

3
T0E 14003, /600 1 ag g8 gHwh (83)
3.413 1000
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Wind power does nancur fuel costor variable O&M cost. The generation cost for wind
power is zero. The heat rate and variable O&M cost of each type of power plant is ilustrated in

Table X from [53)].

Table ¥.The Heat Rates and Variable O&M Costs

Heat Rate (Btu/KWh) Variable O&M ($/MWh)
CC 6430 $3.27
CT 9750 $10.37
Nuclear 10464 $2.14
Wind N/A $0.00

Finally the generation cost is estimated by the sumedfdost andvariable O&M cost.
The generation cost for Advanced CT is the highest among these fosiotypmver plants. Wind
power has zero generation cost from [67]. The generation cost and demand of reduced scenarios

are presented in the Appendix.

4.7 Framework of Stochastic Program

Here we only consider peak hours in each season because we want to ensure our planning
can result in the most reliable power network. After the frst stage decisions are revealed, the
random outcomes are generated with SemrReak period, Winter Peak period and Spring/Fall
Peak period. The scenario framework is ilustrated in Fig/6.assume th@roportion of hours
representediuring each perigck , is 0.33for conveniene But in realty we should change the

proportion according to the length edichseason.
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Periodl Period® Period
Summer Winter Spring/

Fig.5The scenario framework

Since thetotal number of scenario outcomes 64, we adopt the fast forwardcenario
reduction algorithm to reduce the number of scenaflibs. stochastic prograstructureis shown

in Fig.6.

Second Stage
Decisions:
Scenario 1

Operations
decisons

Second Stage
Decisions:
Scenario 2

Operations
decisons

First Stage
Decisions:

Second Stage
Decisions:
Generation Scenario 3
expansion

Transmission
expansion

Operations
decisons

Second Stage
Decisions:
Scenario 4

Operations
decisons

Second Stage
Decisions:

Scenario 5

Operations
decisons

9088

Fig.6. The framework of stochastic programming
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4.8 Numerical Results

In our case study, we consider theménd and natural gas ricn 2011 on a single haur
And we generate the scenarins2021 by modifying the scenarios generdtéor 2011 with future
assumptions The investment decisions are made in 2011 and operational decisions are made in
2021.0ne hou represents a weighted average over tkinee seasons oSummer, Winter and

Spring/Fall in peak hosr

4.8.1 Progressive Hedging Algorithm Application

In this case study, we implementdde moment matching methodn GAMS 23.4 using
CONOPTas NLP solve and PHA in GAMS 23.4 using CPLEX as MIQCP solver. The fast
forward selection is implemented in Python [R€]. Computational experiments are executed on
a desktop withintel Pentum 4 CPU 3.40 GHZ and 4 GB RAM. The time dolving a scenario
subproblemin GAMS ranges from 48 seconds 2460 secondsFor each scenarithe MIP has
1,583 constraintsand1,186 variables including 447 binary variablesand cartakeas much asne

hour to solve.

However, our model includes integer solutions, so R$1Aot giaranteed to converge to
optimality. Stil, we apply PHA in a certain number of iterations and then we use the aggregated
solutions as our frst stage solution. We then fix the aggregated first stage solution forsibiee
second stage decisions in eadenario The resulting objective value is our lower bound of the
optimal (maximum) objective value. Alspin each PHA iteratiorwe calculatean upper bound by
calculating the objective value for individual scenarios considering the duas pdice After

deriving the objective value for each scenario, the average objective valueujgpeubound in
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maximization prblem By comparing lower bound and upper bourmh the optimal objective

value, we can understand how close we are to the true optimal solution.

The aggregated solutions of generation expansion after 8 iteratienshown infable 5.
As for the transmisen line expansi, all scenarios are consistemt deciding to buid a
transmission linefrom VT to CT. Theminimum difference betweeaupper bound and lower bound
is rom from the upper bound computed in iteration andilustrated in Table &. The lower

boundis only 1.1% different from the upper bound.

Table 15 Aggregated generation expansiiv\Wh)

Node CcC CT NU Wi
1 266.11 0 0 329.80
2 0.00 0 0 333.00
3 1333.48 0 0 380.00
4 2035.02 0 0 400.00
5 0.00 0 0 40000
6 0.00 0 0 40000
7 152.02 0 0 39350
8 0.00 0 0 398.8®

Table B. Objective value for the sixtiteration of upper bound and lower bound

Objective Value
1944887
1922483

Upper Bound
Lower Bound

The bounds on the optimal objective function value from each iteration are shdahle

17. In iteration two and four, one scenario subproblem could not be solved within two Hoers.
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difference between the lower bound and upper bound flustisgeause the upper bound does not
monotonically decreas&Ve only fixed the transmissioline at iteration sevenand stop because

of large amount of computation time.

