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AB S TRAC T 

Genes are parts of the genome which encode for proteins in an organism. Proteins play 

an important part in many biological processes in any organism. Measuring expression level 

of a gene helps biologists estimate the amount of protein produced by that gene. Mircoarrays 

can be used to measure the expression levels of thousands of genes in a single experiment. 

Using additional techniques such as clustering, various correlations among genes of interest 

can be found. The most commonly used clustering technique for microarray data analysis 

is hierarchical clustering. Various metrics such as euclidean, manhattan, Pearson correlation 

coefficient have been used to measure (dis)similarity between genes. A commonly used software 

for hierarchical clustering based on Pearson correlation coefficient takes O(N3) for clustering N 

genes, even though there are algorithms which can reduce the runtime to O (N2) . In this thesis, 

we show how the runtime can be reduced to O (Nl og N) by using a geometric interpretation 

of the Pearson correlation coefficient and show that it is optimal. 
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CHAPTER 1. INTRODUCTION 

Cells are the fundamental working units of every living system. All instructions needed 

t0 perform various activities are contained within a double stranded molecule called Deoxyri-

bonucleic acid (DNA}. DNA is composed of four nucleotides (bases), denoted by A, C, G and 

T . The term genome refers to an organism's complete set of DNA. The genes, parts of the 

DNA, are the functional units of the genome. Genes carry instructions for making proteins 

in the cell. Proteins play an important part in many of biological processes that take place 

in the cells. Gene expression refers to a two-step process that begins with a process called 

transcription which transforms gene into another molecule called Ribonucleic acid (RNA). The 

RNA is a single stranded nucleic acid sequence made up of nucleotides A, C, G and U. The 

RNA molecule is then translated into the corresponding protein and this process is referred to 

as translation. The expression level of a gene directly impacts the amount of protein produced 

from it and could vary drastically based on the underlying biological conditions. Biologists are 

interested in measuring the expression levels of various genes in an organism under different 

biological conditions. The experiments performed to understand biological phenomenon at the 

molecular level have traditionally involved studying one gene per experiment. This is highly 

time consuming and becomes infeasible when there are a large number of genes to be simulta-

neously studied. For example humans contain about 30,000 genes [26] . Hence, the need arises 

to study expression levels of thousands of genes simultaneously. The advent of microarray 

technology has made it possible to study the entire genome of an organism using a single chip 

[6]• 

Microarrays are used to measure the expression levels of thousands of genes simultaneously. 

An array is an orderly arrangement of samples. It provides a medium for matching known and 
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unknown DNA samples based on base pairing rules. An array experiment can use microplates 

or standard blotting membranes, and can be created by hand or use robotics to deposit the 

sample generally on glass but sometimes on nylon substrates. These arrays are described as 

macroarrays or microarrays, the difference being the size of sample spots. Macroarrays contain 

sample spot sizes of about 300 microns or larger and can be easily imaged by existing gel or blot 

scanners. The sample spot sizes in microarray are typically less than 200 microns in diameter 

and these arrays usually contain thousands of spots. Microarrays require specialized robotics 

and imaging equipment that generally are not commercially available as a complete system. 

Potential applications of microarrays include identification of complex genetic diseases, drug 

discovery and toxicology studies, pathogen analysis and difrering expression of genes over time, 

between tissues, and disease states. 

Microarray technology is based on the ability of complimentary base pairing of the nucleic 

acid. Probe DNA (or RNA) strands axe spotted onto the chip. Target DNA mixture (usu-

ally cDNA, corresponding to the genes) is flooded onto the chip to allow base pairing under 

conditions such that only highly complimentary sequences will remain bound to their specific 

partners. Technology differs in how DNA sequences are laid down (spotting vs photolithogra-

phy) and the length of DNA sequences that are laid down (complete sequences or a series of 

fragments) . To detect the cDNA's bound to the microarray they axe labeled with fluorescent 

dyes. Dyes used are CY3 (green) and CY5 (red) . Microaxray is then excited by laser light 

at two different frequencies, to measure the expression level at each spot. The expression 

level is the ratio of the brightness of the hybridized RNA of one sample versus another, i.e. 

