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ABSTRACT

Deformable modeling of thin shell-like and other objectsén@otential application in
robot grasping, medical robotics, home robots, and so oa.ability to manipulate electrical
and optical cables, rubber toys, plastic bottles, ropeslpgical tissues, and organs is an
important feature of robot intelligence. However, gragmhdeformable objects has remained
an underdeveloped research area. When a robot hand appliestéograsp a soft object,
deformation will result in the enlarging of the nger contaegions and the rotation of the
contact normals, which in turn will result in a changing wekrspace. The varying geometry
can be determined by either solving a high order differéetiation or minimizing potential
energy. Ef cient and accurate modeling of deformationsriec@l for grasp analysis. It helps
us predict whether a grasp will be successful from its ngecpment and exerted force, and
subsequently helps us design a grasping strategy.

The rst part of this thesis extends the linear and nonlirstaall theories to describe exten-
sional, shearing, and bending strains in terms of geomietrariants including the principal
curvatures and vectors, and the related directional andr@o derivatives. To our knowl-
edge, this is the rst non-parametric formulation of thirefitstrains. A computational pro-
cedure for the strain energy is then offered for generalmatac shells. In practice, a shell
deformation is conveniently represented by a subdivisiofase (12). We compare the results
via potential energy minimization over a couple of benchomoblems with their analytical
solutions and the results generated by two commercial aoésvABAQUS and ANSYS. Our
method achieves a convergence rate an order of magnituderhiExperimental validation in-

volves regular and freeform shell-like objects (of varionaterials) grasped by a robot hand,



Xi

with the results compared against scanned 3-D data (agcOrd27mm). Grasped objects
often undergo sizable shape changes, for which a much higbeeling accuracy can be
achieved using the nonlinear elasticity theory than itedincounterpart. (In this part, the
derivations of the transformation based on geometric iamés and the strain computation on
a general parametric shell, and the interpretation of tloengry of strains were performed
by my thesis advisor Yan-Bin Jia.)

The second part numerically studies two- nger graspingefbdnable curve-like objects
under frictional contacts. The action is like squeezingfddeation is modeled by a degen-
erate version of the thin shell theory. Several differerice® rigid body grasping are shown.
First, under a squeeze, the friction cone at each nger cbmtaates in a direction that de-
pends on the deformable object's global geometry, whichigsghat modeling is necessary
for grasp prediction. Second, the magnitude of the grasfunge has to be above certain
threshold to achieve equilibrium. Third, the set of feasilsiger placements may increase
signi cantly compared to that for a rigid object of the sanmage. Finally, the ability to resist
disturbance is bounded in the sense that increasing theimdgrof an external force may

result in the breaking of the grasp.



CHAPTER 1. INTRODUCTION

Deformable objects are ubiquitous in the world surroundiagon all aspects from daily
life to industry. The need to study such shapes and model biediaviors arises in a wide
range of applications. In image processing, deformableesuand surfaces have been used to
segment images and volumes. The use of a deformable modsalyussults in a faster and
more robust segmentation technique that guarantees snassthetween image slices.

In the robot-assisted surgery, since most human organsedoentable, the integration
of physics-based deformable modeling has the potentiahpvave dexterity, precision, and
speed during the surgery as well as enable some new medittadse Virtual/augmented re-
ality based real time and high delity simulation and traigisystems help enhancing medical
capability, in which deformable modeling plays a very intpot role.

In haptics, touch feedback from interaction with a deforhaaibject is directly in uenced
by the changing size and shape of the “contact” surface &ah. hger movement planning
and force control will rely on the updates of the local shajeootact and the global shape of
the object, as well as the force distribution over the cdraaea.

Deformation related interactive graphics applicatiorgpuree a continuously growing de-
gree of visual realism. In addition to the display qualityisi especially the way in which
the physical behavior eventually determines the degreeatism. All these have led to rapid
development of the eld, where state-of-the-art resultsrfrvery different areas—theoretical
physics, differential geometry, numerical methods, maekearning and computer graphics—

are applied to nd solutions.



1.1 Robot Grasping

In robotics,the ability to manipulate deformable objects is an indisaéte part of a robot
hand'’s dexterity and an important feature of intelligenGe@asping of rigid objects has been
an active area in the last two decades (7). The geometricfdion for form-closure, force-
closure, and equilibrium grasps is now well understood. &l@x, grasping of deformable
objects has received much less attention until recently.

For rigid objects, a grasp of an object achieves force-cainen it can resist any external
wrench exerted on the grasped object. If any motion of ancbiggrevented, form-closure is
achieved. There are numerous metrics (35; 37; 41; 78) fapgratimization using geometric
algorithms or nonlinear programming techniques.

Grasping of a deformable object is quite different from tbag rigid one. Since the
number of degrees of freedom of a deformable object is ie nit cannot be restrained by
only a nite set of contacts. Consequently, form-closureadanger applicable. Does force-
closure still apply? Consider two ngers squeezing a defdri@abject in order to grasp
it. The normal at each contact point changes its directiordaes the corresponding contact
friction cone. Even if the two ngers were not initially plad at close-to-antipodal positions,
the contact friction cones may have rotated toward eachr,otbsulting in a force-closure
grasp. At the same time, the magnitude of the external faresually bounded (82). If the
magnitude exceeds some limit, the grasp will be broken.

Meanwhile, grasp analysis is no longer a purely geometoblem. The wrench space
will change as a result of varying geometry which can be a=tliy either solving high order
differential equation or minimizing potential energy. Rdlie modeling of the deformations
is therefore crucial for grasp analysis. Most of the devetbpodels are based on the linear
elasticity, which is geometrically inexact for large defations.

This thesis investigates shape modeling for shell-likeeclsj that are grasped by a robot

hand. A shell is a thin body bounded by two curved surfacesselttistance (i.e., the shell



thickness) is very small in comparison with the other dinn@ms The thesis also includes a
preliminary study of several issues in two- nger graspirfgleformable thin-curve-like ob-

jects which are lower dimensional analogues to the thin sietlel. The high aspect ratio of
such thin objects often leads to instability in the compatatThe computational cost of mod-
eling the physical process accurately is usually high. As$athe robot grasping application
is concerned, formulating models which are both physicatigurate and numerically robust

IS very important.

1.2 Some Terminologies of Robot Grasping

Force-Closure

A grasp of an object is a force-closure grasp if arbitrarcésrand moments can be

exerted on this object through contacts.

Form-Closure

A grasp of an object is a form-closure grasp if any motion efabject is prevented.
Equilibrium

A grasp is in equilibrium if the sum of the forces and momener&d on the object is
zero.

Point contact with friction

A nger can exert any force inside the friction cone at the temh point.

1.3 Overview

The rest of the manuscript is organized as follows. Chaptair2eys related work in
robot manipulation and deformable modeling. Chapter 3 guesmecessary background in

differential geometry.



Chapter 4 offers a clear geometric interpretations of thé strains. Section 4.1 presents
the displacement eld on a shell which describes the deftionacompletely. Based on the
linear elasticity theory of shells, Section 4.2 estabkstiat the strains and strain energy of a
shell under a displacement eld are determined by geometviariants of its middle surface
including the two principal curvatures and two principati@s. A computational procedure
for arbitrary parametric shells is then described. Sedfi@frames the theory of nonlinear
elasticity of shells in terms of geometric invariants.

Section 4.4 sets up the subdivision-based displacememtiedl describes the stiffness ma-
trix and the energy minimization process. Section 4.5 copgine simulation results over two
benchmark problems with their analytical solutions andséhby two commerical softwares
ABAQUSandANSYSSection 4.6 experimentally investigates the modelingedbdnable ob-
jects grasped by a BarrettHand. It compares the linear tHeogmall deformations and the
nonlinear theory for large deformations through validatmainst range data generated by a
3-D scanner. We will see that nonlinear elasticity basedetiog yields much more accu-
rate results when large grasping forces are applied. Settibdiscusses modeling errors and
future extensions.

Chapter 5 studies some issues in grasping of deformable-tikevebjects. Section 5.1
transforms both linear and nonlinear modeling technigua® thin shells to thin curved ob-
jects. A cubic B-spline based nonlinear minimization of tbégmtial energy is then described.
Section 5.2 gives a frame under which two- nger squeezepgrasn be analyzed. A proce-
dure of nding minimum graspable force magnitude is thenspreged. Graspable segments
are compared for a rigid object and a deformable one. Eff#fatgerting a disturbance force
to a squeeze grasp are investigated. In Chapter 6, we sunentaezavork and discuss the

future directions.



CHAPTER 2. RELATED WORK

Grasping is a very active research area in robotics. Defolemaodeling has been studied
in the elasticity theory, solid mechanics, robotics, anthpoter graphics with a range of

applications.

2.1 Robot Grasping

2.1.1 Grasping of Rigid Objects

Grasping of rigid objects has been extensively studiedendht two decades (7). Grasps
can be classi ed into either force or form closure. They aeally investigated based on rigid
body kinematics. For arigid object, the distance betwegrwaa points on the object is frame
invariant, subsequently, a set of forces applied to a rip@ad at different locations can be
converted to an equivalent combination of force and momeswme representative points.

A grasp of a rigid object achieves force-closure when it asist any external wrench
exerted on the grasped object (46). If any motion of an obgeptevented, form-closure is
achieved. In other words, form-closure means immobilityy aeighboring con guration of
the object will result in collision with an obstacle.

For rigid objects, grasp analysis is a purely geometric lgrob Force-closure for two-
nger grasping of a polygon is well understood based on geom@®4). Such a grasp is
force closure if the intersection of the two contact friaticones contains the line segment
connecting the two contact points. Nguyen (54) also intceduthe concept of independent

regions, i.e. regions on the object boundary such that ar ngeach region ensures a force-



closure grasp independently of the exact contact point. é¥eldped a geometrical approach
to determine the maximum independent regions on polygdnjakcts using four frictionless
contacts and two frictional contacts.

The problem of determining independent regions for polygyan polyhedral objects has
also been studied in (63; 64; 74; 16). Ponce et al. (65) atllizell decomposition to compute
pairs of maximal-length segments on a piecewise-smoothedu2D object. Inside these
segments, ngers can be positioned independently withefafosure guaranteed.

In (61), an approach to determine independent regions onbj&xs based on initial ex-
amples was proposed. In this method, the selection of a gl example for a given object
remains as a critical step. The running time is polynomiahie number of contacts, which
makes it possible to deal with grasps with relatively largenbers of contacts.

Blake (8) classi ed planar grasps into three types usingyhansetry set, the anti-symmetry
set, and the critical set along with the friction functiora (B4) gave a fast algorithm to com-
pute all grasps at pairs of antipodal points of a curved pasetl on differential geometry.
He divided the part into concave and convex pieces at points exion and used iterative
methods including bisection to compute the grasps.

In (50), aO(n?logn)-time algorithm was proposed to compute an optimal thregem
planar grasp by maximizing the radius of a disk centeredabtigin and contained in the
convex hull of the three unit normal vectors at the nger @mts. Assuming rounded nger
tips, an optimality for force-closure grasps was introdlice(49) where ef cient algorithms
were developed for polygons and polyhedra.

Recently, an algorithm to compute form-closure grasps of Bjpats described by discrete
points has been presented in (42). This algorithm is basexhaoterative search through the
points. Iterations are only needed to nd some charactergtints of the object and they
do not imply hard iterative search procedures with the riskalling in local minimum. The
method can deal with some uncertainty between the discogtésgn the object description.

There are many methods for the planning of optimal grasps.e&imfor measuring the



sensitivity of a grasp with respect to positioning errora ba found in (9). The grasp with
insensitivity to positioning errors and ease of computai® considered good in terms of

overall performance.

2.1.2 Grasping of Deformable Objects

Compared with an abundance of research in grasping of rigiectsbin the last two
decades, less attention has been paid to grasping of ddftamigjects. Wakamatsu et al. (82)
examined whether force-closure and form-closure can bbeabip grasping of deformable
objects. Form-closure is not applicable because defoenaltiects have in nite degrees of
freedom and cannot be constrained by a nite number of césitathey proposed the con-
cept of force-closure for deformable objects with boundgaliad forces and de ned bounded
force-closure as grasps that can resist any external fatbenthe bound.

The deformation-space (D-space) of an object was intratlrc€24) as the C-space of all
its mesh vertices, with modeling based on linear elasteitgt frictionless contact. Deform
closure is de ned in a situation where positive work is nekt® release the part from the
frictionless contacts with ngers. This de nition has frannvariant property. This model is
energy-based and not experimentally veri ed.

Howard and Bekey (29) modeled 3D deformable objects usingeacionnected particles
and springs model, which formed a discretization of thaahibject. The motions of par-
ticles were calculated using the Newtonian equations. Aalewetwork was used to control
a manipulator. They used deformation to learn the progedig¢he deformable objects, and
thus determined the minimum force needed to lift the deftlmabject.

Work on robotic manipulation of deformable objects has beestly limited to linear and
meshed objects (84; 51). Most recently, a “ shbone” modaldzhon differential geometry for
belt objects was presented and experimentally veri ed.(85)his model, the deformed shape

of a belt object was estimated by minimizing the potenti&rgg. The nonlinear minimization



was performed based on the Ritz's method. The problem undeneggic constraints was
converted into a unconditional minimization problem withgrange multipliers. The model
only works fordevelopable surfaces

Hirai et al. (31) proposed a control law for grasping of defable objects, using both
visual and tactile methods to control the motion of a defdrlmabbject. In their method,
although uncertainties existed during the handling precgsasping and manipulation were
performed simultaneously. This control strategy was edraut with no need of deformable
modeling.

