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Scalable implementation of analytic gradients for second-order Z-averaged
perturbation theory using the distributed data interface

Christine M. Aikens,a� Graham D. Fletcher,b� Michael W. Schmidt, and Mark S. Gordonc�

Department of Chemistry, Iowa State University, Ames, Iowa 50011

�Received 12 September 2005; accepted 1 November 2005; published online 4 January 2006�

The analytic gradient expression for second-order Z-averaged perturbation theory is revised and its
parallel implementation is described in detail. The distributed data interface is used to access
molecular-orbital integral arrays stored in distributed memory. The algorithm is designed to
maximize the use of local data and reduce communication costs. The iterative solution and the
preconditioner used to induce the convergence of the coupled-perturbed Hartree-Fock equations are
presented. Several illustrative timing examples are discussed. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2140688�

I. INTRODUCTION

Second-order Møller-Plesset �MP2� perturbation theory1

is extensively employed to calculate molecular energies and
geometries since it provides a balance between the amount of
electron correlation recovered and the computational require-
ments of a calculation. For closed-shell systems, perturbation
theory based on a restricted Hartree-Fock �RHF� wave func-
tion is well defined. However, open-shell systems are much
more challenging. Although perturbation theory based on an
unrestricted Hartree-Fock �UHF� wave function follows di-
rectly from the MP2 spin-orbital equations, the wave func-

tion is not an eigenfunction of the Ŝ2 operator, and this re-
sults in spin-contamination problems. In addition, since
different spatial orbitals are used for the � and � electrons,
the method requires three to four times as much memory,
disk space, etc., as a comparable closed-shell calculation.
Spin-projected methods may alleviate some of the spin con-
tamination, but this can introduce size-consistency
problems.2

As a result, many open-shell perturbation-theory meth-
ods based on RHF wave functions have been proposed.3–9

These methods may be divided into two classes: those that

have a configuration state function �CSF� basis �which are Ŝ2

eigenfunctions� and those that have a spin-orbital determi-
nant basis. Methods with a CSF basis include the method of
Hubac and Carsky �HCPT�,3 the OPT1 and OPT2 methods,4

and the IOPT method.9 Methods using a spin-orbital basis
include the ROMP,5 RMP �Ref. 6�/ROHF-MBPT,7 and
Z-averaged perturbation-theory8 methods. The convergence
of the perturbation series for HCPT and OPT1 is expected to
be poor.5,10 OPT2 is not invariant with respect to rotations
between degenerate singly occupied orbitals.11 IOPT is not
size consistent,12 although the effects of this on its results

have been debated.13 ROMP and RMP use different � and �
spatial orbitals, so the cost of these two methods will be
similar to unrestricted perturbation theory.

Z-averaged perturbation theory,8 �ZAPT� is based on a
set of “symmetric spin-orbitals,”14 and the symmetry of these
orbitals leads to significant computational savings over
ROMP and RMP. The spatial parts of the spin orbitals come
from an open-shell ROHF calculation. The standard � and �
spin functions are assigned to doubly occupied and unoccu-
pied orbitals in the reference function. The spin parts of the
singly occupied orbitals are assigned to be �+ and �−, where

�+ = 1
�2

�� + �� ,

�− = 1
�2

�� − �� .

So, the reference function is symmetric with respect to the
interchange of � and � spin indices. The single determinant

based on these orbitals is an eigenfunction of Ŝ2, although
the nth-order perturbed wave functions generally are not.

There are no Ŝ2 contaminants in the second-order �ZAPT2�
energies. The reference function is a linear combination of Ŝz

eigenfunctions, but the raising and lowering operators Ŝ+ and

Ŝ− can be used to recover eigenfunctions of Ŝz.
14 The canoni-

calization chosen for the molecular orbitals �MO’s� is

equivalent to using 1
2 �F̂�+ F̂�� to canonicalize the three shells

�doubly occupied, singly occupied, and unoccupied
�virtual��.15 The zeroth-order Hamiltonian is defined as the
diagonal part of the spin-orbital Fock matrix.

In order to effectively use this method, it is desirable to
calculate analytic derivatives of the second-order energy.
Equations for the ZAPT2 gradient have been previously de-
rived by Fletcher et al.16 Revisions to these equations are
made in Sec. II of this work. The subsequent implementation
is described in Sec. III.

The efficient implementation of gradients for post-
Hartree-Fock methods has been of interest for many years.
The first closed-shell MP2 gradient derivation was presented
by Pople et al. in 1979.17 Later, the storage of derivative
integrals and three-virtual MO integrals was eliminated,18 the
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number of unknown response vectors was reduced to 1,19

and the need to solve the coupled-perturbed Hartree-Fock
equations in the occupied-occupied and virtual-virtual blocks
was removed.20 Frozen orbitals further reduced the compu-
tational cost.21 Direct and semidirect algorithms reduced the
required memory and disk storage requirements and permit-
ted larger calculations, although this came at the cost of in-
creased integral computation.22

Even with these improvements, the computational re-
quirements for large molecules with reasonable basis sets
quickly outgrow the capabilities of a single-processor com-
puter. For second-order perturbation theory, the time require-
ments for a calculation increase as O�n5� with the number of
basis functions n, and the memory needs can grow as O�n3�,
depending on the algorithm. Distributed data parallel
schemes are desirable, as these alleviate both the single-node
memory and time requirements of a calculation.

The distributed data interface �DDI� was developed by
Fletcher et al. to provide a set of tools for distributed
memory programing.23,24 Like global arrays �GA�,25 DDI
provides a programing environment that mimics the ease of a
shared-memory environment yet permits the scalability of a
distributed memory architecture. Large data arrays can be
stored over the collective memory of the system. These ar-
rays can be easily accessed by any of the nodes, although the
programer must be aware of the increased time required for
remote memory access and should design algorithms that
maximize the use of local memory. In order to maximize
scalability, the programer must also limit the replicated
memory requirements. To date, distributed storage algo-
rithms for self-consistent field �SCF� energies,26 analytic
SCF Hessians, closed-shell23 and unrestricted27 MP2 ener-
gies and gradients, ZAPT2 energies, multireference self-
consistent field energies,28 gradients, and Hessians,29 multi-
reference perturbation-theory energies,30 single excitation
configuration-interaction �CI� energies28 and gradients,31 and
full CI energies32 have been implemented using DDI into the
electronic structure code GAMESS.33 Recently, DDI has been
extended to take optimal advantage of shared-memory pro-
cessor �SMP� computers.34

II. THEORY

A. Notation and energy expression

The notation used here is as similar as possible to a
recent overview of MP2 gradient equations.35 The ZAPT2
energy is the sum of the SCF and second-order correction
energies. The frozen-core ZAPT second-order energy correc-
tion may be expressed in the MO basis as

EZAPT
�2� =

1

2�
ij

�
pq

s.v.

�ip�jq��Cpq�ip�jq� − �iq�jp��/Dij
pq

+
1

2�
ab

�
pq

d.s.