Table 1I7. Bounds on objectivesalue with different penalies

Lower bound Gap

Iteration Upper bound Difference bound (%)
1 1959957 192®@78 39679 2.0

2 1959099 -inf N/A N/A

3 1963817 1923348 35751 1.8

4 1994252 -inf N/A N/A

5 1955621 1923358 32263 1.6

6 1944887 1923028 21859 1.1

7 1976226 1922483 53742 2.7

For examining the scenario reduction result, we use the first stage asefatgmns at the
last iteration fixedand optimize the second stage decisionsaioh of the64 scenarioggenerated
The total expectedbjective valueis $1,810356. The differencerom our lower bound objective

value is5.8%. It shows that the scenanmeduction with forward selection can represents most of

the 64 scenarios.

The second stage decisions of demand to be satisfiesh@amsin Fig. 7 for scenario one.
The demand to be satisfied in periode (Summer) is higher than periddio (Winter) and peod
three (Spring/Fall). Connecticut has the highest demand in our model. The results of the rest of the

demand to be satisfied are ilustrated in Agendix.



55

8000
7000

(2]
o
o
o

5000

4000

3000

2000

1000 iz‘
0

1 2 3 4 5 6 7 8
Node

Demand (MWh)

=]
]
b

ESummer BWinter E Spring/Fall @ Summer fix B Winter fix OSpring/Fall fix

Fig 7. Demand to be satisfied in second stage of scemagifom SP solution
The LMPs in scenario one are shownin Fig. 8. It shows the price distributed without
significant difference between each state. It ranges from $50/MWh to $81/MWh. The rest of the

LMPs arealso shown in thé\ppendix.
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Fig 8. LMPs in second stage of scenaomefrom SP solution
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4.8.2 Expected Value Solution

In order toassess the value of planning for uncertaintye considersolution of the
deterministic expected value model. First we calculate the expected svalfiehe random
parameters. Then we solve tliketeministic model with the expected value of the random
paraneters. The frst stage solutiorsre obtained and we fix the frst stage decision the
stochastic program model. Then we sofee the optimal secondtage solution inreduced

scenaris. Thereallting objective value represents the ExpectatiortheExpected ValueSolution

(EEV).

The first stage decisions of generation expansion are shown in T&blhel generation
expansionis higher thann the stochastic program solution. For the trarsiors ine expansions

decisions, irthe EV solution we build only two transmission lines: NHMSEMASS and VICT.

Table B. EV solutions of generation expansigi\Wh)

Node CcC CT NU Wi

1 1632.10| 0.00 0.00 364.90
1488.02| 0.00 0.00 366.50
1656.50{ 0.00 0.00 39000
1957.84| 0.00 | 550.37 | 400.00

0.00 0.00 0.00 40000
1062.79( 0.00 0.00 40000
1592.33( 0.00 0.00 396.9
1041.89( 0.00 0.00 399.9

O |IN[O(O|B]|WIN

The second stage decisiond demand to be satisfiedfom expected value solutioare

shownin Fig. 9 for scenario one. The demand to be satisfied in peviael(Summer) is higher
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than periodtwo (Winter) and periodhree (Spring/Fall). Connecticut has the highest demand in

our model.
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Fig 9. Demand to be satefil in second stage of scenario &nen EV soition

The LMPs from expected value solutioarealso derived in scenarione in the FiglO. It
shows the price distributed without significant difference between eachBtatéMPsrange
from $%6/MWh to $81/MWh.The average LMP ithe EV solution for allnodes and seasons is

3% higher thanin the stochastic program solution
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Fig 10. LMP in second stage of scenadmefrom EV solution

We calculate theexpectedbuyer surplus, producer surplus amdnsmission rentslong
with investment costi Table 19. The buyer surplus in stochastic program solution is higher than
in the expected value solutioby $55,906 Because there is# % probabilty that fixed demand
wil exceedthe expected valughe buyer surplus irthe EV solution islower. The average rge
for all nodes and periods ithe EV solutionis larger by3.3%than in thestochastic program
solution The expectedproducer surplusncreases in the EV solutioto compensatdor the loss of
buyer surplus. Theexpectedproducer surplus ithe EV saltion is $2Q562 higher tharn the SP
solution Becausean additionaltransmission lineis built in the EV solution for some senarios
there is no congestionTherefore theexpectedtransmission rentgsrelower thanin the stochastic

programsolution by $7,465.
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Table B.Comparisonof objective value components Stochastic Program (SBhd Expected
Value (EV) solutions

Expected Expected Expected Generation | Transmission
buyer producer transmission expansion expansion
surplus surplus rents cost cost
SP 1,368852 661777 13263 121,160 249
EV 1,312946 682,340 5,797 142,047 362

Compaing our generation expansion decisions the generagkpansionin the SP solution
is lower thanin the B/ solution. The total social welfare is higher in some adesfor stochastic

program solution.

