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Thermodynamic and kinetic approaches for sublimation inside elastoplastic material under tensile

stress are developed for large strains. Various conceptual problems related to irreversible plastic

deformation are addressed for a spherical bubble. They include definitions of the thermodynamic driving

forces and activation energies, nontraditional concepts of a critical nucleus, path dependence of its

appearance, modes of its growth (sublimation or expansion due to loss of mechanical stability), and the

possibility of reverse transformation. The kinetic relationships between sublimation pressure and

temperature are obtained.
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During thermomechanical loading, high temperatures
can be induced in local spots inside the material, e.g.,
due to void collapse. Also, large tensile stresses may
appear in rarefaction waves during laser ablation [1] or in
nanoparticles after dynamic shell fracture [2]. High tem-
perature and tensile stresses can cause sublimation—i.e.,
phase transformation solid-gas. Sublimation can also be a
mechanism of void nucleation. However, thermodynamic
and kinetic conditions for homogeneous sublimation inside
the body (that we determine in this Letter) are significantly
different from the conditions at the body surface, where
sublimation occurs at constant pressure. Inside the body,
pressure grows drastically due to large volume increase,
causing large plastic deformations of solid around the
bubble. Resistance to plastic flow determines actual pres-
sure variation during the sublimation. While nucleation of
the gas bubble within liquid (when strength effects are
absent) is a textbook problem, to the best of our knowl-
edge, the problem of sublimation inside elastoplastic ma-
terial has never been considered in the literature. At the
same time, it is related to several conceptual problems and
scenarios that are absent in bubble appearance within
liquid or elastic solid. Large plastic deformations require
application of geometrically nonlinear continuum mechan-
ics. Because of plastic dissipation, traditional thermody-
namic methods that determine the driving force for
sublimation as the change in Gibbs potential of the system
cannot be applied. For sublimation in elastic material, a
classical critical nucleus can be considered that corre-
sponds to the maximum of activation energy Q vs the
nucleus radius. Also, Q is path-independent—i.e., it is
independent of whether it is nucleation via homogeneous
transformation (NHT) within a critical nucleus, nucleation
by interface propagation (NIP) from zero size to a critical
nucleus, or nucleation by any combination of these pro-
cesses. In contrast, Q for sublimation in plastic material is
found to be path-dependent. That is why we introduce and
analyze several possible concepts of critical nucleus. It

looks like appearance of a nucleus by interface propagation
up to the radius above which it grows by spontaneous sub-
limation is the most natural definition of the critical nu-
cleus. However, at large tensile pressures, when critical nu-
cleus consists of only a few molecules, NHT from solid to
gas is more appropriate. Also, due to path dependence, we
cannot consider interface propagation from zero size.
Thus, the homogeneous appearance of a subcritical nu-
cleus has been considered, followed by NIP. Thermody-
namic force and Q are defined for both processes, and they
essentially differ. The kinetic nucleation relationship be-
tween sublimation temperature �s and tensile pressure �1

is obtained from the condition Q ¼ 80k� [3], where k is
the Boltzmann constant for various interface energies. This
criterion [more generally, Q ¼ ð40–80Þk�] is determined
from the condition that, for larger Q, nucleation time
exceeds any realistic time of observation, and it is widely
used for nucleation [3–5].
The following results are obtained, which do not have

counterparts in nucleation in elastic materials. For surface
energy � � 0:1 J=m2 and in narrow range above some
temperature �g, NIP is slightly more favorable, and the

classical definition of a critical nucleus is valid. In all
other cases, NHT is significantly more probable, although
such a homogeneously transformed nucleus (HTN) cannot
grow. It is necessary to slightly increase � or �1 (to a value
well below that for NIP) to cause growth. However, below
some critical temperature �in, while the nucleus cannot
grow because of solid-gas transformation, it expands
due to loss of mechanical stability. To our knowledge,
this is the only known example of transformation of a
subcritical nucleus into a supercritical one due to mechani-
cal instability. One more unusual result for small � is that
HTN, while it starts to shrink, does not completely dis-
appear. Instead, it represents a metastable void. Thus,
subcritical sublimation represents a mechanism of void
nucleation, and this void serves as an embryo for further
sublimation.
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While we consider homogeneous nucleation in defect-
free nanovolumes of material, the effect of defects can be
taken into account as the next approximation. We under-
stand that operating with thermodynamic functions far
from equilibrium and using a continuum concept at nano-
scale can be questioned. However, these assumptions are
routinely used in the classical nucleation theory, and our
goal is to conceptually advance this theory for the case with
plastic deformation, dissipation, and irreversibility in the
simplest way. Because the results of the application of
classical nucleation theory are in good correspondence
with experiments involving the defect-free case (e.g., for
martensitic phase transformations [4] and cavitation [6]),
and because they are widely used for analysis of nucleation
at the nanoscale (e.g., for melting [7]), we expect that our
generalization of this theory will be a good approximation
of reality as well. There are many other examples in which
the continuum thermodynamic approach works surpris-
ingly well even beyond its expected limit of small-scale
applicability.