�pa�qb��Cpq�pa�qb� − �pb�qa��/Dpq
ab

+ �
ixya

�ix�ya��ix�ya�/Diy
xa

+
1

2 �
ixya

�ix�xa��iy�ya�/Di
a. �1�

General MO’s are indexed by p, q, r, and s. Doubly occupied
active MO’s �referred to as DOCC� are indexed by i, j, and k.
Singly occupied MO’s �SOCC� are indexed by w, x, y, and z.
Virtual �unoccupied� MO’s �VIRT� are indexed by a, b, and
c. Doubly occupied frozen-core MO’s �CORE� are indexed
by m and n. The summation range denoted s.v. extends over
the SOCC and VIRT spaces; likewise, d.s. extends over the
DOCC and SOCC spaces and c.d. extends over the CORE
and DOCC spaces. The four-index symbol �pq �rs� is a two-
electron repulsion integral �ERI� over MO’s in Mulliken no-
tation. These integrals are transformed into the MO basis
from the atomic-orbital �AO� basis by

�pq�rs� = �
����

C�pC�qC�rC�s������� , �2�

where �, �, �, and � index AO’s, C�p is a MO coefficient,
and ��� ���� is an ERI in the AO basis. The MO coefficient
C�p must be distinguished from the coefficient in the ZAPT2
energy expression in Eq. �1�, where the coefficient Cpq is

Cpq = 1 for both p � SOCC and q � SOCC

Cpq = 2 otherwise. �3�

The four-index denominator is expressed as

Dpq
rs = �p + �q − �r� − �s� �4�

and the two-index denominator is written as

Dp
q = �p − �q�. �5�

The orbital energies in Eqs. �4� and �5� are defined as

�p = �p� = �pp for p � SOCC,

�p = �pp −
1

2�
y

�py�py� for p � SOCC, �6�

�p� = �pp +
1

2�
y

�py�py� for p � SOCC,

with

�pp = hpp + �
q

all

fq�2�pp�qq� − �pq�pq�� , �7�

where hpq is a core Hamiltonian element and fp is the occu-
pation number of the pth shell �1 for DOCC; 1

2 for SOCC�.
The SOCC orbital energies in Eq. �6� have an additional
“integral component” that comes from the choice of canoni-
calization of the Fock matrix. The abbreviations i.p. and d.p.
will be used to denote independent and dependent pairs of
molecular orbitals, respectively. A rotation between two dou-
bly occupied, between two singly occupied, or between two
virtual orbitals does not change the SCF energy, so these
pairs are called dependent pairs. The other orbital pairs are
uniquely determined, so these are called independent pairs.

014107-2 Aikens et al. J. Chem. Phys. 124, 014107 �2006�
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B. General gradient expression

The derivative of the ZAPT2 energy is the sum of the
derivatives of the SCF and second-order correction contribu-
tions to the energy. The general form of this derivative with
respect to a nuclear displacement � has the following form:

E� = �
��

AO

P��h��
� + �

��

AO

W��S��
� + �

����

AO

	������������. �8�

In Eq. �8�, h��
� are the core Hamiltonian derivative integrals,

S��
� are the overlap derivative integrals, and ��� ����� are the

derivatives of the ERI’s in the AO basis. The one-particle
density matrix P��, energy-weighted density matrix W��, and
two-particle density matrix 	���� are sums of their SCF ana-
logs and a second-order correction,

P�� = P��
SCF + P��

�2�, �9�

W�� = W��
SCF + W��

�2�, �10�

	���� = 	����
SCF + 	����

�2� . �11�

The second-order two-particle density correction is ex-
pressed as the sum of separable �S� and nonseparable �NS�
terms,

	����
�2� = 	����

S + 	����
NS . �12�

The equations for the SCF terms may be written as follows:

P��
SCF = 2 �

p

c.d.s.

f pC�pC�p, �13�

W��
SCF = 2�

pq

all

C�pC�q
pq, �14�

	����
SCF =

1

2
P��

SCFP��
SCF −

1

4
P��

SCFP��
SCF −

1

4
P��

S P��
S , �15�

where

P��
S = �

x

C�xC�x �16�

and 
pq is defined in Eq. �41� below.

C. Gradient of the ZAPT2 energy

The usual derivative techniques are employed; these are
described in detail in Ref. 16. A few necessary revisions to
the previous derivation are presented in this section.

The derivative of the fourth term in the second-order
energy expression �Eq. �1�� may be written

�1

2 �
ixya

�ix�xa��iy�ya�/Di
a	���

=
1

2 �
ixya


2�ix�xa�����iy�ya�/Di
a − �Di

a��

��ix�xa��iy�ya�/�Di
a�2� , �17�

where ��� indicates the derivative over MO’s. The derivative

of an ERI in the MO basis is well known36 to be

�pq�rs���� = �pq�rs�� + �
t

Utp
� �tq�rs� + �

t

Utq
� �pt�rs�

+ �
t

Utr
� �pq�ts� + �

t

Uts
� �pq�rt� , �18�

where the U� matrix describes the response of the MO coef-
ficients to the perturbation �. Upon substitution of Eq. �18�
into Eq. �17�, the first term in the resulting equation has the
form

�
ixya

�ix�xa���iy�ya�/Di
a, �19�

where

�ix�xa�� = �
����

C�iC�xC�xC�a��������. �20�

Equation �19� can be rearranged as follows:

�
ixya

�ix�xa���iy�ya�/Di
a

= �
����

�
ixya

C�iC�xC�xC�a���������iy�ya�/Di
a

= �
����

���������
x

1

2
C�xC�x�

ia

2C�iC�a�
y

�iy�ya�/Di
a

=
1

2 �
����

��������P��
S �

ia

2C�iC�aTia
�4�

=
1

2 �
����

��������P��
S T��

�4� , �21�

where

Tia
�4� = �

y

�iy�ya�/Di
a, �22�

T��
�4� = 2�

ia

C�iC�aTia
�4�. �23�

This yields a separable density term T��
�4�P��

S .
During the derivation, terms such as

2�
y�x

Uyx
� 1Pyx

�2���x� − �y�� �24�

are formed, where 1Pyx
�2� indicates the first term of Pyx

�2�. Using
Eq. �6�, Eq. �24� can be rewritten as

2�
y�x

Uyx
� 1Pyx

�2���xx − �yy +
1

2�
z

��xz�xz� − �yz�yz��
 .

�25�

Equation �25� may be divided into an orbital energy part

2�
y�x

Uyx
� 1Pyx

�2�
�xx − �yy� �26�

and an integral component part

014107-3 Implementation of analytic gradients J. Chem. Phys. 124, 014107 �2006�
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2�
y�x

Uyx
� 1Pyx

�2�Fyx, �27�

where

Fyx =
1

2�
z

��xz�xz� − �yz�yz�� . �28�

The orbital energy part in Eq. �26� is treated with the usual
procedure.16 Equation �27� is divided into two pieces, and
the x and y indices are swapped in the first term as follows:

�
x�y

Uxy
� 1Pxy

�2�Fxy + �
y�x

Uyx
� 1Pyx

�2�Fyx. �29�

The derivative of the orthogonality condition,

Upq
� + Uqp

� + Spq
� = 0, �30�

may be used to rearrange the second half of Eq. �29� to yield

�
x�y

Uxy
� 1Pxy

�2�Fxy − �
y�x

Uyx
� 1Pyx

�2�Fyx − �
y�x

Sxy
� 1Pyx

�2�Fyx.