Saha and Isto (71) proposed a motion planning method for pu&ation of deformable
linear objects (DLO). This motion planner constructed aotogically-biased probabilistic
roadmap in the DLO's con guration space. It also did not asswany speci ¢ physical model
of the DLO. Motion plannings for several objects (rope, sefstrand etc.) could be realized
by their method.

Holleman et al. (30) presented a path planning algorithnafexible surface patch. They
used a Bzier surface and an approximate energy function to modetmeation of the patch.
This energy model penalized deformations that induce highatures, extension, and shear
of the surface. They presented experimental results osga#inned for parts generated by a
search graph using probabilistic roadmap.

Knotting of exible linear object such as a wire or rope candasily done with a vision
system (47). A recognition method was proposed to obtaistitueture of rope from sensor
information through the cameras when a robot manipulatepe rTwo knot invariants, Jones
and Bracket Polynomials, were utilized. Unknotting (40)¢d &motting (83) are the typical
manipulation operations on this type of linear objects,chlgan be carried out with no need
of deformable modeling.

Doulgeri and Peltekis (18) created a control model for maliaifing a exible part by a
dual arm system with rolling contacts on a plane. To obtairefazient model of the part

dynamics, they treated part deformations as motion of atpoass that was at the point of



maximum deformation at each contact. A feedback contratey initially for stable grasp
of a rigid object was used for a exible object. They simuthtee part motion to show the

performance of their control loop.

2.2 Deformable Modeling

2.2.1 Computer Graphics

Modeling of deformation has been extensively studied inat@r graphics. Gibson and
Mirtich (23) gave a comprehensive review. The main objectivthis eld is to generate
visual effects ef ciently rather than to be physically acate. Discrepancies with the theory of
elasticity are tolerated, and experiments with real okjaeed not be conducted. For instance,
the widely used formulation (75) on the surface strain epexrgithe integral sum of the squares
of the norms of the changes in the rst and second fundaméaitals, does not follow the
theory of elasticity.

Inthis eld, there are generally two approaches to modetiafiprmable objects: geometry-
based and physics-based (23). In a geometry-based appspéiakes and spline surfaces such
as Bezier curves, B-splines, non-uniform rational B-splines RBE), are often used as rep-
resentations (4; 19). In (3), for free-form deformatiore thormal vector of the deformed
surface can be computed from the surface normal vector ofitldkeformed surface and a
transformation matrix. In this way, deformations can belga®mbined in a hierarchical
structure.

Today's interactive graphics applications, such as coempgdmes or simulators, demand
a continuously growing degree of visual realism. In additio the display quality, it is es-
pecially the way in which the physical behavior is simulatedt eventually determines the
degree of realism experienced by the user. Physics-baseelimg (53) of deformation takes
into account the mechanics of materials and dynamics totainetegree. It combines dif-

ferential geometry, newtonian dynamics, continuum meisamumerical methods, vector
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calculus, and computer graphics. The Finite Element Me{Rk&M), the Finite Differences
Method, and the Finite Volume Method are powerful continumethanics based methods.

Mass-spring systems simply consist of point masses coedie¢ogether by a network of
massless springs. Though slow on simulating material wigh &tiffness, they are used exten-
sively in animation (11), facial modeling (87; 76), surgé€t¥), and simulations of cloth (2),
and animals (81). However, unlike the FEM and the Finite édhces Methods, which are
built on elasticity theory, mass-spring systems are notsarily accurate.

The skeleton-based method (45) achieves ef ciency of aeédnle modeling by interpo-
lation. It computes the stresses/strains only at contaotpand geometrically salient points
and then interpolates over the entire surface.

Deformable model-based techniques offer a powerful amgbremmedical image analysis.
They have been applied to images generated by computed tapigg(CT), magnetic reso-
nance (MR), and ultrasound. It is especially useful in th&gascluding segmentation and
matching, where the traditional image processing teclascare not suf cient. The “snake
model” is widely used in medical image analysis (48). Snalkesplanar deformable curves
that are often used to approximate edges or contours in @&seguf images. They exhibit
two principal behaviours: stretching and bending. Defdromaof the snake is obtained by

minimizing the total potential energy.

2.2.2 Elasticity

The FEM (21; 72; 5; 22), for modeling deformations of a widege of shapes, represents
a body as a mesh structure, and computes the stress, strdidisplacement everywhere in-
side the body. FEMs are used to model the deformations of@amaitge of shapes: fabric (13),
a deformable object interacting with a human hand (26), hutisgue in a surgery (10), etc.

If an elastic object is sampled over a regular spatial ghniel differential equation governing

the motion can be discretized using nite differences. Asdaimplementation is concerned,
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this method is easier than the general FEM. Pioneering usagenputer graphics was traced
back in (75). The directional derivative of the energy fumchal was discretized using the
Finite Differences Method.

The boundary element method (BEM) (33) solves displacenzmit$orces on the bound-
ary surface, and thus is more ef cient than the FEM. Roughba&ing, the integral form of
the equation of motion is transformed into a surface intelgyaapplying the Green-Gauss
theorem. The method achieves substantial speedup betaeusede dimensional problem is
reduced to two dimensions. However, the approach only wiankebjects whose interior is
composed of a homogeneous material.

Small deformation of a linear object can be modeled usingrbel@ments in FEM (80).
Large deformation can be modeled by the nonlinear FEM. Thes&as formulation was
introduced to describe linear object deformation (58). Aggoat element has six degrees of
freedom: three for translation and three for rotation. h daal with geometric non-linearity.
This model reduces to a system of spatial ordinary difféaéetjuations which can be solved
ef ciently.

Most recently, modeling based on differential geometrylieen proposed by Wakamatsu
and Hirai (84). Their method described linear object defuianm, i.e., exure, torsion, and
extension, by four functions: three Eulerian angles andedtensional strain. The deformed
shape was decided by an algorithm based on the Ritz's methbdir Gomputation results
were experimentally veri ed by measuring the deformed ghafoa sheet of paper.

Thin shell nite elements originated in the mid-1960s. Yaetal. (88; 89) gave two com-
prehensive surveys on thin shell nite elements. It is welbwn that the convergence of thin
shell elements requires! interpolation, which is dif cult. From a view point of engaering,
itis crucial to formulate models which are both physicaltgarate and numerically robust for
arbitrary shapes.

The bending energy of a deformed shell contains second dedaatives of the displace-

ment. In order to ensure that it is nite, the basis functiem®rpolating the displacement
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eld have to be square integrable. Cirak et al. (12) introdlaea FEM based on subdivision
surfaces which meets such requirement. Assuming lineati@ty, they presented simulation
results for planar, cylindrical, and spherical shells onlihe work was extended in (77) to
model dynamics in textile simulation.

Other thin shell FEMs include at plates (91), axisymmesiells (27; 62), and curve ele-
ments (14). More recently, computational shell analysth@éFEM has employed techniques
including degenerated shell approach (32), stress-eedtiiased formulations (1), integration
techniques (6), 3-D elasticity elements (17), etc.

Picinbono et al. (60) proposed rotation invariant nonliieaM to the modeling of anisotropic
soft tissues for real-time simulation. They solved the probof rotational invariance of de-
formations and took into account the incompressible ptogseof biological tissues.

For grasping, it is common to ignore dynamics in modelingodeitions using energy-
based methods, which allows us to treat the grasping proflessistatically. In computer
graphics eld, especially for real time simulation, it isaessary to simulatdynamicde-
formable objects. In this case, the unknown position veeldris given implicitly as the solu-
tion of some differential equation. The simplest numeriggdgration scheme is explicit Euler
integration, where the time derivatives are replaced bye miifferences. Stability and accu-
racy are two main standards to evaluate the performance whamcal integration method.

Geometrically nonlinear FEM has been applied to the glok&bmnation with real-time
haptics rendering for solid objects by Zhuang and Canny (3@gy numerically integrated
the differential equations by explicit Newmark scheme. iideo to realize real-time render-
ing, they approximated the stiffness matrix by a diagonatrimaThis matrix was obtained
by lumping the rows of the original matrix. The diagonaliaatprocess was equivalent to
approximating the mass continuum as concentrated massestanodal point of the mesh.
In this way, the distributed mass is converted to a partigstesn.

Linear differential equations yield linear algebraic gyss which can be solved more ef -

ciently and more stably than nonlinear ones. Unfortunatelgarized elastic forces are only
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valid for small deformations. Large rotational deformasgyield highly inaccurate artifacts.
To remove these artifacts, Mer and Gross (52) extracted the rotation part of the daeéor
tion for each nite element and computed the forces with ee$po the non-rotated reference

frame. This method yields fast and stable visual results.
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CHAPTER 3. SOME BACKGROUND IN DIFFERENTIAL
GEOMETRY

This chapter reviews some basics in differential geometricivare needed in the follow-
ing chapters. For more on elementary differential geometeyrefer to (57; 66). The reader
may skip this chapter if he/she is familiar with the content.

Throughout this thesis, we will denote by the derivative of a functioh (u) with respect
tou, and byf ,, the second derivative with respect to the same variableve&iiors will appear
in the bold face. Curves, surfaces, curvatures, and torgidhise denoted by Greek letters by
convention. Points, tangents, normals and other geomegciors will be denoted by English

letters, also by convention.

3.1 Plane Curves

Let (u) be a curve in two dimensions as shown in Figure 3.1.t e the tangent vector

of . We have

t= . (3.1)

The velocity of atu is the tangent vectdr. A curve is regular if its speektk is not zero ev-
erywhere. To make physical sense, the curve is parametnzactt length. Such parametriza-
tion leads to a unit speed curve. Computation will easilyycawuer to arbitrary speed curves.

The normah of the curve is the unit vector obtained by rotatingounterclockwise by;.
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Figure 3.1 A curve.

Now let (u) = (x(u);y(u))". Then

XuiYu)' |

t = poodu/ .
2 2
XU+yU

_ C Yuixa)'
xZ+yZ
The curvature is the rate of change of direction at some point of the tangenth respect
to arc length. For a 2D curve, we have
- XuYuu quyu_
(x2+y2)2
The following equations hold for vectotsandn .

ty= n; (3.2)

ng= t: (3.3)

The proof can be found from a standard differential geomtetxgbook.

3.2 Surfaces

Let (u;v) be a surface patch in three dimensions. Itegular if it is smooth and its
tangent plane at every poigtis spanned by the two partial derivativeg and . In other

words, (u;v) should be smooth and, v Should be non-zero everywhere.
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The unit normal to the surfacefis= ;———. The rst fundamental formof is de ned

K
asEdu? + 2Fdudv + Gdv?, where

E= w F= vi G= v (3.4)
Denote bys the arc length of a curve on the surface patch. We have
ds? = Edu® + 2Fdudv + Gdv?: (3.5)

The rst fundamental fornrelates the change in arc length to the corresponding csandgee
curvilinear coordinates. Theecond fundamental forimde ned asLdu?+2Mdudv + Ndv?,
where

L= wn, M= w n; N=  n: (3.6)

This expression is just a convenient way of keeping tradk,dfl , andN .

A compact representation of the two fundamental forms caapithe following two sym-

metric matrices: 0 1
E F
F=58 X (3.7)
F G
0 1
L M
F|| = % g: (38)
M N

Denote byu an unit tangent vector a. The normal section & in the u direction is
the intersection of the surface with a plane containingnd the surface norma. This
intersection is a curve on the surface. The correspondingatire atq is de ned as the
normal curvature ,(u). The maximum and minimum values of the normal curvatyy@)
are the twaprincipal curvatures ; and , at the pointg. The geometric interpretation is that
they represent the maximum and minimum rates of change imgeg when passing through
g at unit speed on the patch.

As far as the computation is concerned, the principal curegtare eigenvalues é_a‘l'—

They are achieved in two orthogonal directions. These tiines, denoted by unit vectots
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andt,, are referred to as th@incipal vectorswhere the indices are chosen so that t; t,.

The principal vectors are linear combinations gf and , which span the tangent plane at
q:
th = 10t 1 v (3.9)
to = 2 0t 2 v (3.10)
Here( 1; 1)" and( »; »)T are the eigenvectors &, o= corresponding to; and »,, re-

spectively. The three vectors, t;, andt, de ne the Darboux frameat the pointg as shown

in Figure 3.2.

Figure 3.2 Darboux frame.

The normal curvature at in the directionru = cost; + sin t,is
a(U)= 1008 + ,sin?: (3.11)

If the normal curvature ,(u) is constant on all unit tangent vectors, the panis called
umbilic. In this case, geometric variation is the same in every taindgection. Any two
orthogonal directions on the tangent plane can be selestedamdt,. If q is not a umbilic
point, whichmeans, 6 ,, there are exactly two principal directions and they areayonal.

The Gaussiarandmean curvatureare respectively the determinant and half the trace of

the matrix%':
LN M 2
K = 1 2 = —EG |:2’ (312)
_ 4+ , 1 EN 2FM+GL,
=% =3 EG F2 (3.13)
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The Gaussian curvatur&eeps unchanged when a surface is reparametrized. In cismpar
themean curvatureither stays the same or changes sign in this situation. facirs at if
its Gaussian curvaturées zero, and minimal if itsnean curvaturés zero.