A general thermodynamic and kinetic theory of solid-
solid phase transformations in inelastic materials was de-
veloped in [5,8,9] and was applied to solve a number of
problems (see review [5]). In this Letter, a new thermody-
namic and kinetic approach for sublimation inside elasto-
plastic material is developed as a modification of the theory
[5,8,9]. The key point of the theory in [5,8,9] is that the
driving force for the phase transition in plastic materials is
equal to the dissipation due to only the phase transforma-
tion during the entire transformation in the nucleus for
NHT or at the moving interface for NIP; they will be
used here as well [Eqs. (1) and (7)]. Detailed treatment
of NIP, taking into account the constitutive equations of gas
(instead of solid), analytical treatment of large plastic
deformations, and the combination of our approach for
phase transformations in plastic materials and classical
nucleation theory are contributions of the current Letter.

The total dissipation during the NHT, Xh, can be deter-
mined based on the second law of thermodynamics: Xh ¼
XvVs � �S, where Vs is the volume of transformed solid;
S ¼ 4�r2 is the surface of the gas bubble; � is the solid-gas
interface energy;

Xv ¼ �W � �s�c (1)

with W representing mechanical work and � being the
mass density; �c ¼ c g�c s, where c is the Helmholtz

free energy and g and s represent the gas and solid. An
activation energy is defined as Q ¼ �minXh with respect
to Vs. For elastic material, Xv and Q coincide with the
energy change in a system and maximum energy of the
nucleus, respectively—i.e., with classical definitions.

Then for HTN, the volume of transformed solid and the
activation energy corresponding to minXh, and the equi-
librium condition at the interface are

Vc¼ð32�a2�3Þ=ð3X3
vÞ; Q¼16�a2�3=ð3X2

vÞ¼80k�;

(2)

pg ¼ �r þ 2�=r; (3)

where a ¼ V=Vs, pg is the gas pressure and�r is the radial

stress in solid at the interface. Solution to the large-strain
problem is [10]

�r ¼ ��1 þ 2
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where � ¼ 1��
1�2� , � is the Poison’s ratio, K is the bulk

modulus, and �y is the yield strength. The von Mises

plasticity condition, �� � �r ¼ �y, was used, where ��

is the circumferential stress. In comparison with [10], we
added internal pressure and neglected elastic strains (to
obtain an analytical solution). Then, we evaluate mechani-
cal work
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where a1 ¼ 1=½1� ��y=ðeKÞ� is introduced to avoid sin-

gularity in �r due to neglected elastic strains and is deter-
mined from the condition that before sublimation
�r ¼ ��1, " ¼ a� 1, and "1 ¼ a1 � 1. We consider an
ideal gas and use

pg¼�R�=Ma; c g¼ c �
g�R�

M
ln

�
p0

pg

�
�R�

M
ln

�
�

�0

�
;

c s¼ c �
s þ �2

1

2K�s

; (6)

where �0 and p0 are the reference temperature and pres-
sure, M is the molecular mass, R is the gas constant, and
c � is the thermal part of free energy per unit mass. We
assume that �c � ¼ �c �

0 ��sð�� �0Þ, where �s is the
jump in entropy.
Thus, the complete system includes Eqs. (1)–(6). To find

the �s � �1 relation for HTN, the following steps are
taken. For prescribed �s and a number of values of �1,

substituting the radius of the solid HTN rsc ¼ ð3Vc=4�Þ1=3
in the equilibrium Eq. (3), we can find the relationships
að�1Þ and Xv½að�1Þ�. Substituting them into Eq. (2) for Q,
the stress �1 can be found. Then, the radius of the HTN rsc
is found. We check whether rsc > rm, where rm is the
minimal radius for which V contains enough molecules
to talk about gas. Otherwise, we use rsc ¼ rm and repeat
the same procedure. We also check a > a1 þ �, where � is
a small number (we used � ¼ 10�5). In the opposite case,
we neglect deformation of Vh and use W ¼ 0 and a ¼ 1.
After HTN is found, we check its mechanical stability

pgðaÞ<�r þ 2�
rsca

1=3 for the prescribed rsc. We also check

whether it can grow or will shrink via interface propagation
(see below).
For NIP, the total system includes Eqs. (3), (4), and (6),