�31�

Since 1Pyx
�2�= 1Pxy

�2� and Fxy =−Fyx, the first two terms can be
combined and the third term can be modified slightly, giving

�
x�y

Uxy
� 1Pxy

�2�Fxy + �
y�x

Sxy
� 1Pxy

�2�Fxy . �32�

The second term in Eq. �32� produces a contribution to the
one-particle energy-weighted density matrix. Given that

Upq
� =

Qpq
�

��qq − �pp�
, �33�

the first term of Eq. �32� becomes

�
xy

Q
xy� 1 − 
xy

��yy − �xx�
1Pxy

�2�Fxy� , �34�

which yields a contribution to the one-particle density ma-
trix. Due to Eq. �34�, a potential singularity exists when sin-
gly occupied orbitals are degenerate and �yy =�xx. Assuming
Fxy goes to zero faster than the orbital energy difference, this
term can be neglected for degenerate SOCC orbitals.

Also during the derivation, terms such as

2�
ij

�
pq

s.v.

�
m

Umi
� �mp�jq��Cpq�ip�jq� − �iq�jp��/Dij

pq �35�

are produced. This term may be divided into two parts, and
Eq. �30� may be used to rearrange Eq. �35� as

�
ij

�
pq

s.v.

�
m

Umi
� �mp�jq��Cpq�ip�jq� − �iq�jp��/Dij

pq

− �
ij

�
pq

s.v.

�
m

Uim
� �mp�jq��Cpq�ip�jq� − �iq�jp��/Dij

pq

− �
ij

�
pq

s.v.

�
m

Smi
� �mp�jq��Cpq�ip�jq� − �iq�jp��/Dij

pq. �36�

The third term in Eq. �36� includes an overlap derivative

integral, so the expression multiplying the integral is a con-
tribution to the energy-weighted density matrix,

Wim
�2� = − �

j
�
pq

s.v.

�mp�jq��Cpq�ip�jq� − �iq�jp��/Dij
pq. �37�

A similar procedure is used to determine the other three am-
plitude terms of Wim

�2�.
For implementation purposes, the energy-weighted den-

sity matrix is symmetrized. Thus,

Wim
�2� = − Pim

�2��mm �38�

and

Wmi
�2� = − Pmi

�2��ii �39�

become

Wim
�2� = Wmi

�2� = 1
2 �Wim

�2� + Wmi
�2�� = − 1

2 Pmi
�2���mm + �ii� , �40�

since the one-particle density is also symmetrized.
In the general restricted open-shell coupled-perturbed

Hartree-Fock �CPHF� equations, the Lagrangian matrices

pq, the generalized Lagrangian matrices �pq

r , and the � ma-
trices can be defined by


pq = fphpq + �
s

c.d.s.

��rs�pq�ss� + �rs�ps�qs�� , �41�

�pq
r = frhpq + �

s

c.d.s.

��rs�pq�ss� + �rs�ps�qs�� , �42�

and

�rs
pq = 2��rp − �sp��pq�rs� + ��rp − �sp���pr�qs� + �ps�qr�� ,

�43�

where �pq and �pq are the Coulomb and exchange coupling
constants, respectively. These constants have the values

�pq D S V

D 2 1 0

S 1 1
2 0

V 0 0 0

�pq D S V

D − 1 − 1
2 0

S − 1
2 − 1

2 0

V 0 0 0

, �44�

where p and q index DOCC �D�, SOCC �S�, or VIRT �V�
MO’s. From the variational conditions, 
pq=
qp. In addition,
�pq

r =�qp
r . If r and p belong to the same shell, �pq

r =
pq. For
virtual orbital a, 
pa=
ap=0, �pq

a =�qp
a =0, and �rs

aq=0. As a
result, the 
pq and �pq

r terms do not contribute to the diagonal
blocks of the W�2� matrix. The expressions for the off-
diagonal blocks are also simpler �see Sec. II D�.

Formally, �rs
pq��rs

qp, but �rs
pq=�rs

qp if p and q belong to the
same shell. Diagonal blocks of W�2� contain terms with the
form

Wrs
�2� = −


rs

2 �
p�q

i.p.

Zpq�pq
rr − 
rs� �

p�q

i.p.

Zpq�pq
rs �45�

where Zpq is the solution to the Z-vector equations �see Sec.
III D� and a modified Kronecker delta is defined as
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pq� = 1, p � q ,

�46�

pq� = 0, p � q .

By symmetrizing the terms, Eq. �45� can subsequently be
simplified to

Wrs
�2� + Wsr

�2�

2
= −


rs

4 �
p�q

i.p.

Zpq�pq
rr −


sr

4 �
p�q

i.p.

Zpq�pq
ss

−

rs�

2 �
p�q

i.p.

Zpq�pq
rs −


sr�

2 �
p�q

i.p.

Zpq�pq
sr

= −

rs

2 �
p�q

i.p.

Zpq�pq
rr −


rs�

2 �
p�q

i.p.

Zpq�pq
rs

−

sr�

2 �
p�q

i.p.

Zpq�pq
rs

= −

rs

2 �
p�q

i.p.

Zpq�pq
rr −

�1 − 
rs�
2 �

p�q

i.p.

Zpq�pq
rs

= −
1

2 �
p�q

i.p.

Zpq�pq
rs . �47�

The resulting density-matrix expressions are summarized in
Sec. II D.

D. Density-matrix expressions

In this section, the densitylike quantities, �, P�2�, W�2�,
�S, and �NS, and the Lagrangian L are summarized in terms
of the matrix elements of their various shell-shell blocks.
Gpqrs is defined to be Gpqrs=4�pq �rs�− �pr �qs�− �ps �qr�.

• �:

�x = �
i,j

�
p

s.v.

�ix�jp��Cxp�ix�jp� − �ip�jx��/Dij
xpDij

xp

+ �
a,b

�
p

d.s.

�xa�pb��Cxp�xa�pb� − �xb�pa��/Dxp
abDxp

ab

+ �
i,z,a

��ix�za�2/�Diz
xa�2 + �iz�xa�2/�Dix

za�2� . �48�

• CORE-CORE response density:

Pmn
�2� = 0. �49�

• DOCC-CORE response density:

Pim
�2� =

1

��i − �m��2�
j

�
p,q

s.v.

�mp�jq��Cpq�ip�jq�

− �iq�jp��/Dij
pq + 2�

a,b
�

p

d.s.

�ma�pb��2�ia�pb�

− �ib�pa��/Dip
ab + 2�

x,y
�

a

�mx�ya��ix�ya�/Diy
xa

+ �
x,y,a

�mx�xa��iy�ya�/Di
a� . �50�

• DOCC-DOCC response density:

Pij
�2� = − �

k
�
p,q

s.v.