A curve on the patch is calledlme of curvatureif its tangent is in a principal direction
everywhere. The patch mthogonalif F = 0 everywhere. It igrincipalif F = M =0
everywhere. In other words, a principal patch is paramatredong the two lines of curvature,
one in each principal direction. On such a patch, the praia@prvatures are simply; = %
and , = % respectively, and the corresponding principal vectoes ar »-2 andt, = PL.

On a principal patch, de ning
and

then we have

ds® = Adu? + Bdv?:

The quantitieA\ andB are called_amé coef cients or measure numbers

3.3 Differentiating Surface Invariants

Next, we derive derivatives of the principal curvatures pridcipal vectors.

3.3.1 Differentiation of Principal Curvatures

The principal curvatures can be expressed in terms of thesemuand mean curvatures

(choosing 1 2) as

H+ PHZ K (3.14)

.
1

, = H ~HZ K (3.15)
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To obtain the partial derivatives of, and , with respect tou andv from the above
equations, we rst differentiate the fundamental form coehts E; F; G;L; M;N de ned

in (3.4) and (3.6).

I:U - uu Vv + u uvs

Fv = uv vt VW

The partial derivatives of the unit normalcan be obtained as follows (66, p. 139).

Ny = a y+by;
n, = ¢ ,+d :
where
0 1 0 1
%)a CX=F|1F”= EGlF2 GL FM GM FNX;
b d EM FL EN FM
Then we have:
Ly = wu N+ w Do
L, = wwv N+ w Ny,
M, = wy N+ w Ny
M, = wy N+ w Ny,
Ny = wv N+ w Ny
Ny = ww N+ w Ny

Finally, the partial derivatives d andH are then computed according to (3.12) and (3.13).
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3.3.2 Coef cients of Principal Vectors

Next, we derive the four coef cients, 1, », 2in(3.9) and (3.10) as well as their partial
derivatives with respect to andv. Since the principal curvatures, i = 1; 2, are eigenvalues

of the matrixF, *F, , we have

0 det(F” iF|)

(L E) (N G (M F) (3.16)

There aretwo cases: () E =N iG=0fori =1 or2, and (b) eitheL iE 60
orN iG 6 0 for bothi =1 andi = 2.
In case ()M iF =0 by (3.16). Sd~, iF =0,i.e.,

F, 'Fyo= il

wherel, is the2 2 identity matrix. The two eigenvalues &f F, , namely, ; and »,
must be equal. Any tangent vector is a principal vector. We le

1
ti= pLi with L = " py39)

1

o

The other principal vectar, = , ,+ , isorthogonaltd;. So
(2 ut 2v) u=0; ie, E+ ,F=0: (3.17)

To determine , and ,, we need to use one more constraint: t, = 1, which is rewritten as

follows,
E 2+42F , ,+ G 3=1: (3.18)
Substituting (3.17) into (3.18) yields
S —— r
F2 E
2 — m, and 2 — ﬁ (319)

In case (b)L iE 60 orN iG 6 0 for bothi = 1;2. Fori = 1;2, we know that

(Fu Fi) ' =o0: (3.20)
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Equation (3.20) expands into four scalar equations acegrii (3.7) and (3.8) :

(L E)i+(M  F);

1
o

(3.21)

I
o

(M iF)i+(N G) (3.22)

Three subcases arise for eachalue.

(b)) L  {E =0 butN iG 6 0. It follows from equation (3.16) that! iF =0. Thus

equation (3.22) gives us = 0. ; has an exponent 2, i.g;, t; = E 2 =1, we obtain

(b2) L iE 60 butN iG = 0. This is the symmetric case of (b1). The coef cients are

0
(b3) L iE 6 0 andN iG 6 0. From equation (3.21) we have

M F

i = ﬁ i- (323)

Substitution of the above into (3.18) yields a quadraticagigm with the solution

L E _
EN 2FM + LG 2 (EG F?2)

In all expressions of; and ;, the signs are chosen such that t, = n.

(3.24)

The gradients ; = (2,92 andr ; = (£, <)

o0 o o0 @) I = 1;2, are obtained by differ-

entiating appropriate forms of and ; that hold for all points in some neighborhood (not

necessarily the ones at the point).

3.3.3 Directional Derivatives over Principal Vectors

Let be ascalar function de ned over a surfacéu; v). Its partial derivative with respect

to the parameteau can be written as follows:

L= lim ((u+ uwv) ( (4v)
ut 0 u
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s L W ()
u' 0 u

ul T (3.25)

f

o
llo

where [ ]is de ned as the directional derivative ofwith respect to .
Using (3.9)—(3.10), all the derivatives with respect to pinecipal vectord ;;t, in equa-

tions, repetitive or not, can be obtained. For instance,

(1 o+ 2 W1

1 u[]+ 1 v[]
= 10t 1 by (3.25)

tq ]

3.3.4 Covariant Derivatives of Principal Vectors

Letq be a point on (u;Vv). The principal vectors aj aret; andt,. We rst observe that

to)u - im t U+ uv) (V) pl—
E ul' 0 u E
; tZ(q u U) tZ(Q) 1
= |IH] . - p?
p p_
i t2 g +( u= E) u E tz(q)
B UHT%! 0 u E
= lim ta(g+ts s) ty(q)
st 0 S
=t (3.26)

Thecovariant derivative ,t, measures the rate of change of the principal vectas a
unit-speed surface curve passes through the paimthet, direction.

Next, we have, for;j =1;2,

r titj =T

ST S (S ERTEL ) K SV (S RIS T (3.27)
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The rst summand in (3.27) is computed as follows:

il u(j ut j v)

= i( u[j] ut jr o ot u[j] vt ogr o, v)
@ ., .9
@uu i uu @UV

The rst step above uses a fact about covariant derivativegif b) = a[f] b+ f r 4b.

j uv

The second step uses (3.25); namely, the directional deegaof a scalar along, and ,
respectively, are just its partial derivatives with regggec andv. The same rule applies to the
covariant derivatives of a vector with respect tgand . Similarly, we express the second
summand in equation (3.27) in terms of partial derivativéh wespect tau andv. Merge the

resulting terms from the two summands:

e, , @, 09

ou "@v ou av "
+ i owt(ijt i) wt i owe (3.28)

r titj =

3.3.5 Partial Derivatives of Principal Vectors

Proposition 1. The following equations hold for partial derivatives of th@éngipal vectorst ;

andt, on a principal patch (u;v):

p—

(t))y = (—IQGE—)utz; (3.29)
" E)

(to)y = thlz (3.30)

Proof. Due to symmetry we need only prove one equation, say, (3.836).us express the
derivative(t,), in the Darboux frame de ned by, t,, andn. Differentiating the equation
t, t, =1 with respect ta immediately yieldgt,), t, = 0. Next, we differentiaté, n =0
with respect tau:

(t2)u N+t n,=0:
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Heren is the derivative oh along the principal directioty = —, and hence must be a
multiple oft,.! Therefore, the above equation impligs), n =0.
Thus,(t,), has no component alorig or n. We need only determine its projection onto

t,1. First, differentiate , , = 0 with respect tai, obtaining

uu v = u uv- (331)

Next, we differentiateé, t; =0 with respect tau:

(t)u t1 =tz (t1)y
= t, p=
E .

-, pu4 pl
E E u -

uu

= t —
2 F’E
- I¥ uu

EG
1 uv

= p— — by (3.31
P—G = y (3.31)

= —p?; sinceE = , .

10ne can show that, = E ;t; though the details are omitted.
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CHAPTER 4. MODELING DEFORMATIONS OF GENERAL
PARAMETRIC SHELLS GRASPED BY A ROBOT HAND

This chapter investigates shape modeling for shell-likeab that are grasped by a robot
hand. A shell is a thin body bounded by two curved surfacesselutistance (i.e., the shell
thickness) is very small in comparison with the other dinm@ms The locus of points at equal
distances from the two bounding surfaces isniddle surfacef the shell.

Shells have been studied based on the geometry of theiresddiaces which are assumed
to be parametrized along the lines of curvature (80; 25; TG expressions of extensional
and shear strains, and strain energy, though derived inah fiame at every point, are still
dependent on the speci c parametrization rather than ormgéec properties only. Such
parametrizations, while always existing locally, are veifycult, if not impossible, to derive
for most surfaces. Generalization of the theory to an ayitparametric shell is therefore
not immediate. The Green-Lagrange strain tensor of a shpieisented in general curvilinear
coordinates in (28; 67). However, the geometry of deforamais hidden in the heavy use of
covariant and contravariant tensors for strains.

The strain energy of a deformed shell depends on the geormwikeitisy middle surface and
its thickness, all prior to the deformation, as well as thegpldicement eld. In this chapter, we
will rewrite strains in terms of geometric invariants inding principal curvatures, principal
vectors, and the related directional and covariant deviesit

All shell-like objects addressed in this chapter satisgy/fibllowing three assumptions:

1. They are physically linear but geometrically either &iner nonlinearPhysical linearity
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refers to that the elongations do not exceed the limit of priopnality so the stress-
strain relation is governed by Hooke's lauteometric nonlinearityefers to that the
angles of rotation are of a higher order than the elongatén shears.Geometric

linearity refers to that they are of the same order.

2. They are considerdtbmogeneouandisotropig i.e., having the same elastic properties

in all directions.

3. Their middle surfaces are arbitrarily parametric or sorapimated.

4.1 Displacement Field of a Shell

As shown in Figure 4.1, denote by(u; v) the middle surface of a thin shell with thickness
h before the deformation. The parametrization is regulaeriypointp in the shell is along
the normal direction of some poigton the middle surface; that ip,= q + zn, wherez is

the signed distance fromto p.

(@) (b)

Figure 4.1 Deformation of a shell. The pomin the shell is along the direction
of the normaln at the pointq on the middle surfacep®andq®are
their displaced locations.
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The displacement(u;v) of g = (u;v) can be expressed in its Darboux frame:
(v)= (Ut + (Ut + (u;v)n: (4.1)

We call the vector eld (u;v) thedisplacement eldf the shell. After the deformation, the
new position ofg is
q°= Auv)= (uv)+ (uv):
At the same time, from classical shell theory (56, p. 178 ,displacement gb contains

another term linear in the thickness
0 1

#(u; V)
(u;v) + Z%' (u; V) E ; (4.2)

(u;v)
The displaced positiop®of the pointp may not be along the normal directiong due to a
transverse shear straithat acts on the surface throughand parallel to the middle surface.
This type of strain tends to be much smaller than other types ghell and is often neglected
in classical shell theory (44; 80) under Kirchhoff's assuim: straight bers normal to the

middle surface of a shell before the deformation will
1. remain straight after deformation;
2. do not change their lengths;
3. and remain normal to the middle surface after deformation

In this chapterwe adopt Kirchhoff's assumption and do not consider trarse/ehear

The linear elasticity theory is appropriate in the situatibat the deformation of a shell is
small. It assumes that the magnitudes of angles of rotabamotlexceed those of the elonga-
tions and shears. They are all suf ciently small when coregdo unity. Under those assump-
tions, the squares and products of these terms are neglidfilhose terms are compared with

unity, they can be dropped (55). The linear theory makes fierdhce between the values of
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the magnitudes and positions of the areas on which the saictsdor both pre-deformation

and post-deformation states.

4.2 Small Deformation of a shell

Most of the literature (56; 80; 70; 25) on the linear elasgfitheory of shells have as-
sumed orthogonal curvilinear coordinates along the liiesiovature. Though in theory there
exists a local principal patch surrounding every point witlequal principal curvatures, most
surfaces (except simple surfaces such as planes, cyljrspgreres, etc.) do not assume such
a parametrization.

The exception, to our knowledge, is (28) in which generalitimear coordinates are used
in the study of plates and shells. Nevertheless, the geametuition behind the kinematics
of deformation is made invisible amidst its heavy use of cewda and contravariant tensors to
express strains and stresses. The forms of these tendiatesind on a speci ¢ parametriza-
tion rather than on just the shell geometry.

Section 4.2.1 rst reviews some known results on deformretiand strain energy from the
linear shell theory. In Section 4.2.2, we will transformgbeesults to make them independent
of any speci ¢ parametrization, but rather dependent omgetac invariants such as principal
curvatures and vectors. In the new formulation to be derigedmetric meaning of strains
will be more clearly understood. Section 4.2.4 will desetitow to compute strains and strain

energy on an arbitrarily parametrized shell using toolsfaifferential geometry?

4.2.1 Strains in a Principal Patch

Let the shell's middle surface (u;v) be a principal patch. Under a load, at the point

g on (see Figure 4.1(b)) there exiektensional strains; and ,, which are the relative

1The theory is distinguished from the membrane theory whigdisiwith elongations but ignores shearing
and bending.
2The mathematical derivations in Sections 4.2.2 and 4.2r8 werformed by my thesis advisor Yan-Bin Jia.
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increases in lengths along the two principal directibnandt,, respectively. They are given

as (25, p. 219):

P —
E)
p_
\" G)U
= pl+ : 4.4
2 pE ng 2 (4.4)

whereE; F; G are the coef cients of the middle surface's rst fundamdntarm de ned
in (3.4) and ; and , are the two principal curvatures, all gt

There is also th@-plane shear strairh . As shown in Figure 4.1(b}? andt? are the unit
tangents from normalizing the two partial derivatives @ thisplaced surface®, respectively.
These vectors are viewed as the “displaced locations” optimeipal vectord; andt,. The
angle between? andt? is no longer =2, and! is the negative change from 2. We have

I =1,+ 1, where (25, p. 219)
p_

v G)u
o= pr GO (4.5)
G EG
pE)
l, = p— —Y 4.6
2 E EG (4.6)

The extensional and in-plane shear strains, athich is off the shell's middle surface, will
also include some components due to the rotation of the narmbnder the assumption of
small deformation, we aligt, with t9 and view in their common direction (see Figure 4.2).
Denote by ; the amount of rotation of the normal® from n about thet, axis towardt .
Similarly, let , be the amount of rotation of the normal about theaxis towardt,. We

have (25, pp. 209-213)

1) (4.7)

2: (4.8)

o< mi-
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Figure 4.2 Rotation of the surface normal.

