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ABSTRACT 

Previously we have shown that the inverse Born approximation allows an accurate determination of the 
radius of spherical flaws in Ti. Here we report the results of extending that analysis to spheroidal 
voids. Both oblate and prolate spheroids are considered. Using scattering amplitude generated by the 
T-matrix method, we find that both the major and minor axes of 2-1 spheroids are accurately determined. 
Inversion results using experimental data will be presented for the 2-1 oblate spheroid: a comparison of 
the experimental and theoretical results will be given. 

INTRODUCTION 

Recent developments in ultrasonic scattering 
theory have been strongly motivated by the non­
destructive evaluation needs of the structural 
materials community. Their primary question is; 
0iven a set of ultrasonic measurements (e.g. 
scattering amplitudes) from some industrial com­
ponent, when will it break? An intermediate step 
in answering this question is: given the scattering 
data, what are the characteristics of the flaws in 
the piece? Here one would like to know if one has 
a volume flaw such as a void or inclusion, or if 
one has a crack. Also, one would like to know the 
size, shape and orientation of the flaw: and, if 
it is an inclusion, what it is made of. Answering 
these questions is what I will refer to as the 
ultrasonic inversion problem. 

The current status of the ultrasonic inversion 
problem depends upon the ratio of the character­
istic size of the flaw (a ) to the wavelength A 
(k = 2n/A). When the sizg of flaw is much larger 
than the wavelength, ka >>1, then imaging tech­
niques can be used, and

0
a good deal of progress 

has been made. In the opposite limit, ka <<1, 
there has been some recent progress, bc'::h0 in terms 
of describing what information can be extracted in 
principle and in terms of practical algorithms for 
simply shaped flaws.l Between these two limits we 
have t~te intermediate regime, where the wavelength 
is on the order of the size of the object. This 
paper focuses on the intermediate regime and studies 
the geometric features of single voids. 

We will review the theoretical development of 
an inversion algorithm for the intermediate wave­
length case. 2 Further, we will summarize the 
progress of our group effort to empirically verify 
this algorithm. The need for detailed empirical 
verification stems from the theoretical justifi­
cation of the algorithm, which is based on pertur­
bative solutions of the wave equation and is valid 
only if the scattering is sufficiently weak! How­
ever, many of the flaws of interest in NDE are 
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anything but weak (e.g. a void). It is not clear 
how to extend our current inversion algorithm 
formally to the strong scattering case. However, 
for voids of simple shape, the algorithm yields 
good results as we will report. 

It is in this empirical verification scheme 
that recent developments in elastic wave scattering 
theory (such as the T-matrix method 3) have a key 
role to play. For in order to establish the limits 
of validity of this algorithm and other empirical 
inversion algorithms, it is desirable to have the 
scattering amplitudes for a wide range of differ­
ently shaped flaws. Particularly interesting for 
this purpose would be flaws with sharp edges such 
as cones and pill boxes. Up to the present time 
we are limited to investigating spherical, and 
oblate and prolate spheroidal flaws. 

The structure of the paper is as follows. In 
the second section we review the derivation of the 
algorithm. In section three we indicate how the 
theory was simplified for the case of ellipsoidally 
shaped flaws. In the fourth section we report the 
results of testing the algorithm with experimen­
tally generated data. In the fifth section we 
report the results of testing the inversion algo­
rithm using scattering amplitudes generated by the 
T-matrix method for 2-1 oblate and prolate spher­
oidal voids. Finally, in section six we provide 
a discussion of our results and conclude. 