�ip�kq��Cpq�jp�kq� − �jq�kp��/Dik
pqDjk

pq

− �
a,b

�
p

d.s.

�ia�pb��2�ja�pb� − �jb�pa��/Dip
abDjp

ab

− �
x,y

�
a

�ix�ya��jx�ya�/Diy
xaDjy

xa

−
1

2 �
x,y,a

�ix�xa��jy�ya�/Di
aDj

a. �51�

• SOCC-SOCC response density:

Pxy
�2� = �

i,j
�

p

s.v.

�ix�jp��Cyp�iy�jp� − �ip�jy��/Dij
xpDij

yp − �
a,b

�
p

d.s.

�xa�pb��Cyp�ya�pb�

− �yb�pa��/Dxp
abDyp

ab + �
i,z

�
a

��ix�za��iy�za�/Diz
xaDiz

ya − �iz�xa��iz�ya�/Dix
zaDiy

za� +
�1 − 
xy�

2��y − �x�
�
w

��yw�yw�

− �xw�xw����
i,j

�
p

s.v.

�ix�jp��Cyp�iy�jp� − �ip�jy��/Dij
xpDij

yp + �
a,b

�
p

d.s.

�xa�pb��Cyp�ya�pb� − �yb�pa��/Dxp
abDyp

ab

+ �
i,z

�
a

��ix�za��iy�za�/Diz
xaDiz

ya + �iz�xa��iz�ya�/Dix
zaDiy

za�� +
�1 − 
xy�
��y − �x�

�
z

�xz�yz���y − �x� . �52�
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• VIRT-VIRT response density:

Pab
�2� = �

i,j
�

p

s.v.

�ia�jp��2�ib�jp� − �ip�jb��/Dij
apDij

bp + �
c

�
p,q

d.s.

�pa�qc��Cpq�pb�qc� − �pc�qb��/Dpq
acDpq

bc

+ �
x,y

�
i

�ix�ya��ix�yb�/Diy
xaDiy

xb +
1

2 �
i,x,y

�ix�xa��iy�yb�/Di
aDi

b. �53�

• The off-diagonal i.p. response density for p�q is given by:

Ppq
�2� = �fp − fq�Zpq. �54�

• CORE-CORE energy-weighted response density:

Wmn
�2� = −

1

2�
p,q

d.p.

Ppq
�2�Gpqmn −

1

2 �
p�q

i.p.

Zpq�pq
mn. �55�

• DOCC-CORE energy-weighted response density:

Wim
�2� = − �

j
�
p,q

s.v.

�mp�jq��Cpq�ip�jq� − �iq�jp��/Dij
pq − �

a,b
�

p

d.s.

�ma�pb��2�ia�pb� − �ib�pa��/Dip
ab − �

x,y
�

a

�mx�ya��ix�ya�/Diy
xa

−
1

2 �
x,y,a

�mx�xa��iy�ya�/Di
a − �

p,q

d.p.

Ppq
�2�Gpqim − Pim

�2��m + �i

2
− �

p�q

i.p.

Zpq�pq
im . �56�

• DOCC-DOCC energy-weighted response density:

Wij
�2� = − �

k
�
p,q

s.v.

�ip�kq��Cpq�jp�kq� − �jq�kp��/Djk
pq − �

a,b
�

p

d.s.

�ia�pb��2�ja�pb� − �jb�pa��/Djp
ab − �

x,y
�

a

�ix�ya��jx�ya�/Djy
xa

−
1

2 �
x,y,a

�ix�xa��jy�ya�/Dj
a −

1

2�
p,q

d.p.

Ppq
�2�Gpqij − Pij

�2�� j −
1

2 �
p�q

i.p.

Zpq�pq
ij . �57�

• SOCC-SOCC energy-weighted response density:

Wxy
�2� = − �

i,j
�

p

s.v.

�ix�jp��Cyp�iy�jp� − �ip�jy��/Dij
yp − �

a,b
�

p

d.s.

�xa�pb��Cyp�ya�pb� − �yb�pa��/Dyp
ab − �

z,a
�

i

��ix�za��iy�za�/Diz
ya

+ �iz�xa��iz�ya�/Diy
za� − �

i,z,a
�ix�ya��iz�za�/Di

a −
1

4�
p,q

d.p.

Ppq
�2�Gpqxy − Pxy

�2��y −
1

2 �
p�q

i.p.

Zpq�pq
xy −


xy

2 �
z

�xz�xz���x + �z�

+

yx�

2 �
w

��yw�yw� − �xw�xw����
i,j

�
p

s.v.

�ix�jp��Cyp�iy�jp� − �ip�jy��/Dij
xpDij

yp + �
a,b

�
p

d.s.

�xa�pb��Cyp�ya�pb�

− �yb�pa��/Dxp
abDyp

ab + �
z,a

�
i

��ix�za��iy�za�/Diz
xaDiz

ya + �iz�xa��iz�ya�/Dix
zaDiy

za�� . �58�

• VIRT-VIRT energy-weighted response density:

Wab
�2� = − �

i,j
�

p

s.v.

�ia�jp��2�ib�jp� − �ip�jb��/Dij
pb − �

c
�
p,q

d.s.

�pa�qc��Cpq�pb�qc� − �pc�qb��/Dpq
bc − �

x,y
�

i

�ix�ya��ix�yb�/Diy
xb

−
1

2 �
i,x,y

�ix�xa��iy�yb�/Di
b − Pab

�2��b. �59�
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• SOCC-CORE and SOCC-DOCC energy-weighted response densities:

Wxr
�2� = − 2�

i,j
�

p

s.v.

�ir�jp��Cxp�ix�jp� − �ip�jx��/Dij
xp − 2�

a,b
�

p

d.s.

�ra�pb��Cxp�xa�pb� − �xb�pa��/Dxp
ab − 2�

y,a
�

i

��ir�ya�

��ix�ya�/Diy
xa + �iy�ra��iy�xa�/Dix

ya� − �
i,y,a

��ix�ra� + �ir�xa���iy�ya�/Di
a −

1

2�
p,q

d.p.

Ppq
�2�Gpqxr − 2�

y

Pxy
�2��yr − �

p�q

i.p.

Zpq�pq
xr

− �
i

c.d.

Zxi��ri
x − 
ir� + �

a

Zax�ra
x − �

z

�rz�xz���x + �z� , �60�

where r indexes a CORE or a DOCC MO.

• VIRT-CORE, VIRT-DOCC, and VIRT-SOCC energy-weighted response densities:

War
�2� = − 2�

i,j
�

p

s.v.

�ir�jp��2�ia�jp� − �ip�ja��/Dij
ap − 2�

b
�
p,q

d.s.

�pr�qb��Cpq�pa�qb� − �pb�qa��/Dpq
ab − 2�

x,y
�

i

�ix�yr��ix�ya�/Diy
xa

− �
i,x,y

�ix�xr��iy�ya�/Di
a − 2�

b

Pab
�2��br + �

i

c.d.