It is shown that the extensional strains pt= g + zn are

A]_ = 1+ Z 1, (49)

Az = 2+ Z o, (410)

and the shearing strain at the point is

P=1 +2z(1+ ,); (4.11)

where the “curvature” and “torsion” terms (25, p. 219) are

P—

L= iy GEM (4.12)
E pE_G

2 = (pzlv+%G)“ 1 (4.13)
G pE_G

p= b GO (4.14)
G pE_G

— (n2)u (n E)v .
2 = P P (4.15)

The geometric meanings of these terms will be revealed iti@et.2.2 after they are rewritten

into parametrization independent forms.

3by dropping all terms of ordér 1 orh , when compared to 1.
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Let e be the modulus of elasticity andthe Poisson's constant of the shell material. We

let = 1+ ,.Under Hooke's law, the strain energy density is

u=_°5_ ("3 +2 /\1/\2+’\§+:L

207 r2)dv: (4.16)

The strain energy can be obtained as follows.

u = du
v Z
1
- 2(1e 2) ("T+2 M+ r2)dv
e ZVZ z 1
= (F+2 MY +AS+ n?)dzds
2(1 2)Z h
e 1
= m h %4‘ %+2 12+ !2
3 p_—
+ 2—2 24 242 4,4 ! 2 " EGdudv: (4.17)

The linear term irh above is due to extension and shear, while the cubic terneisaloending

and torsion.

4.2.2 Transformation based on Geometric Invariants

The strains (4.3)—(4.8), (4.12)—(4.15), and the strairrggnérmulation (4.17) are only
applicable to a middle surface which is parametrized alamgslof curvatures. In order to
expand the application domain, these terms need to be deedréo arbitrary parametric
surfaces. Rewriting the strains in terms of geometric iraras like principal curvatures and
vectors that are independent of any speci ¢ parametrimaisoan indispensable step in the
generalization. We will present this below.

The middle surface (u; v) of a shell remains to be parametrized along lines of cureatur

First, we rewrite the extensional strain (4.3) as follows:

u= ol ] by (3.25) (4.18)
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By the linearity of the directional derivative operator, vesvrite the rst termin (4.3):

PES P?[ 1=t I (4.19)

The termt,[ ] does not depend on parametrization.

As far as the second summand in (4.3) is concerned, we rs hav

t%’ =1t by (3.26) (4.20)
Next, we make use of the following identity:
p_
E)v
(t2)u = —p—( 6) ta; (4.21)

of which the proof is given in Proposition 1 in Chapter 3. Conebequations (4.20) and

(4.21):

p_

E)v
) t1 r ,tz; andhence

IEG
E).

= 1ty tg: 4.22

=c ulz 1 (4.22)

A second identity follows by symmetry:

P—
ngi)u =r tztl to: (423)

EG

Substitutions of equations (4.19) and (4.22) into (4.3)itaa a formulation of the exten-

sional strain ; independent of the parametrization:

1 =t ]+ (r 2 ty) 1

Gl 1+ (rutz ta) +(ryn t): (4.24)

The last step uses an equivalent de nition of the principalature: i Nt

4.2.3 Geometry of Strains

The rsttermt,[ ]in (4.24) denotes a strain component as a result of the chatgef

the displacement in thig direction. As shown in Figure 4.3(a), we consider a poitm the
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neighborhood off on some surface curve. This curve passes thraughunit speed in the
t, direction. After the deformation, these two points have pasitionsr °andg® Denote

by q? andr ¢ the corresponding projections gf andr °ontot; (before the deformation). As
r approaches along the curve, the geometric interpretatiort df ] is that it measures the

relative change in length betwegn's projection onta; andq?r?.

(b)

Figure 4.3 Strain along a principal directibnpartly due to (a) the change rate of
displacement in that direction and (b) displacement in titleogional
principal directiont, due to its rotation alonty.

In order to explain the second termin (4.24), we rst obsehad the two principal vectors
have undergone some rotations frgno r . As shown in Figure 4.3(b), sinaeis very close
to g, it can be placed on thg axis. Projecting the displaced locatiog$andr ° onto the
corresponding second principal axegjandr leads to two pointg andr 3. The projection
of the covariant derivative (,t, ontot; is equal to the cosine of the anglenormalized

overkr  gk. Denote byw the projection of § ontot;. The displacement alongt, also
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contributes a component
kw rk=krd rkcos = cos

(normalized oveikkr  gk) to the strain ;. This component is the second term in equa-
tion (4.24).

Similarly, the third term in (4.24) is the part of the dispgatent alongn involved into
t1 due to the change of the nornralalongt ;.

By the same derivation, parametrization independent faatiards can be achieved for

other strain components (4.4)—(4.15):

2= L 1+(F oty 1) +(run t); (4.25)
=t ] (ot ) (4.26)
o=t ] (ute 1) (4.27)
1= b J+(ryn ty); (4.28)
2= ta[ ]+(rn t2); (4.29)
=t ]H(F ot t) 2 (4.30)
2=t 2+ (F uts t2) o (4.31)
p=tl ] (ot t) 2 (4.32)
2=t (Fute ty) o (4.33)
- a "

Figure 4.4 Rotation of one principal vector toward anothetarrdeformation.
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The term , in (4.25) has a similar geometric explanation asn equation (4.24). Next,
we interpret the geometric meaning!ofin (4.26). As shown in Figure 4.4, every point along
the principal directiort, in a local neighborhood is displaced in thedirection by a value
which is equal to that of the function (see (4.1)) at that point. After the deformation, the
projections of the new locations of these neighborhoodtgdarm a vectot$ in the original
tangent plane approximately. In essence, this new vectobeaconsidered as a result of a
rotation oft, during the deformation. Since thevalues of these points are usually different,
t9 is unlikely perpendicular to;. Subsequently, the change ras¢ ] gives out the rotation
of t, towardt, after the deformation. The second term in (4.26) represietemount of
rotation fromt, towardt,. This rotation is a result from the change in surface geontr
g along the directiori, and the displacement. Therefore this amount has to be subtracted
from the rst term, yielding exactly (4.26). By the same reaisw, ! , given by (4.27) is the
amount of rotation front, towardt,. Their sum,} =1, + !, is the shearing in the tangent
plane.

Similarly, the rotation front, toward the normah after the deformation is the negation of

1, Which is given in (4.28). Recall that no shearing happenkeémiormalt;-n plane under
Kirchhoff's assumption. Subsequently, the rotation framowardt; must be ; to ensure
that the two vectors remain perpendicular to each other #feedeformation. In the same
way, » represents the rotation aof towardt .

The geometric meanings of, ,, 1, and ;in (4.30)—(4.33) can be explained in a similar
way, though more complex. From differential geometry, wewrthat the derivative of a
rotation of the normah about some tangent direction is the normal curvature. Time tg,
referred to axhange in curvatureaccounts for the change rate of the anglealong the
principal directiont, plus the effect of the angle, due to the change df alongt;. The
term , can be explained similarly. Togetheg, and , measure the bending of the surfaces.
Thesum = ;+ ,, referred to aghange in torsionmeasures the twisting of the surface

due to the deformation.
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In the strain energy integral (4.17), the area elemaBG dudv now needs to be replaced

by P EG FZ2dudvto be applied to a regular patch on which the two partial deixes are

not necessarily orthogonal, i.€:,6 0. Hence we have

Z
e
U=m h 2+ 2+2 4 ,+ 12 4
h3 1 I
P 24 242 4,4+ 2 pEG F2dudv; (4.34)

with all strains given in (4.24)—(4.33).

4.2.4 Strain Computation for a General Parametric Shell

Since all the strain terms are expressed in terms of geametariants, we can compute
them on an arbitrary parametric shell using tools from d#fg¢ial geometry. From now on,
the middle surface (u; V) is not necessarily parametrized along the lines of curvatiice
compute the strains according to equations (4.24)—(4v88yeed to be able to evaluate the
directional derivatives of the principal curvatures , with respect to the principal vectors
t; andt,, as well as the covariant derivatives t;,i;j = 1;2andi 6 j. All these derivatives
have been derived in Chapter 3.

Next, we derive the derivatives of the displacements. Rehatl the displacement is

described in the Darboux frame:
= 4+ t+ n;
wheret 4, t,, andn are three orthogonal unit vectors. Therefore we have:

= ta;
= to;
= n:
All the derivatives with respect to andv can then be obtained. For instance,

u - u t1+ tlu;



v o~ v i+t tiy;
u - u o+ toy;
v o~ v L2+ toy;
u - u N+ Nu;
v = v n+ ny:

Similarly, the higher order derivatives can also be comgute

4.3 Large Deformation of a Shell

When a shell undergoes a large deformation, the linear elgstheory as presented in
Section 4.1 is no longer adequate. This is illustrated belsing the example of a rotation

about thez-axis through an angle
0 1 O 10 1 O 1

x° cos sin 0 X X
%}y(’E:%sin cos O%%yg %}ygi
Z° 0 0 1 y y

No deformation happens, hence no strain alongxtfais, as con rmed by the nonlinear

theory (65, p. 13):

" #
@x 2 @x @x @x

1 .
cos 1+ (cos 1)? + (sin )2

= 0:

However, the linear elasticity theory yields a strain

_ @%_ .
= @x cos 1 (4.35)

which is negligible only when the rotation anglées small.
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As before, (u;v) is the middle surface of a thin shell, in a regular paramation. We
look at a pointg = (u;Vv) in the middle surface with the displacement eld (4.1) in the
Darboux frame de ned by the two principal vectdrsandt,, and the normah at the point.

A pointp = g + zn in the shell, which projects tg, has the displacement given as (4.2).

Under Kirchhoff's assumption, @t the relative elongatiohs; of a ber along the normal

n, and shear$,3 and",3, respectively, in thé;-n andt,-n planes, are zero; namely,
33= "13= "23=0: (4.36)

Next, we present the nonlinear shell theory (55, pp. 186)%1&% transform the related
terms into expressions in terms of geometric invariantstAive have the relative elongations

of in nitesimal line elements starting &f as:
wo= akg(ieiie D @37)
"2 = ot %( S+ 13+ 3y (4.38)
Next, the shear in the tangent plane spanneth andt, is
=lit o+ qlo+ Hlg+ g 2 (4.39)

In (4.37)—(4.39),i,!i, i,i =1;2, are given in (4.24)—(4.29). Note the appearance of non-
linear (quadratic) terms in equations (4.37)—(4.39). Ttharss"; , i;] = 1;2; 3, symmetric in
the indices, together constitute the Green-Lagrangendieasor of a shell (67, pp. 201-202).

The rate of displacement in (4.2) along the normaltq is determined as follows:

# = 1(1 + 2) 2! 1, (440)
' = 2(1 + 1) 1! 2, (441)
= 1+ o+ 1o il (4.42)

The relative elongations and sheapgpff the middle surface) are affected by the second

order changes in geometry at its projectpin the middle surface. They are characterized
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by six “curvature” terms which are rewritten in termstqeft, andn in the same way as in

Section 4.2.2;

11 = U[#]+(r yto t)" +(r gn ty);
22 = tf ]+ (r pty t)#E+(r ,n t2);
12 = '] (rute t)#
21 = f#] (r,ty t2)5

13 = tif ] (ryn t)#

23 tof 1 (ren to)t

Among them, ;; and ,, describe the changes in curvature albpg@ndt,, respectively; 1,
and ,; together describe the twist of the middle surface in thegahglane; and ;3 and ,3
describe the twists out of the tangent plane.

The six terms j; form the following three parameters that together chareet¢he varia-

tions of the curvatures of the middle surface along the gai@irections:

11 = 1+ 1) n+t'!1 1 13 (4.43)
2 = (IL+ 2) o+!lo 20 2 23 (4.44)
12 = 1+ 1) a+(1+ ) 1

1o+l 2 213 1 23 (4.45)

Finally, we have the relative tangential elongations arehshtp in terms of those af in

the middle surface:

M= "t Z g (4.46)
Mo = Mt Z 9, (4.47)
Mo = Mo+ Z g2 (4.48)

Their derivation neglects terms if, as well as products aof with the principal curvatures

ryn tpandr ,n t,.
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In the case of a small deformation, we neglect elongatiodssaears compared to unity,
for instancel + ";  1in (4.43), as well as their products (also separately wittvature

terms) such as;! , in (4.39). Equations (4.46)—(4.48) then reduce to

ML= 1t Z o
Mo = 2+ Z
Moo= L+ zZ( 12+ 21);
where! = 1, + I, These equations are essentially the same as (4.9)—(4.14¢ ilinear

elasticity theory of shells, with; corresponding to;, 2to 1, and ,;to .