CY3/CY5. If a background intensity for each color is measured and controlled for, the ratio 

becomes CY3--CY3 backgro~cr~d . This rovides a measure of relative abundance of the RNA from CY5—CY5 bac~gTou~td p 

one sample to another and hence the relative expression level of the corresponding gene in the 

samples. Once the expression levels of each of the genes under various experimental conditions 

are measured, the data must be analyzed to derive inferences. We are interested in patterns of 

expression across multiple genes and experiments. To detect such patterns, additional methods 

such as clustering are needed. 
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A simple clustering method would be to identify all genes whose expression Level has 

changed and those which remain unchanged, thus resulting in two clusters. At the next level 

of data analysis we would like to detect the covariance among genes i.e. whether there exists 

multiple gene patterns, clusters of genes that share the same behavior. .Clustering methods 

can be generalized into two general classes, supervised and unsupervised clustering [15] . In su-

pervised clustering objects are classified with respect to known information. In unsupervised 

clustering no predefined information is available. Since there is little a priori knowledge of 

the complete repertoire of expected gene expression patterns for any condition, unsupervised 

clustering methods or hybrid (unsupervised followed by a supervised) methods are preferred. 

Various clustering techniques have been applied to the microarray data [l, 5, 7, 10, 23, 24, 25]. 

It is not possible to single out a best method because (1) each method may have different advan-

tages depending on the specific task and specific properties of the data set being analyzed, (2) 

the underlying technology is continually evolving and (3) noise levels in measurements do not 

always allow for fine discrimination between methods. Although various clustering methods 

can usefully organize tables of gene expression measurements, the resulting ordered but still 

massive collection of numbers remains difficult to assimilate. Hence clustering methods are 

combined with a graphical representation of the primary data by representing each data point 

with a color that quantitatively and qualitatively represents the original experimental obser-

vations. The end product is a representation of complex gene expression data that, through 

statistical organization and graphical display allows biologists to assimilate and explore the 

data in a natural and intuitive manner. 

One of the most widely used unsupervised clustering technique for microarray data is hi-

erarchical clustering, due to its simplicity and the ease of interpreting results from the output. 

Broadly, hierarchical clustering is divided into two types, agglomerative and divisive. In ag-

glomerative clustering, each object (gene in case of microarray data) is initially placed in a 

group of its own. The two "closest" groups are combined into a single group. This is repeated 

until a single cluster encompassing all the objects remains. In divisive clustering, all objects 

are initially placed into a single group. The two objects that are in the same group but are 
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"farthest" away are used as seed points for two groups. All objects in this group are placed into 

the new group that has the closest seed. This procedure continues until a threshold distance 

is reached. To determine when two objects are "close" or "far" various distance measures 

can be defined. Various measures such as euclidean distance, Manhattan distance, correlation 

coefficient have been used for measuring the distance between objects. We are interested in 

correlation coefficient since a seminal paper [7] uses this metric to perform agglomerative hi-

erarchical clustering on microarray data. Also, many biologists ([1, 9, 13, 14, 17, 20, 22]) seem 

to use the software Cluster, which has been developed in [7] . 

1.1 The Microarray clustering problem 

Depending on the way the distance between the clusters are computed, agglomerative 

hierarchical clustering can be divided into six types single linkage, complete linkage, average 

linkage, median, centroid and Ward's method. The method used in [7] is average linkage 

hierarchical clustering. Data from the microarray experiments are organized in the form of a 

matrix where, the rows correspond to the genes of interest and the columns correspond to the 

various experimental conditions or time points under which the expression levels are measured. 

The expression levels are stored as data in the matrix. Pearson correlation coefficient is used 

to measure the similarity between genes in [7] . If the number of genes to be clustered is N, 

the strategy used in [7] is to first calculate all possible pairs of similarities between genes. 

Each gene is initially thought to be in a cluster of its own. The closest pairs of genes are 

merged into a cluster and the similarity between the merged cluster and remaining clusters 

are computed. This step is repeated until a single cluster contains all the genes is left. It is 

easy to see that the run time of this naive algorithm is O (N3) . There exists methods [8] which 

can be used to perform the clustering in O (N2) time, though the biology community seems to 

be unaware of them. As the microarray technology keeps improving the number of genes on 

a microarray increases and hence even O (N2) time can become unreasonable for large values 

of N. In this thesis, we show how to reduce the gene vectors to points in multi-dimensional 

space and perform the clustering in O (?V l og N) time using the fairsplit tree data structure, 
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and show that it is optimal. We also present a new serial algorithm, which takes O (N2) time 

to perform single linkage hierarchical clustering for points in space. 