GENERAL THEORY 

The algorithm to be discussed below is a pro­
cedure for approximately determining the Fou~ier 
transform of the c~aracteristi~ function, y(r), of 
the fl_1!w. Here

7
y(r) is 1 for r inside the flaw, 

and y(r)=O for r outside the flaw. We restrict 
our review of the theory to the simplest experi­
mental situation. That is we assume a pulse-echo 
geometry as shown in Fig. 1. Here a longitudinally 
or shear polarized plane wave is incident on the 



Figure 1. The geometry of a pulse echo 
experiment. The distance from 
the center of the flaw to the. 
tangent plane is the effective 
radius, re' discussed in the 
text. 

flaw, and the directly backscattered longitudinal 
or shear amplitude is determined. The pulse echo 
scattering amplitudes can be written for an arbi­
trarily shaped flaw as 

(2-1) 

Here S(2k), the shpae factor, is the Fourier trans­
form of the characteristic function of the flaw. 
Jhe wave~ector of the incident wave is denoted by 
k and a(k,{~}) is a function to be calculated which 
yields the_,.correct scattering amplitudes A for an 
arbitrary k. Here {~} denotes the material para­
meters of the host material. 

The virtue of writing the scattering ampli­
tudes in the form of Eq. 2.1 is that several 
approximate taeories 4 •5 yield very simple forms for 
the factor_,.a(k,{~}). In particular we will use the 
form of a(k,{~}) which can be derived from the 
extended quasi-static approximation. In that 
approximation one takes account of the long wave­
length elastic deformation of the flaw correctly, 
anJ hence obtains the angular features of the 
scattering correctly in this limit. F~r the 
extended quasi-static approximation a(k,{~}) is 
assumed to be independent of /k/ and given by its 
lm1g wavelengs_h !:J.mit which depends only on the 
direction of k, k, and_,.on {~}. We de~ote this 
ap)roximate form of a(k,{~}) as a05A(k,{~}). Using 
thls approximation we rewrite equatLon 2.1 as 

(2.2) 

Experimentally, a S can be obtained for an 
arbitrarily shaped obj2ct by measurements of the 
long wavelength scattering amplitudes. In that 
li~it S(2k) goes to a constant, and a A can be 
determined from the angularly dependeH~ coefficients 
of A 

(2. 3) 

Once a SA is obtained we can determine S(2k) from 
Eq. 2.~ via an experimental measurement of the 
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backscatter~d amplitudes. Taking the Fourier tranf 
form of S(2k) then allows us to determine the 
characteristic function of the flaw, and hence its 
size, shape and orientation. The major approxi­
mation in using ~Q~A is that w~ assume that it 
depends only on k and not on /k/. The character­
istic function is given explicitly in terms of the 
shape function as6 

) ci!) ; const. 
...... 

e2ik•r R (A(k))/ 
e 

aQSA (k, { ~}) ) (2.4) 

SIMPLIFIED THEORY FOR ELLIPSOIDALLY SHAPED FLAWS 

In the last section we described an approximat 
procedure for determining the size, shape and orien 
tation of an arbitrary three dimensional flaw. In 
order to use this inversion technique one requires 
pulse-echo measurements from all incident direction 
~ . The characteristic function is then obtained 
(Eq. 2.4) as an inverse Fourier transform which 
involves integrating over both /k/ and k . For the 
class of ellipsoidally shaped flaws, one can obtain 
all relevant information about the flaw by invertin: 
each pulse-echo record independently as discussed. 
below. This avoids the angular integration over k 
in the inverse Fourier transform, and significantly 
simplifies the application of the algorithm. 

In order to illustrate how this simplification 
comes about, let us consider the weak scattering 
limit. Then the theory of the last section is 
rigorously valid and Eq. 2.2 becomes 

(3.1) 

We have used the fact that a(k,{~}) is a constant 
in the weak scattering limit as a_,.function of k 
For an ellipsoid we Rnow that S(2k) is given by the 
following equations 