The strain energygf the shell has a similar form as (4.34)eéninear case:
1 n2
2 12

h3 1 P
"'1_2 at 5Ht2 oot 5 2 EG FZ2dudv: (4.49)

— II2 ll2 n n
U= _-"-—% h nt 22+2 122t

4.4 Energy Minimization over a Subdivision-based Displacement Field

The displacement eld (u;v) = ( ; ; )T of the middle surface of a shell describes its
deformation completely. At the equilibrium state, the shaks minimum total potential en-
ergy (20, p. 260), which equals its strain energy (4.34) atg¥minus the potential of applied
loads. Applying calculus of variations(u; v) must satisfy Euler's (differential) equations. A
variational method (86) usually approximate; v) as a linear combination of some basis
functions whose coef cients are determined via potentrergy minimization.

Since the curvature terms, ,, and , or 11, 22, and 1o contain second order derivatives
of the displacement, to ensure nite bending energy, théslfasctions interpolating (u; v)
have to be square integrable, and their rst and secondralelévatives should also be square
integrable. Loop's subdivision scheme meets this requerdand3). Recently, the shape func-
tions of subdivision surfaces have been used as nite eléimesis functions in simulation of

thin shell deformations (12).
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(b)

Figure 4.5 (a) A regular patch with 12 control points de niagurface element
which is described in (b) barycentric coordinasesndt.

A subdivision surface, piecewise polynomial, is contrdll®y a triangular mesh witm

triangle on the mesh, and is determined by the locations bémly its three vertices but also
the nine vertices in the immediate neighborhood. In Figuséa, the twelve vertices affecting
the shaded element are numbered with locatiorss respectively. A point in the element is

ilfl b (s;t)xi, wheres andt are barycentric coordinates ranging over a unit triangée (s
Figure 4.5(b))f (s;t)js 2 [0;1];t 2 [0;1  s]g, andly(s; t) are quartic polynomials called the

box spline basis function(@3). Their forms are listed as:
1 4 3
= — + :
1 2(s 2s°t);
1 4 3
= —(s*+ :
12(8 25°W);

1
= 58"+ 28°W+ 65 + 6w + 1257 + Bst’w + 6t + 20w + t);

P & &F &

1
= 1_2(654 + 2453w + 2452W2 + 8swP + Wt + 2453t + 60stw + 36Stw?
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+ 6tw3 + 245%t? + 36st?w + 12t%w? + 8st® + 63w + t4);
= %2(34 +65°W + 125°W? + 6sW° + W* + 253t + 6S%tw + 6Stw? + 2tw?);
= 1i2(25t3 + t4);
= %2(54 +65°wW + 125°W? + 6sw° + w* + 853t + 36s*tw + 36stw?
+ 8tw?3 + 2452t + 60st>w + 24t%W? + 24st® + 24t3w + 614);
by = %2(54 + 85w + 245?W? + 24sw® + 6W* + 653t + 365%tw + 60stw?
+ 24tw3 + 125%t2 + 36st?w + 24t2w? + 6st3 + 8t3w + t4);
hy = 1i2(25vv3 + wHh:
bo = g5@Cw t);
by, = 1i2(2$,vv3 + W* + 6stw? + 6tw> + 6st?w + 12t2w? + 2st3 + 6t3w + t);

1 4 3
= J— + '
bi> 12(W 2tw*);

wherew=1 s t.

The advantage of a subdivision surface is that it can easgessent an object of arbitrary
topology. The shape of a shell after a deformation usualdy$tpological similarity to that
before the deformation. This suggests us to approximatggfeemed middle surface as a sub-
division surface Yu;v) over a triangular mesh that discretizes the original serfa@; v).*

The vertices<; of Yu;V) are at the positions'® =  (u;;v;) before the deformation; they

©

are later displaced by: = x;  Xx;”’, respectively.

Every surface elemer@ of Cis parametrized with the two barycentric coordinatesd
t. To compute the strain enerdy in (4.34) or (4.49), we need to set up the correspondence
between(s;t) and the original paramete(s; v). The triangular mesh of °induces a subdi-
vision of the domain of the original surface whose vertitgsv;) are the parameter values

of the vertices ofk; of © In this domain subdivision, let {uy; vi) be the 12 neighboring

4Subdividing the surface domain to approximate the disperet eld directly does not generate a good
result, as we have found out via simulation with severalama$, because the topology of the displacement eld
is unknown beforehand.
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vertices of qu;v). Then

)QZ
(V)= h(s;t)(uk; vi): (4.50)
k=1
The corresponding point on the original surface is
K2 |
(uv) = b (s;t)(ui; vi)
i=1
X2 2
h(s;t) (u;w)=  h(s;Hx: (4.51)
i=1 i=1

In the second step above, the functiofu; v) is locally approximated as linear over the small
domain region corresponding &

The displacement of a point on the middle surface in its Daxdoame is, by (4.1),
(5: )= Auwv) (V) (tatzn): (4.52)

Obtaining the Jacobian with entrigds 25 &' and &' from (4.51), the strain energy of the
shell can be integrated over each subdivision elemenf.dfor accuracy, all needed geometric
invariants are nonetheless computed under the originahpetrization .

If the middle surface of a shell is not parametric but eithreefform or described by
an implicit equation, the subdivision surfac&u;v) for the deformed shape is subtended
by a triangular mesh over the shell's 3-D range data befoeeddformation. Essentially,

the original middle surface is approximated b§with the vertices at their pre-deformation
(0)

positionsx; - .

Whether the shell is parametric or not, tetbe the number of vertices of the subdivision

which consists o8m coordinate variables. After the deformation, the vertiaes atx; =

xi(°)+ iforl i m.
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4.4.1 Stiffness Matrix

In the case of a small deformation, the system is lineariotig the linear elasticity theory

and can be easily solved. We rewrite the strain en&kgy (4.34) into a matrix form:
U= TKs ; (4.53)

whereK is the (symmetric) stiffness matrix constructed as followssume there arbl,

elements in the triangular control mesh ot Let S, denote thekth element. Number the

neighboring vertices locally so they arexat; X,; ;X12, respectively. The displacement
eld (;; )T ofScisdecidedby |;:::; 1, where | = ( s 1413 30 123 30 1+3)
forl i 12 Eachof; ; isalinear combination of thes¥6 variables.

Next, we illustrate over the integral summand involvirfgin (4.34). By its de nition
P
(4.24), . is still a linear combination of thes&b6 variables, say,; = f’fl N, . Lett; =

(tix;taystiz) T, to = (taitayi taz) T, @andn = (ny;ny;n;)T. The forms ofN;s are given as, for

1 i 12

Nai 1v1 = tafdta] +(r ta to)hta +(r n t)bny

_ @b @Ix @b @1

= @tlx b @u 1@\;1x 1h @v

+(r tz ty)hty, ibny;

Nsi 1+2 = tafbdty]+(r otz ti)bty +(r yn ti)hny

_ e . Lo, e e

@ ly 1 @ l@vly 1 @V

+(r t1t2 tl)thy 1hny;

tifaty,] +(r to ty)bty, +(r ,n ti)bn,

@b @Iz @b @1,
1@ —t1;+ 1D @u 1@\}12 10 @v

+(r ty ty)hty, ibng;

N3 1)+3

wherehs are the subdivision basis functions, ang; ;) is from (3.9). From (4.34), the
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element stiffness matrik I is a36 36 matrix (symmetric) with entries
Z
Ki= % hN/NydA: (4.54)
P21 7 o e '
Similarly, we construcK 2, K 12, K'* K {,K 2,K 2, andK °. The stiffness matrix for

the element is

Ks, = Ki+KZ+K12z+K!'’

k

+ KI+KZ+K2+K ™ (4.55)

Now we need to assembles, intoK s (3m  3m matrix). The local indices of the vertices
in K, are converted to the global indices. After adding rows aridroas of zeros for all
vertices not appearing i8¢, Ks, is expanded to a ne@m  3m matrix ng. The global

stiffness matrix sums up all element contributions:

e
Ks=  K&: (4.56)
k=1
4.4.2 Minimization of Potential Energy
Denote byg(u; v) the load eld, which does potential
Z
U= a(uv) (uvdA= TQ; (4.57)
whereQ is the vector of all nodal forces. The total potential enesfs shell is
U=U U= TKs Q; (4.58)

where the strain enerdy- is given in (4.53).
To minimizeU, a system of equations in can be derived by differentiating (4.58) with

respect to the vector and setting all partial derivativezsim:

Ks =Q: (4.59)



46

The linear system (4.59) can be easily solved using Gaus$iimmation or a sparse matrix
method.

A large deformation is governed by the nonlinear elastitigory. The strain energy-
in (4.49) no longer takes the quadratic forr K, but rather a quartic form. Minimization
of the total potential energy)- U, is done iteratively. In the case of point contacts, a
conical initial displacement eld is placed around eachteghpoint. Minimization over the
radius of the deformed region sets the initial value of The conjugate gradient method
is employed to improve on , with the gradients evaluated numerically. Interpolation
the local neighborhood improves the computational ef cenOn a Dell Optiplex GX745
computer with 2.66GHz CPU and 3.00GB of RAM, it usually takesesal minutes to obtain

the solution compared with several seconds in the linea.cas

4.4.3 Boundary Conditions

Boundary conditions are handled in the same way as descril§@d) — the boundary dis-
placements are determined only by vertices at most one edge (@cluding added arti cial
vertices just outside the domain). This is because of thal kpport within the subdivision
scheme in Figure 4.5. For every boundary edge, one artiv@aiex is introduced. As shown
in Figure 5.4, vertex 4 is arti cial and positioneda = ,+ 3 1, where 4, »,, and

3 are the positions of the vertices 1, 2, and 3 which form a gi&n Vertex 4 affects the
geometry of the surface element which corresponds to taegie. Under the clamped condi-
tion (displacements and rotations xed), the displacemmeifithe vertices on the boundary and
their adjacent vertices, inside or outside, must be zeralethe simply supported condition
(displacements xed and rotations free), the displacesehtthe vertices on the boundary
must be zero, while those of the adjacent vertices insidecammside the boundary must be

opposite to each other.
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ERXQGDU\

Figure 4.6 Clamped boundary condition, = , = 3 = 4 = 0; simply
supported boundary condition; = 3=0, 4= 1.

4.5 Simulation

By default (except where speci ed otherwise), the metrideysis used in our simulation
and experiment. For instance, the unit of Young's moduluBaswhile the unit of length is
meter. First, simulation tests under linear elasticity@meducted on a couple of bench mark
problems, and the results are compared with their analygimations® These problems in

mechanics were designed to provide strict tests to dealawithplex stress states.

4.5.1 Square Plate

The rst bench mark problem involves a square plate undefionmi load of gravity. Here,
the effect of bending dominates those of elongation andrstgeaAs shown in Figure 4.7, the
plate's boundary is clamped during the deformation. Lisiedhe right are the values of the
plate's lengthL, thicknesdh, Young's modulus€e, and Poisson’'s ratio.

The maximum displacement at the center of the platg,igs  0:1376according to the
analytical solution (80, p. 202), which is in the form of ayshometric series. Figure 4.8 plots
the computed maximum displacements normalized aygr against the numbers of degrees

of freedom. Note that every vertex in the control mesh hasetliegrees of freedom. The

SClosed-form solutions rarely exist for general thin shetitgems.
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‘ L =100:0
v i \ h=1:0
l A E=1.0 10
=0:3
p=1:0

Figure 4.7 Plate under gravitational load and clamped dbdlomdary.

curve plot approaches the analytical vatue.
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Figure 4.8 Convergence of the maximum displacement for taeed plate in
Figure 4.7. The number of degrees of freedom equals thresstine
number of vertices.

The geometry, load, and boundary condition are all symmetrithe example. The
Young's modulus and the load represent only a scaling faaor do not affect the overall

deformed shape. In Figure 4.9, the Igad scaled 200 times in order to illustrate the global

5The analytical solution considers bending only, whereasfaumulation also incorporates in-plane exten-
sion, shearing and torsion, and is thus more realistic.
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deformed shape. The added arti cial vertices are drawndin re

Figure 4.9 Calculated deformed shape (de ection scaled)ferclamped plate
(arti cial vertices marked red) in Figure 4.7.

4.5.2 Clamped Cylindrical Shell Panel

Next, we consider a cylindrical shell panel with the folloi geometric and material

parameters and subjected to uniformly distributed trarsevgnormal to the surface) logd
= 0:1rad; R =100in.;
a=20in.; h=0:125n;
E =0:45 1C0psi =0:3; p = 0:04psi.

As shown in Figure 4.10, this shell is clamped at its boundary

\
\
N a
\
\
\
\
\

Figure 4.10 Clamped cylindrical shell panel under uniforamgervers loads.
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The vertical displacement at the center of the sheltigi4 10 2in. according to (59).
Figure 4.11 plots the computed maximum displacements naeover the reference value

against the numbers of degrees of freedom. The curve agm@sdige reference value.

1.4 T T T T T T
12 X 1
1

0.8 1

0.6 d

04} 1

Normalized maximum displacement

0.2 1

0 1000 2000 3000 4000 5000 6000
Number of degrees of freedom

Figure 4.11 Convergence of the maximum displacement for ldraped cylin-
drical shell panel in Figure. 4.10.