1.2 organization of the thesis 

The rest of the thesis is organized as follows: In Chapter 2, we describe the current meth-

ods of hierarchical clustering and review of relevant literature. Chapter 3 presents our main 

algorithmic ideas to perform the clustering in optimal time and Chapter 4 contains the new 

algorithm for single link hierarchical clustering. Conclusion and future work are presented in 

Chapter 5. 
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CHAPTER 2. LITERATURE REVIEW AND EXISTING 

APPROACHES 

As previously mentioned there are two types of hierarchical clustering, agglomerative and 

divisive. Henceforth, we will be interested only in agglomerative hierarchical clustering since 

this is the most widely used technique for microarray data analysis. The reason being divisive 

clustering is computationally expensive when it comes to making decisions in dividing a cluster 

in two, given all possible choices. From now on, whenever we say hierarchical clustering, we 

imply agglomerative hierarchical clustering. 

2.1 Types of hierarchical clustering 

Clustering is done on a set of objects with associated description vectors, i.e points in 

multidimensional space. A dissimilarity or distance measure (d) is defined on these: d(i, j) > 0 

and d(i, j) = d(j,i) for objects or clusters i and j. Hierarchical clustering can be described 

informally as 

1. Determine all inter-object dissimilarities. 

2. Form a cluster from two closest objects or clusters. 

3. Recompute dissimilarities between new cluster and other objects or clusters. 

4. Return to Step 2 until all objects are in one cluster. 

Suppose there are N items to be clustered. Assuming d can be computed in constant time steps 

1 and 2 requires O (N2) time. Step 3 can be completed in O (N) time using Lance-Williams 

combinatorial formula. If the objects or clusters just merged are denoted by i and j and k is 
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any other object or cluster, then the formula is 

d(i + j, k) = a(i)d(i, k) + a(j)d(j, k) + b x d(i, j) + c x ~d(i, k) - d(j, k)~ (2.1) 

where values of a,b and c depend on the clustering strategy used as shown in the Table 2.1. 

Table 2.1 Types of hierarchical clustering 

Method dissimilarity up- 
date formula 

co-ordinates of 
center of cluster 

Dissimilarity between 
cluster centers gi and g~ 

Single Link (nearest neighbor) a (i) =0.5, b=0, 
c=-0.5 

- -

Complete Link (diameter) a (i) =0.5, b=0, 
c=0.5 

- -

Average Link (group average) Z I _ a (i } = 2 +I~ 
Median a (i) =0.5, b=- 

0.25, c=0 
= C9a +9~ ~ ~ ~ 9i - 9 ~ ~ ( 2 

3 g 2 

centroid 121 
~ ~gi _ 9j ~ ~2a(i} = , 

CIZI+ICI) 
—IZI Ij~ b 

9 = (IZIgZ+(~I9,) 
(ICI+I~!) 

= c=0 ~1z1+~ U 2
Ward's Method C Z +ICI) CIz~9y+1.7190 IZ ~) ~ ~2a(i) = ~ (IZI+1.71+ICI) 

b -~~I 
9 = 

(Izl+lal) { ~ ~9a - 9~ (121+1a1) 
= Z ~ , c=0 11+~1+1 1 

Since in each iteration the number of objects or clusters is reduced by one, it is easy to see 

that the above procedure takes O(N3) time. Depending on whether a cluster is represented 

by a center point or by a subgraph of interconnected points, the clustering algorithms can be 

divided into graph methods (single, complete and average link methods) and geometric methods 

(median, centroid and ward's method). It has been shown in [l6] that for all clustering methods 

except centroid and median methods, clustering can be preformed in O(N2) time. The basic 

idea is the following. Let the nearest neighbor graph (NN-graph) be defined on a set of points 

p, whose directed edges (p,NN(p)) are such that NN(p) is the nearest neighbor of P. If for 

points p and q, q=NN(P) and P=NN(q), then they are known as reciprocal neaxest neighbors 