(excluding c s), and
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X� ¼ �pgð1=�g � 1=�sÞ ��c � 2�=ð�srÞ; (7)

c s ¼ c �
s þ 1

�s

�
1

18K
ð3�r þ 2�yÞ2 þ 1

6	
�2

y

�
; (8)

Q ¼ Q0 �
Z mc

mm

X�dm ¼ 80k�: (9)

Here, X� is the driving force for interface propagation [5],
which has the same form as for elastic materials; c s takes
into account the elastic energy at the point near the inter-
face, where �� ¼ �r þ �y, 	 is the shear modulus, Q0 is

the activation energy for NHT of the bubble with rs ¼ rm
and mass mm (calculated as described above), and dm ¼
�sv4�r

2dt is the mass covered during time dt by the
interface moving with the velocity v. The condition X� ¼
0 determines the radius of the critical gaseous nucleus rc
with the mass mc: for r > rc, we have X� > 0, and the
nucleus will grow. For prescribed �s and a number of
values of �1, we express rcðaÞ from Eq. (3) and substitute
in Eq. (7). Then, the stress �1 can be found from Eq. (9),
which determines rsc and rc.

Calculations were produced for the following data
(which are close to the data for energetic crystal HMX, if
known): �0 ¼ 298:15 K, p0 ¼ 1 bar, �s ¼ 1:031 J=Kkg,
�c �

0 ¼ 379:515 J=g, reference mass density of gas �0g ¼
10:1� 10�3 g=cm3 and solid �s ¼ 1:71 g=cm3, M ¼
250:151 kg=mol, K ¼ 15 GPa, �y ¼ 2:6 MPa, and rm ¼

0:3 nm. Sublimation temperature and pressure are divided
by �t ¼ 784:12 K (defined from Xv ¼ 0 at �1 ¼ 0) and
�m ¼ 15:77 MPa (pressure for unlimited plastic expan-
sion of the cavity for � ¼ 0, see below), respectively.
The relationships �s � �1 for NHT are shown in Fig. 1.

We focus on the � smaller than typical equilibrium values
for a solid-gas interface of 1 J=m2. It is known from the
phase-field theory of phase transformation that surface
energy decreases with the growing driving force for trans-
formation and approaches zero when the parent phase
completely loses its thermodynamic stability.
There are two main regions on the curves in Fig. 1. At

high temperature and low pressure, sublimation tempera-
ture is practically independent of �1 because the change in
volume is very small and �1 does not contribute to the
driving force. At lower temperature and higher �1, sub-
limation temperature is strongly reduced with the growth
of �1, and for small �, this reduction is drastic. The main
reason for a strong effect of �1 is that an external pressure
(for neglected �) reaches the maximum possible plastic
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FIG. 1. Relationships between sublimation temperature �s and
tensile pressure �1 for NHT for various surface energies (shown
near curves) (in J=m2). Below temperature �m, radius of nucleus
rsc ¼ rm. Below temperature �in, the nucleus is mechanically
unstable and expands spontaneously. Above temperature �r,
deformation of the nucleus is negligible. Above temperature
�g (for � � 0:1), NIP is slightly kinetically favorable than

NHT (see Fig. 2). Dashed lines are for NIP.
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FIG. 2. Relationships between sublimation temperature �s and
tensile pressure �1 for NIP (dashed line) and for NHT (solid
line) for � ¼ 0:01 (a), � ¼ 0:05 (b), and � ¼ 0:12. (c) For NHT
and above temperature �in, nucleus cannot grow after appear-
ance. Parameters have to be increased to value corresponding to
dotted line for spontaneous nucleus growth.
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resistance of the solid sphere �m. For � ¼ 0, it is deter-
mined from Eq. (3) for pg ¼ �r ¼ 0 and a ! 1; i.e.,

�m ¼ 2
3�y½1þ lnð K

��y
Þ�. For �1 >�m, unlimited plastic

expansion of the cavity, beginning with zero radius, starts
even for pg ¼ 0. For finite �, the change in volume a has

the order of magnitude 100 (for � ¼ 0:05) to 1000 (for
� ¼ 0:18); i.e., for such a large a, the contribution of �1 to
the driving force is large. Also, a large a produces a large
rc even for the smallest rsc and for the relatively large �
increase in tensile pressure necessary for nucleation.