4.5.3 Comparison with Commercial Packages

Shell elements in commercial packages usually fall into tategories: degenerated 3D
solid elements and elements based on thick shell theorsgpe¢ally the Reissner-Mindlin
theory (39)).

A shell may be approximated as a collection of degeneratesidd elements, which are
simple to formulate because their strains are approximaté€tartesian coordinates. Mean-
while, analysis of general curved shells uses curvilineardinates. Though this increases
the complexity of derivation, the use of curvilinear cooiaties provides increased accuracy,
and is thus more preferable.

The Reissner-Mindlin theory allows for shearing throughtbiet thickness of a shell, and
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best models thick shells (38). It requir€$ interpolation only, simplifying the underlying
basis functions, and is thus easy to implement. Howevetltahaoes not perform well in thin
shell analysis because of shear and membrane locking.

We will compare our method with the use of shell elements SBE®h The element
S3 is from the commercial softwa®BAQUSand based on the thick shell theory. Served
as general-purpose shell elemenABAQUS it is widely used in industry for both thin and
thick shells. The element T6 is a degenerated 3D solid elefran the SHELL93 library of
another commercial packagéNSYS

Our performance criterion is accuracy in terms of the totamhber of degrees of freedom,
which is standard in the FEM eld. Here we use a well-knowndiemark problem: a cylinder
with rigid end diaphragms subjected to opposing normal tpoiads through its center (see
Figure 4.12). The radius of the cylinder B = 300:0. This problem tests the ability to
model deformation caused by bending and membrane strédsesnalytical solution yields
a displacement of:8248 10 ° under the load oF = 1 (67, p. 217). The results of using

elements S3 and T6 are from (39).

-+ L = 600:0

R =300:0
h=3:0
E=3.0 1CF
=0:3
F=10

SRS

Figure 4.12 Pinched cylinder.

The convergence of our method to the analytical solutiotn@we in Figure 4.13, along

with those ofABAQUSandANSYS The vertical axis represents the de ection at the point
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Figure 4.13 Convergence of the displacement under loaddqgitiched cylinder
in Figure 4.12.

of contact normalized over the analytical displacemeniezallhe normalized maximum dis-
placement converges tbas the number of degrees of freedom increases, which meains th
the solutions converge to the analytical value.

To compare the rates of convergence of the three methodsfedbgn the number of
degrees of freedom in a nite element mesh, andrithe relative error. The relationship
betweerr andn is perhaps best illustrated by plottitag(r) againstiog(n). If r = nP, then
log(r) = plog(n), so the relationship betwedog(r) andlog(n) is linear with the slope.
Therefore, the rate of convergence may be conveniently mmedsy the slop@. As shown
in Figure 4.14, this slope of our method is approximateB; which means the relative error
decays roughly at the rate ﬁi In other words, the errar decreases by a factor dfwith
every doubling of the number of degrees of freedonin comparison, the relative errors of
both S3 and T6 decay roughly at the rat%oﬂ'he convergence rate of our method is an order

of magnitude higher than those ABAQUSandANSYS

"Although both S3 and T6 converge monotonically to the refeeesolution as reported in (39), T6 does so
more slowly due to severe membrane locking.
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Figure 4.14 Rates of convergence.

4.5.4 Algebraic Surface

Simulation test under linear elasticity is also conductedononkey saddle. It is worthy
of note that classical shell theory does not directly applyhie shape which does not have
a known parametrization along the lines of curvature. Thenbary condition requires that
its edge is clamped during the deformation. The result geadrby our method is shown in
Figure 4.15. General mathematical surfaces, not easilyefeddising the classical theory, are

well in the application range of our method.

4.6 Experiment

The experimental setup (shown in Figure 4.16) includes arepAGobra 600 manipulator,
a three- ngered BarrettHand, and a NextEngine's desktops&&nner (accuracy 0.127mm).
Every nger of the BarrettHand has a strain gauge sensor tlegtsores contact force. To

model point contaét a pin is mounted on each of the two grasping ngers. A tridagu

8assumed between an object and a BarrettHand nger in thisteha
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Figure 4.15 Deformations of a monkey saddle. The maximumplai®ment un-
der point load i€9:019m.

Figure 4.16 Experimental setup with a tennis ball.
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mesh model of a deformed surface due to nger contact is geeérby the scanner. We
measure the modeling accuracy by matching the deformedciffom computation against
the corresponding mesh model and averaging the distanoestfre mesh vertices to the

deformed surfac@.

4.6.1 Tennis Ball — Linear vs. Nonlinear Elasticities

For comparison, we have conducted an experiment on a tealhggrésped at antipodal po-
sitions by the BarrettHand (see Figure 4.16). The rubbehaallan outer diameter 66:0mm
and thickness o2:5mm. The Young's modulus of the rubber is approximated li®a, and
its Poisson's ratio approximated 8%. Two subdivision-based displacement elds, one for
each nger contact, are used. Each eld is de ned ovémanm 45mmpatch, which is large
enough to describe the deformed area based on our observatio

The results are described in Table 4.1. In the table, eacltoomesponds to one instance
of deformation. The rst column in the table lists the forceeged by each nger. The second
column (consisting of two subcolumns) lists the deformealpgls produced by the scanner.
The third and fourth columns present the correspondingrdeftions computed according to
the nonlinear and linear elasticity theories, respedtivel

From the table, the nonlinear modeling results have smalters than the linear modeling
results in three out of four rows, all corresponding to ladgéormations. In the rst row, the
two simulation results have comparable errors, which sstggbat the deformation is within
the range of linear elasticity. Starting from the second, it two methods generate shapes
that are visibly different from each other. In the secondanse, the shape generated by the
nonlinear method has an obvious dent comparable to the ottfeeareal shape shown to the

left, whereas the shape by the linear method to the rightyhahdws any dent. We see that the

SWe select a small underformed area on the computed surfaobdgyvation. Pick a vertex from the area,
then place it at a vertex on the scanned mesh model. Aligntbemnals, and rotate the small areato nd the best
match. Iterating over all vertices of the scanned mesh meilalegister the computed shape after deformation
onto the scanned shape.
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scanned deformation nonlinear deformation linear deformation

force measured average average

shape max disp. shape error shape error
(N) (mm) (mm) (mm)
10.63 2.56 0.31 0.30
16.50 6.05 0.62 0.85
20.37 9.12 0.81 2.0
21.48 10.27 0.65 2.37

Table 4.1 Comparisons between linear and nonlinear defansabn a tennis

ball.
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larger the force, the bigger the error of linear deformatibime error of nonlinear deformation
does not increase with the force.

Grasping causes deformations in the regions around thactomhile the rest of the surface
hardly deforms. Figure 4.17 shows the deformed regionsewitiee nger force of21:48N,
superposed onto the scanned undeformed model of the tealhigbe gure corresponds to
the fourth instance in Table 4.1. The red curves, one at fhard the other at the bottom, mark
the borders of these deformed regions. The measured maxdigptacement o10:27mm is
achieved at two marked points. Due to symmetry, we only disphe top deformed area.
We see that the two antipodal contact points move closerruhdeorce exerted by the two
ngers. The scanned deformations on the tennis ball and dméimear results are within 7%

of each other from the fourth instance in Table 4.1.

Figure 4.17 Deformed tennis ball under grasping. The pamt¢entact with the
ngers have maximum displacements ¥ 27mm.

4.6.2 Rubber Duck — Free-form Object

The surface of a real object usually has two varying priricipavatures. To demonstrate
the ability to model free-form objects, we conduct an experit on a rubber duck toy. The
rubber has thickneszOmm. Its Young's modulus is approximated B8lPa, and Poisson's
ratio asO:5.

Figure 4.18 displays the rear and the front views of the daeéal rubber duck under an
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antipodal grasp by the BarrettHand. The average modelimg isr0:58mm, which is within

7.4% of the scanned maximum displacem@&ttmm.

Figure 4.18 Deformed rubber duck under an antipodal grash farce of
19.22N exerted by each nger. Two images show deformations from
a rear view (left) and a front view (right) with maximum diapk-
ment (marked by dark points) 8(56mm and6:73mm, respectively.

4.7 Discussion

It is worth mentioning that our invariant-based formulatis mathematically equivalent
to the tensor-based one in (28). However, ours provides maok clear geometric meanings
to shell strains, which are buried in the latter formulatitue to its complicated symbolism of
tensor calculus.

In nonlinear modeling, an evolutionary algorithm rarelyris®due to its high dimensional
search space. The conjugate gradient method improves thputational ef ciency with a
good initial guess obtained by interpolation over the loeaghborhood.

Compared to commercial packages, our method achieves a kighergence rate. Faster
convergence rate implies a smaller number of mesh nodesdewdhich in turn results in
faster running time. The invariant-based formulation o tbhell strains increase accuracy

and works with any parametrization. In contrast, commeénazkages either approximate
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strains in Cartesian coordinates, or use thick shell thediglwcould easily lead to shear and
membrane locking when applied to thin shells.

There are two sources of errors in the simulation. The rsiue to the discrepancy be-
tween the original surface(u;v) and its “deformed” shapequ; v) as a subdivision surface
under no deformation. This is because subdivision surfaaesot represent some curved
shapes exactly. The second source comes from modeling therdgion of the subdivision
surface, a process that simpli es a variational problemifdfng a shape function satisfying
Euler's equation) to that of determining a nite number ofydees of freedom.

In our experiment, several factors have affected the mogelccuracy: occlusion to the
scanner, the scanner accuracy, and errors in the forcengsa(@iue to drifting of the zero points
of the BarrettHand's strain gauge sensors). In the tennigkpériment, the air pressure inside
the ball also affects its deformation but is not modeled.

In a real situation, as the object deforms, the surface regiacontact with the a robot
nger usually grows larger and the load distribution chasigélodeling is expected to im-
prove by considering area contacts and distributed loads$alling tactile array sensors on the

BarrettHand can dynamically estimate contact regions omipertips.
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CHAPTER 5. TOWARD TWO-FINGER GRASPING OF
DEFORMABLE CURVE-LIKE OBJECTS

This chapter gives out a framework for two- nger squeezesgranalysis. Two- nger
grasping is widely used due to its simplicity and robustné&sint contacts with friction are
considered. Modeling is based on the nonlinear elastibi#pity, which is more accurate for
large deformations compared with its linear counterparte €volution of contact friction
cones could be characterized under the minimum potenteaggrcriterion. Even if the two
ngers were not initially placed at “graspable” positiorte contact friction cones may have
rotated, resulting in an equilibrium grasp.

All objects addressed in this chapter are physically lifgaverned by Hooke's law) but
geometrically either linear or nonlinear. In the latteresabe linear elasticity theory is no more
applicable. These objects are “closed curves” in the sdraetheir cross sections normal
to the tangential direction are very small. For simplicitye also assume that the physical

property in the width direction is isotropic.

5.1 Grasp Modeling

Under external loads, an elastic curved object exhibitsgimipal behaviours: stretching
and bending. Its deformation model is a lower dimensionalayue to the thin shell model
in (36).

As shown in Figure 5.1, a thin curved object in our considenas swept out by a constant

cross section along a 2D closed curiai) referred to as theniddle curve The cross section
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has widthw and heighth. This is essentially a degenerated shell with only one datirig
dimension. To make physical sense, the curve is parametbyerc length. Computation

will easily carry over to arbitrary-speed curves.

LQLWLDO VKDSH

Figure 5.1 Deformation of a curved shape with rectangulasgisection. The
pointp in the shape is along the direction of the normadt the point
g on the middle curve. Poings’ andg®are their displaced locations.

We follow Kirchhoff's assumption that lines initially nomhto the middle curve remain
straight after deformation, do not change their lengthd,ramain normal to the middle curve
of the deformed geometry.

Every pointp in the curved shape is along the normal direction of sometgpm x (u)
on the middle curve. Ldat andn be the unit tangent and normal@trespectively. We have
p = g+ yn, wherey is the signed distance frompto p. The displacement(u) of g is
described as

(W= (Wt+ (un: (5.1)
Under a load, at the poimt, the extensional strainis
=t[ J+(rn t) = ° (5.2)

wheret[ ]is thedirectional derivativeof with respecttd, andr (n is thecovariant deriva-

tive which measures the rate of change of the nonmalong the middle curve a. Denote
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by the amount of rotation of the normal towardWe have
= t[]+(rin t) = ° (5.3)

The change in curvature, which accounts for the change féte angle along the direction
t,is

= t[ ]: 00 0 0. (54)

Denote by the stress, and bBythe strain at any point. Letbe the modulus of elasticity,

or Young's modulus. We have

e +y);

Then the energy density is
1, 1 2
dU=§ dv =§e( +y )dV: (5.5)
The strain energy can be obtained as follows.

V4
U =

1
H
lﬁQ_
N/(Q C
-
N +

N

y )?wdyds
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®
2

( +y )*dyds
h

N
-

hzh—gzd- 5.6
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o

®
=

0
The component linear in the thicknebsrepresents the extensional energy, and the cubic
component represents the bending energy. We cannot corssidiching only for a closed
curve because it will always result in change in curvaturel (@ending) unless the curve is a

line segment.
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It is well known that large deformations need to be descrimgthe nonlinear elasticity
theory. In the following, we present a geometrically exacdel expressed in terms of geo-
metric invariants. This model characterizes large straimsdeformations, and is transformed
from the nonlinear shell theory (79).