(RNN's). If i and j are any two RNN~s, suppose we have a p such that for any other point 

~: 
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Algorithm 1 Single Cluster Algorithm 

While only one point remains 
Start with arbitrary i, determine j=NN(i), k=NN(j),... until 
q=NN(p),~=NN(q). (also known as the NN-chain) 
Agglomerate R,NNs p and q, replacing with cluster center. 
Continue the NN-chain from the point in the chain prior top (or if the first two 
points in the NN-chain gave a pair of RNNs start a NN-chain from any point). 

Figure 2.1 Single cluster algorithm for Ward's method 

d~2~~) < P 

d(i, k) > p 

d(i + 7~ ~) > P 

Then, for all clustering methods except centroid and median methods it is easy to show that 

d (i + j,1~) > p, using Lance-Williams recurrences. This is known as the reducibility property. 

The algorithm for the Ward's method can be given as in Figure 2.1 

Using amortized analysis it can be shown that the above algorithm takes O (N2) time and 

the space required is O(N) for geometric methods. Since there is no cluster center for the graph 

methods the algorithm can be generalized by storing the entire distance matrix, thus increasing 

the space to O (N2) . The same result has been extended to all forms of hierarchical clustering 

(both geometric and graph methods) in [8] using a Quadtree like data structure (QTR), which 

is used for storing the nearest neighbors of points through insertion and deletion of points. 

QTL can be described in the following way: Group the points arbitrarily into pairs. Define 

the distance between two pairs to be the minimum of the four distances between objects in the 

pairs. Then, these pairs define a closest point problem with half as many points, which can 

be solved recursively. Each insertion or deletion causes O (N) changes to the distance matrix 

of the points and leads to a single update in the recursive problem. Thus, we can maintain 

the closest pair among a set of N objects in time O(N) per insertion and deletion, and O(1Y2) 

space. Hierarchical clustering can now be done as in Figure 2.2. 
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Algorithm 2 Hierarchical Clustering Algorithm 

Create the QTL data structure for storing the closest pair among N objects. 
Repeat until a single cluster remains 

Merge the objects in the closest pair into one cluster. 
Insert this cluster into the data structure. 

Figure 2.2 Generic hierarchical clustering using QTL data structure 

Since there are N —1 merges of the closest pairs (clusters), it is easy to see that hierarchical 

clustering can be done in O(N2) time. 

2.2 Existing approaches 

A natural basis for organizing gene expression data is to group together genes with similar 

patterns of expression. The first step would be to adopt a mathematical description of similar-

ity. Anumber of measures of similarity can be used such as Euclidean distance, angle, or dot 

products of the two D-dimensional vectors representing a series of D measurements. Eisen et 

al. [7] have used the standard correlation coefficient (i.e, the dot product of the two normalized 

vectors) . This is because it conforms well to the intuitive biological notion of what it means for 

two genes to be co-expressed. The statistic captures similarity in shape but places no emphasis 

on the magnitude of the two series of measurements. Average linkage hierarchical clustering 

is used in [7] for clustering the genes. Relationship between objects (genes) are represented 

by a tree whose branch lengths reflect the degree of similarity between objects, as assessed 

by a pairwise similarity function described above. In sequence comparison these methods are 

used to infer the evolutionary history of the sequences being compared. No such underlying 

tree exists for patterns of genes. Such patterns are useful in their ability to represent varying 

degrees of similarity and more distant relationships between groups of closely related genes. 

The computed tree can be used to order the genes so that genes or groups of genes with similar 

expression patterns are adjacent. This binary tree is also called dendrogram. For example, if 

four genes a, b, c and d are clustered such that genes a and b are clustered first, followed 



10 

by c and d, followed by the resulting two clusters being merged. The dendrogram in such a 

scenario can be visualized as Figure 2.3. The internal node x corresponds to the genes a and 

b being clustered, while the internal node y corresponds to the genes c and d being clustered 

together. The node z corresponds to the two clusters {a, b} and {c, d} being merged into a 

single resultant cluster. 

z 
Y 

a b c d 

Figure 2.3 A simple dendrogram for four genes a, b, c and d . 