Zai
ir + �
x

Zax
xr, �61�

where r indexes a CORE, DOCC, or SOCC MO.

• SOCC-CORE Lagrangian elements:

Lxm = − 2�
i,j

�
p

s.v.

�im�jp��Cxp�ix�jp� − �ip�jx��/Dij
xp − 2�

a,b
�

p

d.s.

�ma�pb��Cxp�xa�pb� − �xb�pa��/Dxp
ab − 2�

y,a
�

i

��im�ya�

��ix�ya�/Diy
xa + �iy�ma��iy�xa�/Dix

ya� − �
i,y,a

��ix�ma� + �im�xa���iy�ya�/Di
a − �

y

�my�xy���x + �y� +
1

2�
p,q

d.p.

Ppq
�2�Gpqxm

+ 2�
i

c.d.

Pim
�2��xi − 2�

y

Pxy
�2��ym. �62�

• VIRT-CORE Lagrangian elements:

Lam = − 2�
i,j

�
p

s.v.

�im�jp��2�ia�jp� − �ip�ja��/Dij
ap − 2�

b
�
p,q

d.s.

�pm�qb��Cpq�pa�qb� − �pb�qa��/Dpq
ab − 2�

x,y
�

i

�ix�ym��ix�ya�/Diy
xa

− �
i,x,y

�ix�xm��iy�ya�/Di
a + �

p,q

d.p.

Ppq
�2�Gpqam + 2�

i

c.d.

Pim
�2��ai − 2�

b

Pab
�2��bm. �63�

• SOCC-DOCC Lagrangian elements:

Lxi = 2�
j

�
p,q

s.v.

�xp�jq��Cpq�ip�jq� − �iq�jp��/Dij
pq − 2�

j,k
�

p

s.v.

�ik�jp��Cxp�kx�jp� − �kp�jx��/Djk
xp + 2�

a,b
�

p

d.s.

�xa�pb��2�ia�pb�

− �ib�pa��/Dip
ab − 2�

a,b
�

p

d.s.

�ia�pb��Cxp�xa�pb� − �xb�pa��/Dxp
ab + 2�

y,z
�

a

�xy�za��iy�za�/Diz
ya − 2�

y,a
�

j

��ij�ya��jx�ya�/Djy
xa

+ �jy�ia��jy�xa�/Djx
ya� + �

y,z,a
�xy�ya��iz�za�/Di

a − �
j,y,a

��jx�ia� + �ij�xa���jy�ya�/Dj
a − �

z

�iz�xz���x + �z� +
1

2�
p,q

d.p.

Ppq
�2�Gpqxi

+ 2�
j

c.d.

Pij
�s��xj − 2�

y

Pxy
�2��yi. �64�
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• VIRT-DOCC Lagrangian elements:

Lai = 2�
j

�
p,q

s.v.

�pa�jq��Cpq�ip�jq� − �iq�jp��/Dij
pq − 2�

j,k
�

p

s.v.

�ik�jp��2�ka�jp� − �kp�ja��/Djk
ap + 2�

b,c
�

p

d.s.

�ab�pc��2�ib�pc�

− �ic�pb��/Dip
bc − 2�

b
�
p,q

d.s.

�ip�qb��Cpq�pa�qb� − �pb�qa��/Dpq
ab + 2�

x,y
�

b

�xa�yb��ix�yb�/Diy
xb − 2�

x,y
�

j

�iy�jx��jx�ya�/Djy
xa

+ �
x,y,b

�xa�xb��iy�yb�/Di
b − �

j,x,y
�ix�jx��jy�ya�/Dj

a + �
p,q

d.p.

Ppq
�2�Gpqai + 2�

j

c.d.

Pij
�2��aj − 2�

b

Pab
�2��bi. �65�

• VIRT-SOCC Lagrangian elements:

Lax = 2�
i,j

�
p

s.v.

�ia�jp��Cxp�ix�jp� − �ip�jx��/Dij
xp − 2�

i,j
�

p

s.v.

�ix�jp��2�ia�jp� − �ip�ja��/Dij
ap + 2�

b,c
�

p

d.s.

�ab�pc��Cxp�xb�pc�

− �xc�pb��/Dxp
bc − 2�

b
�
p,q

d.s.

�xp�qb��Cpq�pa�qb� − �pb�qa��/Dpq
ab + 2�

i,y
�

b

��ia�yb��ix�yb�/Diy
xb + �iy�ab��iy�xb�/Dix

yb�

− 2�
y,z

�
i

�iz�xy��iz�ya�/Diy
za + �

i,y,b
��ix�ab� + �ia�xb���iy�yb�/Di

b − �
i,y,z

�iy�xy��iz�za�/Di
a +

1

2�
p,q

d.p.

Ppq
�2�Gpqax + 2�

y

Pxy
�2��ay

− 2�
b

Pab
�2��bx + �

y

�xy�ya���x + �y� . �66�

• Separable two-particle density:

	����
S = P��

�2�P��
SCF −

1

2
P��

�2�P��
SCF +

1

2
T��

�4�P��
S +

1

4
���P��

S

+
1

4
���P��

S +
1

4
�Z��

VS − Z��
SD�P��

S , �67�

where

T��
�4� = 2�

ia

C�iC�aTia
�4�, Tia

�4� = �
y

�iy�ya�/Di
a, �68�

��� = �
x

C�xC�x�x, �69�

Z��
VS = �

ax

C�aC�xZax, Z��
SD = �

xi

C�xC�iZxi. �70�

• Nonseparable two-particle density:

	����
NS = �

p,q

d.s.

�
r,s

s.v.

C�pC�rC�qC�sTpq
rs , �71�

where

Tij
ab = 2�2�ia�jb� − �ib�ja��/Dij

ab,

Tij
ax = �2�ia�jx� − �ix�ja��/Dij

ax,

Tij
xa = �2�ix�ja� − �ia�jx��/Dij

xa,

Tij
xy = ��ix�jy� − �iy�jx��/Dij

xy ,

Tiy
xa = 2�ix�ya�/Diy

xa, �72�

Tix
ab = �2�ia�xb� − �ib�xa��/Dix

ab,

Txi
ab = �2�xa�ib� − �xb�ia��/Dxi

ab,

Txy
ab = ��xa�yb� − �xb�ya��/Dxy

ab,

Tix
yz = Txi

yz = Txy
za = Txy

az = Twx
yz = 0.

III. PARALLEL ZAPT2 GRADIENT ALGORITHM

The implementation of the parallel ZAPT2 gradient al-
gorithm is organized below into the following subsections:
�1� creation of distributed integral arrays, �2� construction of
immediately obtainable terms of P�2�, W�2�, and L, �3� three-
virtual integrals and the completion of L, �4� solution of the
Z-vector equations, �5� completion of the one-particle den-
sity matrices and computation of the one-particle gradient,
and �6� back-transformation of amplitudes to generate the
nonseparable density matrix and calculation of the two-
particle gradient.