S(2k) ; sin(2 k r ) - 2 k r 
e e 

(3. 2) 

and 

r ; (a 2 cos 28 sin2 ~ + a 2 cos2a cos2~ (3.3) 
e x + a 2 sin26)k Y z 2 

Here the axes of the ellipsoid are a; (a ,av,a ), 
and 6 and ~ define the direction of ~ in ~ph~ri2al 
co-ordinates. The angular dependence of the shape 
factor comes in strictly through the function which 
we have called r (6,~). In a pulse-echo measure­
ment, the incideftt direction k is kept fixed, and 
r is a constant for that set of data. We note for 
aefixed incident direction, Eq. 3.2 has the same 
form as a Fourier transform of a sphere with an 
effective radius r . For each incident direction 
k , w~ 0btain r iff the following way. First we 
obtain S(2/k/) from Eq. 3.1. W~ then extend S(2/k/) 
to be spherically symmetric in k-space. Thus, we 
obtain the three dimensional Fourier transform of 
a sphere of radius r (6,~). This Fourier transform 
is then inverted to ~ield the effective radius for 
that direction. The resulting effective radius 
(Eq. 3.3) has a simple geometric interpretation as 
shown in Fig. 1. When a wavefront strikes the 
surface, it is first tangent at some one point 
(which is an accumulation point for phase). The 
radius r is the distance from the center of the 
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flaw to the plane of the wavefront. An important 
consequence of Eq. 3.3 is that pulse-echo measure­
ments along the axis of an ellipsoid yield the axis 
length directly. For example, a measurement along 
the a axis yields an effective radius equal to 
a . xHence, one can obtain the length of the ellip­
s~id axes directly from three measurements if one 
knows the orientation of the ellipsoid. 

So far we have been discussing the weak 
scattering limit for the sake of illustration. The 
appropriate extension to the strong scattering case 
is straightforward. Eq. 2.2 is 

(3. 4) 

For a given incident direction a(k,{~l) is ju~t a 
constant since it doesn't depend on JkJ in the 
quasi-static approximation. With this approximation 
we recover Eq. 3.1 and can proceed in an approximate 
way with the entire procedure which was given above. 
Of course for a strongly scattering flaw, our 
analysis is only approximate and must be checked 
empirically. In the next sections we provide some 
empirical tests of the strong scattering limit. 

INVERSION OF EXPERIMENTAL DATA 

vie sununarize the initial results of testing 

with a rectangular window extending from k=O to 
k . Then we transform it back to r-space. The 
r~~Ulting curves can then be compared to the experi­
mentally determined characteristic functions and 
thus serve as a calibration for the effects of 
blurring. 

Inverting the pulse-echo data for the sphere 
(O<ka<4) where a is the radius. We find a radius 
of approximately 400~ with an uncertainty of about 
401J. This should be compared to the exact value of 
400~. The inversion of the spheroid data data 
yields an estimate of the semi-minor axis of 220~ 
with an uncertainty of about 20~. The exact value 
is ·200~. We consider these results to be quite 
encouraging. It is clear however, that considerably 
mere scattering data for other orientations of the 
spheroids, for other materials and for other types 
of volume flaws (e.g. inclusions) will be necessary 
before the algorithm can 'be considered fully tested. 
To partially examine these questions we turn to the 
theoretically generated data of the next section. 

I 
1.0 1--------- --

Void in Ti 

the algorithm, in its simplified form for ellip- )'(r) \ soids, with experimental data. More extensive 
results and a comprehensive treatment of both 
experiment and data analysis will be given in Ref. 
7. We report results for a spherical void with a 0.5 
radius of 400 microns, and an oblate spheroid with 
a semi-major axis of 400~ and a semi-minor axis of 
200~. These were machined flaws in the center of 
large spheres of Ti-6Al-4V. Details of the con­
struction of the flaws and their use as calibration 
samples are given in Ref. 8 and 9. 

The simplified algorithm allows us to treat 
each pulse-echo measurement separately, and it 
yields the distance from the center of the flaw to 
the tangent plane of the incoming wavefront. For 
the sphere we obtained a single pulse-echo record 
which suffices to determine the size of the flaw 
due to its spherical symmetry. However, for the 
spheroid we only examined the pulse-echo record for 
a measurement along the axis of symmetry. 