Microarray data can be captured as a 2-Dimensional gene expression array, where the 

rows are genes which are used in the microarray experiment and the columns correspond to 

individual array experiments (e.g single time points or conditions), and each cell represents 

the measured Cy5/Cy3 fluorescence ratio at the corresponding target element on the array. 

All ratio values axe log transformed (base 2 for simplicity) to treat inductions or repressions of 

identical magnitude as numerically equal but with opposite sign. Individual observations axe 

rejected in some cases, on the basis of measurement quality parameters of the image analysis 

parameters. The gene similarity metric used is a form of correlation coefficient. Let GZ be the 

log-transformed data for gene G in condition i. For any two genes X and Y observed over a 

series of D conditions, a similarity score can be computed as 

where 

_ 1 
D 

Xi — Xoffset Yi — Yoffset s(X, Y) — — ~ ( ) ( ) D Z-1 ~y ~y 
(2.2) 
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When Go f fret is set to the mean of observations on G, then ~c becomes the standard deviation 

of G, and S(X, Y) is exactly equal to the Pearson correlation coefficient of the observations of 

X and Y. Values of Go f fret which are not the average over observations on G are used when 

there is an assumed unchanged or reference state represented by the value of Go f fret, against 

which changes are to be analyzed. In [7], Gof fret is set to 0, corresponding to a fluorescence 

ratio of 1.0. For any set of N genes, an upper-diagonal similarity matrix is computed by using 

the metric described previously, which contains the similarity score for all pairs of genes. The 

matrix is scanned to identify the highest value (representing the most similar pairs of genes) . 

A node is created joining these two genes, and a gene expression profile is computed for the 

node by averaging observation for the joined elements (missing values are omitted and the two 

joined elements axe weighted by the number of genes they contain). The similarity matrix is 

updated with this new node replacing the two joined elements, and the process is repeated 

N —1 times until only a single element remains. Finding the maximum in matrix takes O (N2 ) 

time and creating the expression profile for the clustered node takes O(N) time. Since these 

steps are repeated N — 1 times, the run time of the algorithm is O (N3) . 
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CHAPTER 3. OPTIMAL HIERARCHICAL CLUSTERING 

3.1 Terminology 

Let D denote the number of experiments and N denote the number of genes Gl, G2, . . . , GN

respectively. The gene expression matrix is an N x D matrix whose element gik denotes the 

expression level of gene Gi under experiment number 1~. Several metrics have been used to 

measure the similarity between two genes. With a Euclidean metric, one simply measures 

the Euclidean distance between the expression levels of two genes across a common set of 

experiments. But this measure does not appropriately capture the notion of co-regulated genes. 

For example, if the expression levels of two genes differ just by a multiplicative factor, they 

are considered co-regulated. However, the Euclidean distance between the two is proportional 

to this factor, contrary to the intuition of similarity. 

On the other hand, the similarity metric used in [7~ is based on the following correlation 

coefficient between two genes, Gi and G~ 

S~GZ,G~) _ 

where 

1 ~ ~9i~ — mi) ~9~~c — m~) _ 
D  k_i ~~GZ) ~(G~) 

— 

D / 
~k=119ik - mi 2 

D 

D ~ ~ 1 ~ gay g~k

D k—i ~~Gi) ~~G"~) 

~3.2~ 

and mi re~ects the reference value of gene Gi against which its changes are measured. The 

reference value modifies the original gene expression level gik t0 its displaced value gZ'•k . If the 

reference value for each gene is set to the average of observations on that gene, then ~(Gi ) 
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3 4 2 5 1 6 

Figure 3.1 An example dendrogram. 

is precisely the standard deviation and the above correlation function is called the Pearson 

correlation coef,~icient. According to this correlation based definition, S(Gi, G~) E [o, l] d z, j. 

In the case of the above example where one gene is simply proportional to ,another, it yields a 

coefficient equal to 1. 