014107-8 Aikens et al. J. Chem. Phys. 124, 014107 �2006�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.186.176.217 On: Wed, 02 Dec 2015 15:58:03



A. Distributed integral arrays

The equations for the density matrices in Sec. II D re-
quire five classes of integrals. Using “v” to denote a virtual
MO �VIRT� and “o” to denote an occupied MO �CORE,
DOCC, or SOCC�, these classes are �1� �oo �oo�, �2�
�vo �oo�, �3� �vv �oo�, �4� �vo �vo�, and �5� �vv �vo�.

The first four integral classes are created and stored in
distributed memory as described previously.23 The fifth class
is the largest and is only used in the construction of the
Lagrangian, so the terms involving these integrals are calcu-
lated in a direct fashion as described in Sec. III C.

In addition to the integral arrays, the trial vectors of the
Z-vector equation are distributed across the nodes. The den-
sity matrices �P�2� and W�2�� and other data of order n2 or
less are stored in a replicated fashion.

B. Density-matrix creation

The integral component 1
2�y�py � py� in Eq. �6� distin-

guishes ZAPT2 from other related methods. Since these val-
ues will be used often in the creation of the density matrices,
an array of integral components is stored in replicated
memory. These terms require �xy �xy� integrals, which are
also used in the multiplicative factor in term 4 of Pxy and
term 9 of Wxy. This factor is stored in an intermediate matrix,

Fxy =
1

2�
w

��yw�yw� − �xw�xw�� . �73�

Each processor reads local integrals and computes a contri-
bution to both arrays. These contributions are then globally
summed.

The algorithm for density-matrix term creation is struc-
tured so as to reduce communication needs as much as pos-
sible. In general, a set of integrals is read from local or re-
mote processors, amplitudes are formed by subtracting
appropriate integrals and dividing by an orbital energy de-
nominator, and suitable integrals and amplitudes are con-
tracted �multiplied� in order to create each term of the
density-matrix blocks. More details about the structure of
this algorithm are available.37 During the density-matrix cre-
ation, the ZAPT2 energy can be calculated according to

EZAPT
�2� = −

1

4 �
p

d.s.v.

Wpp
�2�, �74�

where Wpp
�2� includes terms 1–4 of Wii

�2�, Wxx
�2�, and Waa

�2� �Eqs.
�57�–�59��.

C. Three-virtual terms

The �vv �vo� orbitals are required for terms 1-VV �1-VV
refers to p�VIRT and q�VIRT in term 1�, 3, and 9 of Lai

�Eq. �65�� and terms 3 and 9 of Lax �Eq. �66��. As discussed
previously,23,27,38 these terms can be written in a mixed
MO/AO basis and consequently use quarter-transformed
ERI’s with one occupied MO index and three AO indices
that are computed in a direct fashion. Terms 1-VV and 3 of
Lai and term 3 of Lax may be rearranged as

Lar = 2�
b,c

�
p

d.s.

�ab�pc��Crp�rb�pc� − �rc�pb��/Drp
bc

= 2�
b,c

�
p

d.s.

�
���

C�cC�aC�b�p������Crp�rb�pc�

− �rc�pb��/Drp
bc

= 2�
p

d.s.

�
���

C�a�p������CrpIrp
�� − Irp

���/Drp
��, �75�

where the half-transformed integral is

Irp
�� = �

b,c
C�cC�b�rb�pc�/Drp

bc. �76�

Then, a mixed MO/AO Lagrangian may be formed as fol-
lows:

Lar = �
�

C�aL�r = 2�
p

d.s.

�
���

C�a�p������CrpIrp
�� − Irp

���/Drp
��,

�77�

L�r = 2�
p

d.s.

�
��

�p������CrpIrp
�� − Irp

���/Drp
��. �78�

Term 9 of Lai and Lax may be similarly rearranged to yield

L�r = �
��

�r�����P��
�2�. �79�

Half-transformed integrals are generated from �vo �vo� inte-
grals. The transformation is done locally, so no communica-
tion is required �Fig. 1�. In order to save memory, the half-
transformed integrals overwrite the �vo �vo� integrals. The
quarter-transformed integrals are generated as described
previously.23 After the inner two loops, half-transformed in-
tegrals for a given � ,� pair are read, which requires commu-
nication among the processors �Fig. 2�. Once the mixed

FIG. 1. First half-back-transformation of the �vo �vo� integrals. This proce-
dure is used to form half-back-transformed integrals in the creation of
�vv �vo� integrals. An analogous procedure yields half-back-transformed
amplitudes for the creation of the nonseparable two-particle density matrix.
No communication is required in this step.
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MO/AO Lagrangian terms are created, these terms are trans-
formed to the MO basis. The complete Lagrangian is glo-
bally summed so that each processor holds the full matrix.
Then, the �vo �vo� integrals are restored by transforming with
the inverse MO coefficient matrix C−1=CTS, where S is the
overlap matrix over AO’s. Multiplication by the appropriate
orbital-energy factor �Drp

bc� recreates the original �vo �vo� in-
tegrals. This step requires no communication.

D. Solution of the CPHF equations

The general restricted open-shell coupled-perturbed
Hartree-Fock �CPHF� equations must be solved for the re-
sponse vectors. The Z-vector substitution is used,19 where Z
is the solution to the linear equation

�
p,q

i.p.

Apqrs� Zpq = Lrs. �80�

A reduced Lagrangian Lrs containing only symmetry-allowed
elements is used in the solution of �80�. The ZAPT2 orbital
Hessian Apqrs� has more terms than the closed-shell form; this
may be visualized in Fig. 3. The equations governing the six
unique matrix blocks may be written as

Axiyj� = �xi�yj� − 1
2 �xj�yi� − 1

2 �xy�ij� + 
xy��ij
x − 
 ji�

+ 
ij��xy
i − 
yx� ,

Aaiyj� = 2�ai�yj� − 1
2 �aj�yi� − 1

2 �ay�ij� + 
ij�ay
i ,

Aaxyj� = �ax�yj� − 
xy�aj
x ,

�81�
Aaibj� = 4�ai�bj� − �aj�bi� − �ab�ij� − 
ab
 ji + 
ij�ab

i ,

Aaxbj� = 2�ax�bj� − 1
2 �aj�bx� − 1

2 �ab�xj� − 
ab
 jx,

Aaxby� = �ax�by� − 1
2 �ay�bx� − 1

2 �ab�xy� − 
ab
yx + 
xy�ab
x .

The notation Apqrs �without a prime� will be used to indicate
the integral-only part of the orbital Hessian �no �pq

r or 
pq

contributions�. Portions of the �pq
r and 
pq values are formed

from locally held integrals and then summed onto all proces-
sors. The explicit storage of the orbital Hessian is impractical
for systems with a large number of orbitals, so the CPHF
equations are solved iteratively. In each step of the iterations,
blocks of the orbital Hessian are created from locally held
integrals. For Aaibj �the closed-shell-like block�, Aaxbj, and
Aaxby, the �vo �vo� and �vv �oo� integrals reside on the same
processor for a given oo pair. A local contribution to the
orbital Hessian is constructed and subsequently multiplied by
the appropriate section of the trial vector in order to yield a
segment of the new vector. For Axiyj, a similar procedure is
followed for the �xy � ij� integrals and for the �xi �yj� inte-
grals. Contributions to the orbital Hessian are formed from
local �vo �oo� integrals for the Aaiyj and Aaxyj blocks.