Before presenting the results, we want to 
discuss two crucial details of the data analysis 
scheme. First, for sufficiently small wavevector, 
k, the phase of the scattering amplitudes must be 
constant and zero. This reflects the fact that the 
real part of the scattering amplitude rises as k2 

for small k while the imaginary rises much more 
slowly. This constraint on the phase allows one to 
establish the phase of the experimental data, which 
otherwise would not be entirely determined. 7 The 
second point concerns the effects of limited band­
widths. A lack of low frequency data would leave 
the phase of the data undetermined as just indi­
cated. A lack of high frequency data causes the 
characteristic function to be blurred, and this 
introduces some uncertainty in determining the size 
of the flaw. In large part the effects of blurring 
due to the limited bandwidth can be overcome by an 
appropriate calibraU.on procedure. For the simpli­
fieJ form of the algorithm, the analysis is carried 
out in terms of equivalent spheres. The effects of 
a limited high frequency bandwidth on the charac­
teristic function of a sphere can be determined in 
the following way. We consider the Fourier trans­
for;n of a sphere in k-space. We then band-1 imit it 
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Figure 2. The calculated characteristic 
function for a/spherical void 
of radius, a, in titanium. The 
result was obtained by inverting 
theoretical scattering ampli­
tudes with a bandwidth 0 ka 10. 

0 

INVERSION OF THEORETICAL DATA 

The inversion algorithm was tested for three 
different flaws in titanium using data generated 
from theory. The first flaw as a spherical void 
with O<ka<lO. The second flaw was a 2-1 oblate 
spheroid with O<ka<4 (where a denotes the semi­
major axis). The third flaw was a 2-1 prolate 
spheroid with O<kb<4 (here we define b as the semi­
minor axis). The sphere data was generated using 
the exact theory of Ying and Truell and isotropic 
elastic constants for titanium. The T-matrix method 
was used to obtain the scattering apmplitudes for 
the (400~ by 200~) prolate and oblate spheroidal 
flaws. 

The spherical flaw is considered first. Figure 
2 shm~s the characteristic function obtained from 
the inversion procedure. Using the 50% point to 
define the boundry, we find that the radius is 
determined to within about 5%. We note that the 
inversion procedure was tested for sensitivity to 
noise for this spherical flaw and found to be quite 



insensitive. 7 

The preliminary analysis of the spheroidal 
data is confined to an approximate determination 
of the semi-major and semi-major axes using the 
simplified theory of section three. The simpli­
fied theory has the feature that a pulse-echo 
waveform along one of the axes can be used to 
determine the radius of an equivalent sphere 
with the radius of that axis. In Fig. 3 we 
show the cha.racteristic function derived from 
the pulse-echo waveform measured along the 
semi-minor axis. Figure 4 is the equivalent 
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Figure 3. Calculated characteristic 
function for the semi-minor 
axis of the prolate spheroid 
using theory data with a 
bandwidth of O<kb<4. 

resJlt for the semi-major axis. Using these results 
we obtain estimates of 420~ and 210~ for these axes 
com~ared to the exact results of 400~ and 200~. 
Similar results for the oblate spheroids are 360~ 
and 210~ compared to exact values of 400~ and 200~. 

In section four we calculated the characteris­
tic function for the semi-minor axis of an oblate 
spheroid from experiment. In this section we com­
puted the same result.using scattering amplitudes 
obtained from the T-rnatrix method. We now compare 
both results (with a bandwidth O<kb<2). The results 
are shown in Fig_. 5, and the agreement is essen­
tially exact. 
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Figure 4. Calculated characteristic 
function for the semi-major 
axis of the prolate spheroid 
using the theory data with a 
bandwidth of O<ka<4. 
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The calculated characteristic 
functions for the semi-minor 
axis of the oblate. Theory 
and experiment are compared. 

CONCLUSION 

X 

We have presented an inversion algorithm for 
the intermediate scattering regime when the size 

1.4 

of the flaw is comparable to the wavelength of the 
ultrasound. Tests of the algorithm were performed 
for the case of spherical and spheroidal voids in 
Titanium. Good results were obtained for the size 
and shpae of the flaws. These results suggest that 
this algorithm may be of practical use for the non-

512 



destructive testing community in determining-the 
characteristics of volume type flaws in various 
solids. 
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