First, we have the relative elongation of an in nitesimaldielement starting atas:
L [— 1- 2 2 .
= + 2( + ) (5.7)

The following term characterizes the variation of the ctuva of the middle curve along the

tangential direction:

=@+ ) ]+(ren 1)) (t[] (ren 1) ): (5.8)

where

11 t[ J+(r t)

— W 0 o9 04 2.

13 = t[] (r, 1)

- 0 0 o 0 2.

Replacing the corresponding terms in (4.49), the strainggrisr
1 Z 2, M
U== h"<+ — “)ds: 5.9
W ( 15 Jds (5.9)

In case of a small deformation, equation (5.9) is esseyntilaél same to (5.6).

5.1.1 Discretization
Denote byU, the potential of the external load. The total potential gpés
U=U Ug

The necessary condition for equilibrium is that the rstieéion U is zero. Even in the

simpli ed case of pure bending (i.e. = 0), calculus of variations will set up a sixth order
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differential equation that has little hope to be solved éyabiscretizing the object into nite
elements reduces the displacement from a continuous eld discrete one, allowing the
application of numerical techniques to the potential epengimization.

The curvature termy; in (5.9) has second order derivative of the displacementrdier
to guarantee nite potential energy, the basis functiorsusth be square integrable, and their
rst and second-order derivatives should also be squasgmble. The cubic B-spline basis
functions meet this requirement. It can be considered asdhaterpart of the subdivision
surface used in (79).

Letu 2 [0; 1], the four basis functions are

( u¥+3u® 3u+1)=6

(Bu®  6u®+4)=6;

( 3u®+3u?+3u+1)=6;

P & &F &
I

= ud=6:
Figure 5.2 shows four consecutive points along the middieecxi(u). The position of any

Figure 5.2 Discretization.

pointx (u) in the shade intervdp,; p;] can be represented in terms of the positions of these

two end points plus two neighboring control points as
X(u) = bip; + bbp, + beps + bupy: (5.10)
Its displacement is then a linear combination of the dispiaents ; of these control points:
(W=h 1+ 2+ 3+ by 4 (5.11)

Obviously, any control point in uences the domdin2:0; 2:0]. As shown in Figure 5.3,

the second-order derivative is continuous. In our impletatgon, both the geometry (5.10)
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and the displacement eld (5.11) are discreized using tluedec B-spline basis functions.

This leads to the so-calladoparametric nite element, which is preferred in the FEM eld.

1st derivative

2nd derivative

-2 -1 0 1 2

Figure 5.3 Concatenation of basis functions and the rst aadosd-order
derivatives.

5.1.2 Nonlinear Energy Minimization

We rewrite the strain enerdy- in (5.9) into a matrix form:
U= TKg : (5.12)

where =( 1;:::; )T, misthe number of control points, ahd is the stiffness matrix.
Assume there arll elements in total. LeB, denote the&kth element. Number the neigh-
boring points locally so they are &t; ;X 4, respectively. The displacement e{d )T of
Sk is decided by 1;:::; 4, where ; = ( 2 141 26 1+2)'.forl i 4. Both and
are linear combinations of the8evariables.
Next, we illustrate the computation of the strain energ@)%ver the integral summand

involving "2,. Lett = (tx;ty)T, andn = (nx;ny)". The forms ofN;s are given as, for
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b 1 1
Nog 1+j = (%&q"' b%&(l"‘ > 3 )
+(r¢n t)bnq(l+% +} ):

N

whereqis x ory whenj = 1;2, respectively, andys are the basis functions. The element

stiffness matrix< "I due to elongation is& 8 matrix with entries

y4

" 1
|§1 = -ew  hN;Nyds: (5.13)
P2 g

Similarly, we construct the element matrix due to bending:. The stiffness matrix for the
elementis

w2 2
KSk: K1+ K 11

We can assembl€ s, into K¢ by the standard procedure.

Denote byg(u) the load eld, which has potential
YA L
Ug = qu) (uwds= TQ; (5.14)
0

whereQ is the vector of all nodal forces. The total potential enasgy

U=U U= T"Ks TQ: (5.15)
where the strain energy is given in (5.9). The entries &€ are functions of the unknown
displacements. The nonlinear minimizationlbfs performed iteratively.

5.1.3 Boundary Condition

Boundary conditions are handled in a degenerate way compétteds thin shell counter-
part described in (12). For a boundary vertex, one arti galtex is introduced. The boundary
conditions are shown in Figure 5.4. Vertex 3 is arti cial gpositioned axz = 2X, Xy,

wherex ; andx , are the positions of the vertices 1 and 2.
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Figure 5.4 Displacement and rotation xed; = , = 3 = 0; displacement
xed and rotation free, , =0, 3= 1; displacement and rotation
free,2 2= 3+ 1.

5.1.4 An Example

We proceed to show the effectiveness of our modeling tecteniy running a beam test
case (68, p. 741). This example involves a straight beams (3 10’psi) under uniformly
distributed load. The beam is clamped at both ends. It haghe®Q0in, width 1:0in, and

height 1:0in. Figure 5.5 plots the maximum de ection against the loddshows that

14

+ nonlinear result
* linear result
o reference nonlinear result

=
N

=

—_—
=
5 0.8 r
=
15§ f
g 0.6 ; 1
8 o
0.4
0.2
0 . . . .
0 2 4 6 8 10

Load (Ib/in)

Figure 5.5 Beam under distributed load and clamped at botb.end

geometrically exact model provides a higher accuracy fgedoad:

IThe small difference between our nonlinear result and tifereace one is because the latter considers
bending only.
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5.2 Grasp

A grasp of a rigid object achieves force closure if it cangtan arbitrary external wrench
(force plus torque). Nguyen's (54) result on two- nger gra®y under point contacts in the
plane states that such a grasp is force-closure if the edBon of the two contact friction
cones contains the line segment connecting the two conbautisp

For deformable objectgrasp analysis and synthesis are no longer purely geonpetrtic
lems Due to the highly nonlinear nature of the potential enemynf(5.15), determining the
deformed shape analytically is dif cult, if not impossibl&his points us to start our investi-
gation numerically to predict whether a grasp can be peradrsuccessfully.

We assume that deformation happens instantaneously sathhth grasping forces do
not vary during the process, and no velocity of the object hak up. It is common to
ignore dynamics in modeling deformations using energyetiasethods. Here it allows us to
treat the grasping problem quasistatically. The outcoma gfasp on an object can then be
determined based on the post-deformation geometry of tleetodnd the original forces now
applied at the current boundary locations. More precisebye-deformation nger placement
is considered a grasp if the post-deformation nger placeimeould be force-closure on a
rigid object with the same geometry as that of the deformepesh

Speci cally, we consider asqueeze grasf(u;Vv) with the two  ngers positioned at
p = x(u) andg = x(v) on the curve. As shown in Figure 5.6, we positpat the origin and
g on the positivey-axis.

We assume that the bottom nger ptdoes not move while the top nger squeezes the
curve toward with a force of magnitudé. The effect will be equivalent to that generated by
moving the two ngers toward each other, but this constramthe lower nger is needed here
for solution of the deformed shape. Note that the movemetitetop nger is constrained
to be on they-axis. Slips between the ngers and the curve can happemgluieformation

when friction is not enough to prevent such motions from fesomg.
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Figure 5.6 Grasping computation model. The displacememhtatation at con-
tact pointp are xed, while pointq can move freely.

The applied squeeze force @tmust stay inside the friction cone. It points @tf the
line segmenpq is contained inside the cone. Otherwise it stays on the efigeeocone
which forms a smaller angle wifpq. The reaction force exerted by the top ngematan be
computed after the deformation using FEM. It needs to steigéthe friction cone at in the
post-deformation state for the grasp to be achieved.

Under the above formulation, the deformation of the curvel(thus the success of the
grasp) is completely determined by the magnitticed force exerted by the upper nger. The
force magnitude igeasibleif it results in equilibrium of the curve in the post-defortioe
state.

Figure 5.7 shows the pre- and post-deformation states afspgr The computation of the

Figure 5.7 A deformable grasp.

post-deformation will be detailed in Section 5.2.1. Herenege that the line segment con-

necting the two contact points was initially outside the tiogtion cone, but becomes inside
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with the cone rotating counterclockwise under deformatidihe original nger placement

would not be a force-closure or even equilibrium grasp omial wbject of the same shape.

5.2.1 Grasp Testing

In Figure 5.8, the nger contact poinfsandq are represented by pointg andq,. Points
P 1, Py, 9 ; @andq, are in the immediate neighborhood of poipis andq,, respectively.

Based on the boundary condition handling method describ&ation 5.1.3, if we consider

-

X

Figure 5.8 Points near the nger contact points.

P, as a boundary poing ; andp, are arti cial points to each other. Recall thatepresents

the displacement at some point, we can formulate the contstras
1= o= 1=0: (516)

They constrain the translation and rotation of the curvp ab that a unique FEM solution
exists. These constraints indeed form a minimum set of ¢iondi that must be satis ed in
two dimensions for the computation.

In Figure 5.9, pointg andq are initial contact positions. After deformatiom,moves to
g% Since the top nger can only move along tiieaxis toward the origin where the bottom
nger is placed, the new top contact position is paifit Finally, we check if the line segment
connectingp andq? lies inside the two corresponding friction cones. The giasuccessful

if so.
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&

Figure 5.9 Quasi-static analysis. Poiqtsand g are initial contact positions,
whereas, pointp andq? are post-deformation ones.

5.2.2 Minimum Graspable Force Magnitude

Denote byG(u;Vv) a squeeze grasp as shown in Figure 5.6 with a nger placentent a
locationsp = x(u) andgq = x(v). A force of magnitudd exerted by the top nger is
feasibleif it results in a grasp. We can nd a minimum force magnitudg, such that the
curve can be grasped as follows. Start with an initial vahet double it at each step until the
grasp is achieved or will not be so. (Observe the rotatiorheftop contact friction cone to
determine it is toward the bottom contact friction cone.gWbssection to ndf i, .

Table 5.1 lists three instances of grasping. The objectdragh2416mm, width1:0mm,
and heightl:0Omm. The value of its Young's modulus i)Q0Pa. The value of the friction
coef cient is 0:4. The rst column in the table presents the initial con guaats. The second
column lists the results after deformations. The third poitshows the minimum grasp force
magnitudes. In the table, each row corresponds to one testafrgrasping.

To determine the in uence of Young's modulus 6Ri,, we recall that the deformation
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before grasping after grasping min grasping force

ON

0.2N

0.5N

Table 5.1 Three grasps of a deformable object with two ngers

computation is to minimize

z
1 Lo . h®
gow (hh+ 5 fyds
If we change the value of Young's modulus fr@to ce the problem is equivalent to minimize
zZ, 3
c W ("% + 35 )ds

This implies that Young's Modulus is a scaling factor. thenmium grasp force magnitude

for the valueceof Young's Modulus icf i, -

5.2.3 Prolonged Graspable Segment

A graspG(u; v) at locationsx (u) andx (v) of a curvex is achievable if the set of feasible
grasping forces for the nger placement is nonempty. A domaterval[v;; v,] of the curve
de nes agraspable boundary segmefar p = x(u) if every graspG(u; V), v 2 [vi; V] is
achievable. For a rigid object, nding such an interval deg® only on local geometry, and

the computation is straightforward.



73

Figure 5.10 shows grasps of a deformable object and of a oiggdwith the same shape.
For the purpose of comparison, the deformable object ismiaws original shape and coin-
cides with the rigid object. One ngeris xed gtin all the grasps. The adid, represents the
segment of feasible locations where the top nger can betipogid to grasp the deformable
object, while the ars;s, represents the segment for the rigid object. The graspabl@ent
is enlarged on the deformable object due to the change imcogeometry. Generally, defor-

mation helps grasping.

— =

Figure 5.10 Increased graspable segments. Theldrds for the deformable
object, and the arss; is for the rigid one.

5.2.4 Disturbance

Robustness of a grasp of a deformable object has differericatipns than that of a rigid
one. In the latter case, every nger can exert a force of angnitade inside the contact
friction cone for a non-empty null space of the grasp matkxuivalently, an arbitrary dis-
turbance force can be resisted. In contrast, the magnitbdelisturbance force applied to a
grasped deformable object is bounded. Otherwise, the gviidpe broken.

To illustrate the above, consider an object grasped by tvgere. An exerted disturbance
force will result in reaction forces at the two nger contaotvhich can be determined after the
respective displacements are computed under, say, thee ktesticity model. At each nger
contact, this reaction force is combined with the originasping force. The composite force

must lie inside the corresponding contact friction cone.



Figure 5.11 Disturbance model. Poipt&indq are the nger contacts. Poimt
is the disturbance contact.

As shown in Figure 5.11, an object is grasped at pgraadqg. It has the same mechanical
properties as the one in Table 5.1. A disturbance force isaygplied at the poiniv. It lies
inside the friction con€ at the point of application. Denote bythe angle between the force
direction and one edge of the friction cones. Figure 5.12vshihat the composite nger
forces atp andq change their directions as the disturbance force varies @mwe edge to the

other of the friction con&. During the change, the magnitude of the disturbance fdeyess

constant.

0.65

0.6

0.55

radian

0.5

0.45

0.4

0.35 : : : : : : ‘
0 01 02 03 04 05 06 07
dy (radian)

Figure 5.12 Evolution of the nger force directiong and , to maintain the
grasp in reaction to the change in the direction of the distnce
force fromO to 0:76 (radian) while the magnitude of the disturbance

force stays constant.