The relationships �s � �1 for NIP are shown in Fig. 2.
For � � 0:1 J=m2 and � > �g, NIP occurs at slightly lower

temperatures than for NHT, and in this region, the classical
definition of the critical nucleus is valid. For �< 0:1 J=m2

for small�1 and for any � at large�1, NHToccurs at lower
temperatures—i.e., it is kinetically more favorable.
However, at the curve corresponding to NHT, X� < 0;
i.e., growth is impossible. The following scenarios are
considered. 1. For the part of the curves in Fig. 1 below
�in, the equilibrium of the gas bubble is mechanically
unstable: for any gas expansion, the gas pressure is larger
than what solid can support. Thus, despite the fact that this
nucleus cannot grow due to the solid-gas transformation—
i.e., it is a subcritical nucleus in the traditional sense—its
radius grows due to gas expansion. After exceeding the
critical radius determined from the condition X� ¼ 0,
sublimation is activated as well. That is why there is no
sense in continuing the curves �s � �1 for NIP below �in.
To our knowledge, this is the only known mechanism that
can stabilize the subcritical nucleus and transform it to
supercritical one. 2. Above �in, it is necessary to slightly
increase � or �1 to initiate growth [dotted line in Figs. 2(b)
and 2(c)]. This may happen fluctuationally. 3. Above �in, it
is also necessary to check whether reverse transformation
via interface propagation is possible. During reverse trans-
formation, gas pressure is reduced and solid material ini-
tially undergoes elastic unloading. For pg < 2�=r, stresses

at the internal surface of a solid become tensile and pull
upon material, trying to reduce the bubble, and when the
plasticity criterion is satisfied, plastic flow starts to close
the hole. The driving force for the interface propagation for
reverse transformation Xr

� has the same expression as X�

but with a different expression for elastic energy. This
problem will be presented in detail elsewhere. Here, we
will make a simple estimate related to possible scenario.
Just after the appearance of HTN, Xr

� ¼ �X� > 0; i.e.,
reverse transformation starts. Assuming that the entire gas
solidifies (i.e., pg ¼ 0), we distribute solidified volume Vsc

evenly over the hole surface and determine the radius of the
new hole rh; rh > 0 because of plastic expansion during
nucleation. Next, we find cases in which the surface ten-
sion 2�=rh is not sufficient to start plastic flow toward
closing the hole. Then, it is guaranteed that a residual void
remains and that, consequently, some gas will sublime in it.
This is possible at least for �< 0:05 J=m2. Thus, above
�in, HTN does not become completely reversed, and it

represents a metastable embryo. Subcritical sublimation
in this case represents a mechanism of void nucleation,
and this void serves as an embryo for further sublimation.
Activation energy for its transformation into a supercritical
nucleus (for which X� > 0) is much lower than that for its
appearance. For large �, surface tension closes the hole—
i.e., HTN is in fact a subcritical nucleus between �in and
temperature �g, above which NIP is kinetically more fa-
vorable for the NHT.
To check the predictions of our theory either experimen-

tally or using molecular dynamic simulations, a nanopar-
ticle covered by a few-nanometer shell with a coherent
interface (to suppress surface nucleation) can be quickly
heated up to the desired temperature and subjected to com-
pressive pressure that sharply reduces to zero. Unloading
wave will generate high tensile pressure in the central
region of the particle; corresponding equations can be
found in [2]. The obtained relationship between sublima-
tion pressure and temperature can be compared with the
prediction of our theory. The large difference between sub-
limation pressures for a critical nucleus calculated based
on the thermodynamic driving force for growth X� and on
mechanical instability (see Fig. 1) can be used to check
theoretical predictions qualitatively, if quantitative com-
parison is a problem. In experiments, high compressive
pressure and fast pressure release can be provided by an
additional external shell with a thermal expansion coeffi-
cient essentially smaller than that of the particle. During
rapid laser heating, internal compressive pressure is gener-
ated in the particle, which overloads and spallates the ex-
ternal shell, causing fast pressure release (see detail in [2]).
To summarize, thermodynamic and kinetic approaches

for sublimation inside elastoplastic material under tensile
stress were developed that exhibited various nontraditional
conceptual problems and phenomena.
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