For closed-shell systems, the linear equations are

�
b

�
j


Aaibj + 
ab
ij��b − � j��Zbj = Lai. �82�

Normally, the orbital energy term is taken outside the sum-
mation to yield

��a − �i�Zai + �
b

�
j

AaibjZbj = Lai. �83�

This equation is divided by the orbital energy terms to yield
a “preconditioned” equation,

FIG. 2. Algorithm for the creation of the Lagrangian �vv �vo� terms. This
step requires communication across the processors in order to read in the
half-back-transformed integrals.

FIG. 3. Pictorial representation of the Z-vector
equations.
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Zai + �
b

�
j

Aaibj
Zbj

��a − �i�
=

Lai

��a − �i�
, �84�

whose diagonal element �Aaiai / ��a−�i�� are of the order of
unity, and then this is solved iteratively for Zai. In order to
restructure the ZAPT2 equations and generate a similar form,
a quantity mpq is added and subtracted in diagonal elements
of Eq. �80�,

�
p,q

i.p.


Apqrs + 
pr��ps
p − 
sq� + 
qs��pr

q − 
rp� − mpq
pr
qs

+ mpq
pr
qs�Zpq = Lrs, �85�

where

mxi = �ii
x + �xx

i − 
ii − 
xx,

mai = �aa
i − 
ii = �a − �i, �86�

max = �aa
x − 
xx.

The last term in Eq. �85� is separated out,

�
p,q

i.p.

Zpqmpq
pr
qs + �
p,q

i.p.


Apqrs + 
pr��qs
p − 
sq�

+ 
qs��pr
q − 
rp� − mpq
pr
qs�Zpq = Lrs, �87�

and all terms are divided by mrs to yield

Zrs + �
p,q

i.p.


Apqrs + 
pr��qs
p − 
sq� + 
qs��pr

q − 
rp�

− mpq
pr
qs�
Zpq

mrs
=

Lrs

mrs
. �88�

This can be solved iteratively for Zrs. The subtraction of and
division by mrs is a necessary preconditioning in order to
keep the diagonal elements close to 1 and induce conver-
gence of the iterative equations.

E. Completion of the one-particle density matrices

Once Zrs is known, the remaining terms in the one-
particle density matrices may be finished. The off-diagonal
blocks of P�2� are determined by Eq. �54�. Terms 8 and 9 of
Wxr and terms 6 and 7 of War are computed from the � and 

values. Contributions to terms 1 and 2 of Wmn and terms 5
and 7 of Wim, Wij, Wxr, and Wxy are created from local inte-
grals and then globally summed. The �vv �oo� integrals are
no longer required, so the memory for these is released. The
remaining integrals are needed in the two-particle nonsepa-
rable density matrix, so these are retained in memory. The
completed P�2� and W�2� matrices are back transformed to the
AO basis, combined with their SCF analogs, and contracted
with the appropriate derivative integrals.

F. Two-particle gradient

The four-index back transformation of the amplitude
terms in �NS is similar to the procedure described
previously.23 For the closed-shell case, Tij

ab amplitudes

formed from �vo �vo� integrals that are locally held for a
given oo pair are half-back-transformed to yield amplitudes
with the form Tij

��, which overwrite the �vo �vo� integrals in
storage. For ZAPT2, an analogous procedure is employed for
the closed-shell-like terms Tij

ab, Tix
ab, Txi

ab, and Txy
ab to yield

amplitudes with the form Tpq
��, where p and q are occupied

�DOCC and SOCC� indices. This part of the half-back-
transformation requires no communication. The Tij

ax, Tij
xa, Tij

xy,
and Tiy

xa amplitudes can also be transformed to yield Tpq
�� am-

plitudes, which can be added to the half-back-transformed
closed-shell-like amplitudes in the �vo �vo� storage. Since the
two occupied indices that have not been back transformed do
not constitute a local pair in either the �vo �oo� or �oo �oo�
integral storage, communication between processors must
occur. The number of amplitudes that must be transmitted
will likely be small compared to the number of closed-shell-
like amplitudes since these amplitudes involve at least one
singly occupied index. Once these amplitudes have been cre-
ated, the memory for the �vo �oo� and �oo �oo� integrals is
released.

The separable two-particle density matrix for ZAPT2 in-
cludes terms that come from the back transformation of Zxi,
Zax, �x, and PS. These two-index transformations are not
done in parallel since they are fairly trivial. A fourfold loop
over shells is used to calculate the derivative ERI’s. Inside
the outer two loops, a set of Tpq

�� amplitudes is read in for a
given � ,� pair, which requires communication between the
processors �Fig. 4�. Inside the third and fourth loops, the p
and q indices are back transformed to the AO basis. These
steps are done locally. Inside the loops, the nonseparable and
separable second-order two-particle density matrices are cre-
ated, added to their SCF analog, and contracted with the
appropriate derivative integrals. Since �NS is not symme-
trized, the derivative ERI’s are computed four times more
than the minimal list. This increased n4 computation elimi-
nates the need for n4 storage and n5 effort in the symmetri-
zation.

FIG. 4. Second half-back-transformation of the amplitudes for the creation
of the nonseparable two-particle density matrix. This step requires commu-
nication across the processors in order to retrieve the half-back-transformed
amplitudes.
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IV. TIMINGS

In this section, the scalability of the ZAPT2 gradient
algorithm described in Sec. III is examined. All calculations
were performed on a cluster system comprised of IBM p640
nodes connected by dual Gigabit Ethernet. Each p640 node
has four 375 MHz Power3-II processors and 16 Gbytes of
memory.

Five molecular systems are considered in the benchmark
calculations: three small gold clusters �Au3H4, Au3O4, and
Au5H4�, a dimeric dicyclopentadienyltitanium�III� chloride
system, and a Fe-porphyrin:imidazole system. The smallest
molecule under consideration is Au3H4 �Fig. 5�a��. The basis
set used on this molecule consists of the aug-cc-pVTZ
�Ref. 39� basis set on H and the uncontracted
Stevens-Basch-Krauss-Jasien-Cundari40 �SBKJC� effective
core potential basis set, augmented with a set of 3f2g polar-
ization functions and one set of sp diffuse functions on Au,
for a total of 380 spherical harmonic basis functions. This
molecule has 31 doubly occupied orbitals and one singly
occupied orbital. A ZAPT2 gradient calculation requires
9.5 MWords of replicated memory and 170 MWords of dis-
tributed memory, so it fits in the memory of a single proces-
sor on the IBM cluster. For Au3O4 �Fig. 5�b��, the aug-cc-
pVTZ �Refs. 39 and 41� basis set is used on O, and the
uncontracted SBKJC basis set with 3f2g polarization func-
tions and one sp diffuse function is used on Au, for a total of
472 spherical harmonic basis functions.