In Figure 5.13, the direction of the disturbance force isdxXaut its magnitude increases.
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Both ; and , will exceed2tan *( ). The grasp is broken when rst does so.

0.9r

0.8f 2tan™ (m)

0.7¢

radian

0.6

0.5¢

0.41

0 0.5 1 15 2
disturbance force magnitude (N)

Figure 5.13 Evolution of, and , as a result of varying disturbance force mag-
nitude with the disturbance force's direction unchanged.

5.3 Pure Bending of a Closed Curve

In real world, there is one physical response known as insiteal bending such that the
membrane strain tends to vanish. In this section, solufiengure bending of a closed curve
will be presented.

As shown in Figure 5.14, a curve parametrized by arc leagghxed ats = s;. A force
of magnitudd is exerted as = 0 in the positive direction ok-axis. In this section, a calculus

of variation solution will be presented.

5.3.1 Pure Bending

If we consider bending only, extensional strain is zero ywéere
0 —-N-
=0: (5.17)

We can immediately get

2provided by my thesis advisor Yan-Bin Jia.



76

Figure 5.14 A curve xed as = s; and squeezed at= 0 toward the positive
direction ofx-axis.

0 0 00 @

00 00 0
- 2 2 ( 2 2 3)
000 0 @ 00

= — 25 %25 )"

Substituting them into (5.4):

- 0 0 0
@ 00 0 000
- 0 0 00 .
= +2— =) "+2—
( +2— 5) 2— :

Obviously, is a function of and its rst three derivatives. Subsequently, the strain

energy is

Z

ewh® ~ b
U = H(: 0.000d.
24 0 (l l ) (ys1

whereH = 2, eis Young's modulusy andh are the width and height of the curve's cross

section, respectively.
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In the case of a circle with radius = % We have

0

= —
p
5.3.2 Boundary Conditions
The points; does not move means that
(s1) =0; (5.18)
and
(s1) =0: (5.19)
For bending only, equation (5.19) is equal to
Ys1) = 0: (5.20)

At the same time, the post-deformation shape of the curveldtoe closed, therefore

0)= (L); (5.21)

0)= (L): (5.22)
Equation (5.22) also means:

0= qu): (5.23)

We also require that the curve after deformation has coatistiangent a = 0. Denote

by x (s) a unit-speed curve before the deformation. After the de&tion, it becomes
x(s)+ t+ n
with new tangent

1+ % t+( + On=t+( + In:
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Because , °and already have equal valuessat 0 ands = L, we only need to exert the

constraint 0) = qL). Differentiating equation (5.17) leads to

Subsequently, it is equivalent to exert the constraint

R0 = ARL):
5.3.3 \Variational Solution
The load potential is
W = f( (O)cos (O)sin ) (5.24)
= f( (O)cos %sin ): (5.25)
Then the potential energy is
z : 0 00 O 0(0) H .
U=E H(; % % %%ds f( (O)cos Wsm ): (5.26)
0

Since there are ve constraints, we consider variation

+" 1+t "2t "33+ "4 4t "5 5+ "6 6

where js,forl | 6, are arbitrary functions. To satisfy the constraints, wenmave
xo
Ja("1:"2: "3 "4 "5 "6) " i(s1) =0; (5.27)
i=1
x 0
Jo("13"2: "3 "4 51 "6) " i(s1) =0; (5.28)
i=1
X0
Ja("1;"2: "3 "4 s e (L) i(0))=0; (5.29)
i=1
Ja("1:"2: "3 "4 "5 "e) (L) X0y =0; (5.30)
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X0
Js("1;"2; "3 "4 "s; "6) (L)  Roy=o0: (5.31)
i=1
Replace the related terms in (5.26) with + "; 1+ ", o+ "3 3+ "4 4+ "5 5+ "¢ 5. Let

xo
U©u"2"s"a"s"s) UM "2 "3 "4 s "e) + iJi("1:"2, "3 "4 "5 "e): (B5.32)
i=1

SinceU achieves an extremum'at = ", = "3 = "4 = "5 = "¢ = 0, its partial derivatives

with respecttd';s, forl i 6, must all vanish.
Z
@u. - dH o &®H o &*H oo
—Jw=0 = E H + ,
i"J i=0 0 ( dS dsz d§ O) IdS
dH o d?H o . dH oo
+E(Ho — " oo Y ii5 + E(H o T3 G5 + EH oo o5
sin .
feos (O+ 1= 1O+ i)+ 2 A+ a5+« do+ s T
Merging terms with the same factors leads to:
Z
@Uu. - dH o &®H o *H o
[ = + .
o = B (H =t e ds? ) d
dH o d°H oo L
HEMH o Y+ ) ij5 fcos (0)
dH oo sin
FEH e =)+ 0 5+ 50 10

+(EH oot 5) o+ 1i(s0)+ 2 {(s0):

Then we easily set; = 5 to eliminate the two terms involving;

Z
@U. L dH o H o d°®H o
— . _ = F H + id
o ) ¢ ds = ds? g ) 0
dH o d°H oo i
HEH o =+ — 5 Y+ 25 fcos (0)
dH o sin
FEH e =)+ 9 5+ 50 10
+(EH oot 5) 5:
. . . . dH o d?H o0 d3H o000 _
Theorem 2. Euler's equation must be satisedd H = T 4z & -0

Proof. We rst show thatG = 0 ats 6 0, L by contradiction. First, we assume ti@at> 0

at somes without losing generality. Then there exists sofme 0 such thatG 6 0 over
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(s ";s+"). We can maké small enough such th&@L 2 (s ";s+ "). Now construct a
function ; such that(t) > Oover(s ";s+ ")and ;(t) = 0 at other points iffO;L]. By

contradiction it follows that
(0= (L= 9= A= Ro)= ARL)=o0:

The partial derivative reduces to

Z
@u. L dH o d?H o d®H o
—Jn=0=E (H + ids > 0
=0 J s " ag  as )
Hence a contradiction.
By continuity,G = 0 must also hold as = 0,L. n

The partial derivative further reduces to

@U. dH o d’H oo .
i = (E(Ho ==+ =0o5)+ ) ij5 feos (0)
dH sin
+(E(H w e ) G5+ o %0) + (EH wot 5) %5

(0) '
Now we let {(s) = C 6 0 be a constant function. All derivatives vanish, resulting i

dH 00
ds

2 00
(E(H o + doll_ISZ Y+ )jsC fcosC =0:

The two terms involving 3 cancel each other, yielding

dH oo+ dZH 000).|_ _ fcos :

(H o ds dz Mo T E

Similarly, we let i(s) = sinZTs with its values and second derivatives vanishing at
O,L. We end up with the equation

2 sin 2
ite v f>2 2 =0;
4)]0 L + (O) L 0

dH 000)

(E(H o s
Again, 4 gets eliminated, yielding

dH ooO)_L - Sin :
E (0)
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Finally, we choose;(s) = cos?™>. Then all rst derivative terms disappear. The rst two

terms involving ;(0) and (L) cancel each other becausé)) = (L) and

dH oo+ d2H oots.L _ fcos .

(H o ds dsz Mo T E

Hence we have
H ooqll(; =0:
To summarize, the curve after deformation satis es thesd#htial equation

dH 0 d2H 00 d3H 000
+ =0

H ds ds? ds? (5.33)
subject to the following constraints
(H o d::SOO+ dz(;;o%(% = fC;S : (5.34)
(o S = e (5.35)
H oj; = O; (5.36)
j5 = 0; (5.37)
3% = 0; (5.38)
% = 0; (5.39)
(s1) = O; (5.40)
Ys)) = O: (5.41)

5.3.4 Unit Circle

Consider a unit circle under the applied force at its leftmpasnt in the direction of the

positivex-axis. In this case,

ST =



H o

H
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(o P

H o= 2( Ot OOP;

H 0=0:

The differential equation and boundary conditions are Siegpwith substitution of the

above expressions.

00y o @ 4

subject to

04 o 000 (5)1-% -

00 n (4) J

Substitute (5.45) into (5.43), (5.48) and (5.47) into (5.4dd (5.45), respectively:

00Q.

Then we substitute (5.53) into (5.51):

Finally, rewrite all conditions:

2
o =

0, 0@ -

i =

% =
% -
()
)

®j5 =0

5 =

e = o:

®j2 =0:

6 =

0:

(5.42)

(5.43)
(5.44)
(5.45)
(5.46)
(5.47)
(5.48)
(5.49)

(5.50)

(5.51)
(5.52)

(5.53)

(5.54)



% = o; (5.55)
" = 0 (5.56)
e = o; (5.57)
4);2 — f_

1o " (5.58)
®2 = 0 (5.59)
() = 0; (5.60)
1) = o: (5.61)

5.3.4.1 Simulation

This boundary problem is best solved using the nite diffese method. We split the
interval[0; 2 ]intoN equal parts, each of width= ZW Since the differential equation (5.42)

is linear, using the scheme of central difference, it reduoe

a2 2 6) na+( 4 8 2+15) na+( 2 *+12 2 20),

+( 4 8 2+415) , 1+(2 % 6) h 2t 5 3=0; for n=0;1 :N:

To solve this problem numerically, we need to introduce uwkms 3, 2, 1, N+1,
n+2, and yn+3. We can eliminate these unknowns outside the interval wtiereriginal
problem is posed by exerting the boundary conditions (54%9). Finally, we will create a

system of linear equations which can be easily solved.
This bending only problem can also be solved using FEM. DehbgtJ, the potential of

the external load. We have

1 ZL 2 h3 2
. 1 hee _
min SEW . ( 17 )ds  Ug;
ZL
ew h2ds=0:
0

subject to

Imposing the bending only constraint requires the use ofdmage multipliers. The problem
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\/

(@

(b)

Figure 5.15 Deformation of a circle, (a) calculus of vaonas solution and (b)
FEM solution. It is anchored at rightmost point and squeeated
leftmost point in the direction of the positiveaxis.
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reduces to
Z L 3 Z L

m = + — + (= ,
in 2ew ) (h 17 )ds U (2ew ) h “ds)

Figure 5.15(a) shows the deformation of this circle obtdinging calculus of variations.
Figure 5.15(b) shows the results using FEM. The mechanrcglgsties are the same for both
methods. There is more cave-in for the calculus of variatswiution. For an arbitrary shape
curve, calculus of variations will be very dif cult to impheent because of the complexity of
the high order differential equation. In comparison, FEMyplicable to any shape without
increasing the complexity. Usually, energy minimizatiosing FEM is numerically more
stable. Meanwhile, exerting boundary conditions is mar@ghtforward in the FEM solution

compared with the calculus of variations one. Thus, FEM égared.
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CHAPTER 6. CONCLUSION AND FUTURE WORK

In this chapter, we summarize our work, review contribusioand discuss the needed

future work.

6.1 Conclusion

The rst part of this thesis investigates deformable mautelf general shell-like objects.
First, we describe the linear and nonlinear shell theoneependently of a shell's middle
surface parametrization, making them applicable to atyitparametric shells (and thus to
freeform shells which are well approximated by spline ordsukion surfaces}. Second, we
empirically compare our method with existing commercidtware packages, establishing a
convergence rate an order of magnitude higher. Third, weraxgntally compare the linear
and nonlinear elasticity theories in the context of a defrla object interacting with a robot
hand, con rming that the nonlinear theory is more apprdergiven large deformations often
generated by the action of grasping.

Our modeling method is based on the physical theory of elastind experimental val-
idated. It could potentially in uence interactive computgaphics on achieving higher real-
ism, especially on accurate computation of strain energyd@fiormation under applied force.

The second part of this thesis investigates two- nger sgaegasp analysis of deformable

curve-like objects. Both linear and nonlinear thin shellotfes are reduced to be applicable

1The parametric independent formulation of strains alsoaméipossible to treat shells described by implicit
equations, even though they are not common in practice.
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to thin curved objects, which are essentially degeneraglisshThis deformation modeling
technique serves as the base for our analysis.

Under a squeeze grasp, the rotations of the nger contagtidri cones depend on the
global geometry of the object rather than on the local cargaometry. It is very dif cult, if
not impossible, to nd a closed-form function that descslseich a rotation in terms the force
magnitude. Grasp analysis is best carried out by numerioaledures via energy minimiza-
tion.

At some initially “not-graspable” positions, the squeearcé magnitude has to be above
certain threshold in order to grasp a deformable objectoiedtion plays a positive role in
grasping of a deformable object. The set of “graspable”tos may increase compared to a
rigid object which has the same geometry with the pre-grtetp sf the deformable one.

The ability to resist disturbance is quite different betweegrasp of a deformable object
and that of a rigid one. With the magnitude of a disturbancedancreasing, the grasp may
be broken for the deformable object. In comparison, anyidisince force can be resisted by

a force-closure grasp of the rigid object.

6.2 Future Work

Up to now, not many research efforts have been devoted tpiggasf deformable objects.
This thesis provides our initial work in this area. Alongstipromising line of research, there

are several interesting and important future directions:

Grasp synthesisHow to nd the best graspable position under energy prilesp

Grasp evaluation How to evaluate a deformable grasp? There are numerougsetr
for graspings of rigid objects. However, most of them areapgilicable to deformable

grasp.
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Area contact The frictional force and moment depend on the pressureilmisbn

inside the contact area.

Solids Solid objects are more common to be grasped in our daily life
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