The expectationof the expected valuesolution (EEV) is obtained a$1,858671. Finally
the Value othe StochasticSolution (VSS) is calculagéd as optimalobjective function valueminus
EEV. However we do not havld optimal solution from limited iterations. The lower bound helps

us evaluate the & The VSS is at least$63,810 which is 3.4% of the EEV.
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CHAPTER 5 CONCLUSION

5.1 Summary

We formulated a stochastic program to identifyelfare maximizing generédon and
transmission expansion plans in a restructured electricity network. The scenarios are generated by
the moment matching method’he advantage dhe moment matching method thatit does not
require complete knowledge ofthe distribution of the raom variable. Using historical data
captues the statistitl specifications tareate a similar sample wiimulated statisti@al properties.

By including uncertainties in the lower leyethe MIP is converted into aosthastic MIP (SMIP).
Moreover, we B0 investigate generating scenarfosdifferent time periods. Totally we consider
64 scenarios at one time on a single hour basisb&ttusehe size of the model is still too large
to solve all scenariosimutaneously we adopthe fast forward seletion algorithm to reduce the
scenarios into five scenarios with redistributed probability. Soling thdeimby PHA still
requires darge amount of time but we can deriveupper boundn the maximumexpectedsocial
welfare less investment cost any teration This information provides a bound dtow far from
optimality our solutions areThe generation expansion level decisionsthiestochastic program
solution are lower than theorrespondindevels in theexpected value solutior-ewertransmission
lines arebuit in the stochastic program solution. Because of the variations in demand and fuel
cost, the totabxpectedsocial welfarefrom the stochastic program solutiagsapproximately two

percentlarger wih stochastic program solutioand the invetment cost is lower.
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5.2 Limitations

In our thesis, thdixed O & M costis not considered along witheneration investment cost.
Overnight cost is the only factor we considered in the generation investment cost. If we consider
the fixed O & M cost, tle model is more close to the realty and our decision might change at the
end. In particular, including the fixed O&M cost associated with wind power might reduce the

amount of wind generation expansion.

As it is, we assume the wind power capa@typan®n is constrained by assumptiong/e may
want to use as much wind energy as possible to meet Renewable Portfolio Standard (RPS). But
becausethe wind energy is relatively cheap in our case studyhaebto setan artificial upper
boundonthe wind energycapacity. Properly accounting for the fixed O&M cost might eliminate
the need for this capacity caplowever, we also do not include the production tax credit for wind
power, which may actually result in a negative generation cost for wind power andagecas

use.

The model does not consider the temporal constraints such as ramping constraints and the
actual structure of supply function bid. But in the long tehm,equilibrium modehas been shown

to approximatethe behavior of generators.

5.3 Future Research

During the process of generating scenarios, the data set plays an important role. The quality
of the information gathered wil affect the performance of the model. If the data are more reliable
and complete, the scenarios are more useful. Whie advantages in stochastic program are

usually clear, constructing stochastic programs usually requires information that has not been
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routinely collected. Distributions and basic parameter values might not be known. Approximations
that deal with these fificulties by constructing models that use whatever information is known
could be the only way to implemeristochastic progranmilhe performance ofifterent scenario
generation and reduction metisodould be tested in our modedelecting alifferent number of

scenarios selected might change our solution.

Different uncertainties could be considered in our model such as the weather variation for
the wind energy productioriThe capacity factor for wind power should be included in the future
research.The perspective of uncertantresuls in adifferent expansion plan. Carbon emission is
anot her popul ar issue currently. The producti

decisions. Thus a more realistc model needs to be developed.
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APPENDIX

A. Peak hour vs.Off-peak hour demand
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RI Summer Peak vs. Off-Peak
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CT Winter Peak vs. Off-Peak
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RI Winter Peak vs. Off-Peak
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CT Spring and Fall Peak vs. Off-Peak
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