Calculations on this molecule involve 44 doubly occu-
pied orbitals and one singly occupied orbital. A ZAPT2 gra-
dient calculation requires 20.7 MWords of replicated
memory and 562 MWords of distributed memory, so the
memory allotted to two nodes of the IBM cluster is neces-
sary. Calculations on Au5H4 �Fig. 5�c�� employ the same
basis set as that used for Au3H4. A total of 572 spherical
harmonic basis functions are used in the ZAPT2 gradient
calculations. This molecule has 49 doubly occupied orbitals
and one singly occupied orbital. Each calculation requires
30.1 MWords of replicated memory and 1011 MWords of
distributed memory. The memory allotted to three processors

of the IBM cluster is sufficient to run a calculation on this
system. For the Ti2Cl2Cp4 system �Fig. 5�d��, the TZV basis
set as defined in GAMESS �Ref. 33� was employed, yielding
486 basis functions. A ZAPT2 gradient calculation on the
lowest-energy triplet state of this system involves 108 doubly
occupied orbitals and two singly occupied orbitals and re-
quires 30.5 MWords of replicated memory and
2470 MWords of distributed memory. Six processors of the
IBM cluster are required in order to run a calculation on this
system. For the iron-porphyrin:imidazole system �Fig. 5�e��,
two basis sets were used. The smaller basis set consists of the
MIDI basis set42 with d polarization functions, and a calcu-
lation with this basis set has 493 basis functions. The larger
basis set consists of the TZV basis set with d and p polariza-
tion functions, and a calculation with this basis set has 728
basis functions. For the triplet state, 110 orbitals are doubly
occupied and two orbitals are singly occupied. A ZAPT2
gradient calculation with the smaller basis set requires
32.1 MWords of replicated memory and 2635 MWords of
distributed memory, which corresponds to the memory allot-
ted to seven processors on the IBM system. A similar calcu-
lation with the larger basis set requires 52.1 MWords of rep-
licated memory and 5536 MWords of distributed memory,
which corresponds to memory allotted to 15 processors on
the IBM system.

TABLE I. Wall clock time �seconds� for ZAPT2 gradient step on IBM
cluster.

n
Au3H4

380
Au3O4

472
Au5H4

570
Ti2Cl2Cp4

486
Fe-porphyrin

493
Fe-porphyrin

728

P
1 54 943
2 28 292 68 645
4 13 904 35 181 105 567
8 6 975 18 324 53 171 24 852 65 042

16 3 596 9 422 26 690 12 205 31 866 232 551
32 1 895 4 965 13 858 6 859 16 671 96 404
64 1 087 2 843 7 453 4 214 9 437 55 019

FIG. 5. �a� Structure of Au3H4. �b� Structure of Au3O4.
�c� Structure of Au5H4. �d� Structure of Ti2Cl2Cp4. �e�
Structure of iron-porphyrin:imidazole.

014107-12 Aikens et al. J. Chem. Phys. 124, 014107 �2006�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.186.176.217 On: Wed, 02 Dec 2015 15:58:03



Table I lists the wall clock time in seconds for a ZAPT2
gradient calculation on 1, 2, 4, 8, 16, 32, and 64 processors
for the molecules benchmarked in this study. Tables II and III
list the associated speedups and parallel efficiencies, respec-
tively. The speedups may be visualized in Fig. 6. Some su-
perlinear speedup is noted for Ti2Cl2Cp4 with the TZV basis
set and Fe-porphyrin:imidazole with the MIDI�d� basis set
with 16 processors and for the Fe-porphyrin:imidazole with
the TZV�d , p� basis set with 32 and 64 processors. This is
most likely due to an unusually long time for the run with 16
processors, and an investigation is in progress. The parallel
efficiency for the ZAPT2 gradients is at least 85% on 32
processors and at least 73% on 64 processors for the systems
examined in this analysis. As the size of the system in-
creases, the parallel efficiency tends to increase as the time
required for computation grows faster than the time required
for communication.

ZAPT2 gradients require much less memory and compu-
tational time than similar UMP2 gradient calculations. A
UMP2 gradient calculation on the Au3H4 system requires
18 MWords of replicated memory and 647 MWords of dis-
tributed memory, so it requires two processors on the IBM
cluster. This UMP2 calculation takes 79 828 s, which is ap-
proximately a factor of 3 times the time required for a
ZAPT2 gradient calculation �28 292 s�. For Au5H4, a UMP2
gradient calculation requires 59.2 MWords of replicated
memory and 3911 MWords of distributed memory. This

would require the use of 11 processors on the IBM system.
For a calculation with 16 processors on this system, the
UMP2 gradient step takes 98 418 s in contrast to a ZAPT2
gradient step that takes 26 690 s.

V. CONCLUSION

The ZAPT2 gradient equations have been revised and
subsequently implemented in GAMESS. Features of the scal-
able implementation using DDI have been discussed in de-
tail. Data of order n2 or less are replicated across the nodes,
while molecular-orbital integrals with two virtual indices or
fewer are distributed across the nodes. Gradient terms in-
volving molecular orbital integrals with three virtual indices
have been adapted to utilize quarter-transformed integrals in
a direct fashion. The algorithm has been designed to use
locally held data as much as possible in order to reduce com-
munication costs.

Benchmark calculations have been run on an IBM clus-
ter for five molecular systems. The parallel efficiency for 32
processors is over 85%, and the parallel efficiency for 64
processors is over 73%. As the number of basis functions
increases, the parallel efficiencies tend to increase. ZAPT2
gradient calculations require approximately one-fourth of the
memory and one-third of the computational time necessary
for a UMP2 gradient calculation.

TABLE III. Parallel efficiencies for ZAPT2 gradient step on IBM cluster.

n
Au3H4

380
Au3O4

472
Au5H4

570
Ti2Cl2Cp4

486
Fe-porphyrin

493
Fe-porphyrin

728

P
1 100.0
2 97.1 100.0
4 98.8 97.6 100.0
8 98.5 93.7 99.3 100.0 100.0

16 95.5 91.1 98.9 101.8 102.1 100.0
32 90.6 86.4 95.2 90.6 97.5 120.6
64 79.0 75.5 88.5 73.7 86.2 105.7

TABLE II. Speedup for ZAPT2 gradient step on IBM cluster.

n
Au3H4

380
Au3O4

472
Au5H4

570
Ti2Cl2Cp4

486
Fe-porphyrin

493
Fe-porphyrin

728

P
1 1.0
2 1.9 1.0
4 4.0 2.0 1.0
8 7.9 3.7 2.0 1.0 1.0

16 15.3 7.3 4.0 2.0 2.0 1.0
32 29.0 13.8 7.6 3.6 3.9 2.4
64 50.5 24.1 14.2 5.9 6.9 4.2

FIG. 6. Speedup curves for benchmark systems. The
size of the basis set is listed in parentheses.
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