In the hierarchical algorithm adopted in [7], given N genes to be clustered, each gene G~ 

is initially considered to be in a cluster containing only that gene. It uses the above metric to 

compute the similarity score of the O (N2) possible pairs of genes and then includes a pair, say 

GZ and G~ , with the maximum score into a cluster, say Gib . The rows corresponding to genes 

GZ and G~ are deleted and a row corresponding to the cluster GZ~ is inserted into the gene 

expression matrix. This procedure is repeated until only one cluster remains. The elements 

of the row corresponding to a cluster GZ~ are computed by taking the weighted average of 

the elements of the rows corresponding to the clusters i and j . The weights attached are the 

number of genes that are contained in the two joined clusters. The run time of this algorithm 

is clearly O (N3) since O (NZ) comparisons are made in each of the N — 1 iterations. 

Clustering results are pictorially represented by what are called d endrograms. An example 

with six genes {Gl, G2, • • • , G6} is shown in Fig 3.1. The figure depicts the following sequence 

of clustering: (G3 ~ G4) ~ (G2 , G5) ~ (G34 , G25) ~ (G2345 ~ G 1) ~ (G 12345 ~ G6) where Gib • • •m 

denotes a cluster that contains the genes GZ, G~, • • • , G„2. 
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3.2 Geometrical reduction 

We treat the expression levels of a gene under the D experimental conditions. i.e., a row 

in the gene expression matrix, as a D-dimensional vector. The following definition of the dot 

product of two D-dimensional vectors, u and v, will be used: 

u ~ v = Ilull ~ ilvll cos euv (3.3) 

where ~~w~~ 2 = ~ wi denotes the norm of a vector w and cos 8~,, is the angle between the 

vectors u and v a.nd can be obtained by using the generalized law of cosines 

d2(u,v) = Ilull 2 + Ilvll2 — 2 Ilull ~ Ilvll ~ose~.v (3.4) 

where d2(u, v) is the L2-distance between the tips of the vectors u and v drawn from the same 

origin. We will also use the notation V for a normalized vector. Inserting Eqn (3.2) in Eqn 

(3.1) yields 

S(Gi, G~) D  ~9z~ — mz)  ~9~k — m~ ) 

G'~ •G'~ Z ~ 

IIG'ill • IIG'~II coseG,iG,~ 
COS BG, z G,~ (3.5) 

where we have used Eqn (3.3). Thus, the correlation coefficient between any two genes, Gi and 

G~ , can be interpreted as the cosine of the angle between the two D-dimensional normalized and 

possibly displaced gene vectors represented by G'i and G'~ . The above equation immediately 

implies that the correlation coefficient S(Gi, G~) does not depend on the length of the displaced 

gene vectors but onl y on the angle between them. In the following, we will set all the reference 
.. 

values to zero in the spirit of [?] in which case g~a —~ g2 d i E [1, N] . It should be pointed out 

that all the subsequent arguments follow for non-zero reference values as well since there is a 



15 

(a) (b) 

Figure 3.2 A 2D example where the radius of the circle is unity. 

one-to-one mapping between a gene vector and its displaced counterpart. 
.. .. 

Using Eqn (3.4) and Eqn (3.5), one can now find the distance d(Gi, G~ } between the tips 

of the normalized gene vectors, Gi and G~ which yields 

d(G27 G~) _ ~2(1 —cos9Gtic; ) _ ~2(1 — S(Gi,G~)) (3.6) 

Eqn (3.6) implies that a pair Gi, G~ maximizes the score S(GZ, G~ } if and only if the pair Gi, G~ 

minimizes the distance d(GZ, G~ }. ~'hus, the problem of ,finding a pair of D-dimensional gene 

vectors with maximum correlation from O(N2) di,,~erent pairs has been reduced to finding a 

closest pair among .N points that lie on the surface of a D-dimensional hypersphere. This is 

the well known dynamic closest pair problem. 

A 2-dimensional example is shown in Fig 3.2. The gene vectors G1, G2, G3, G4 and G5 in 

Fig 3.2 (a) are unnormalized. The correlation coefFicients between any pair of vectors in Fig 

3.2 (a) correspond to the cosine of the angle between them. Finding the smallest such angle 

corresponds to finding the closest pair of points on the circle as shown in Fig 3.2 (b} . The 

dotted lines in Fig 3.2 (b) denote the Euclidean distances of Eqn (3.6) . 
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3.3 An O(N log N) clustering algorithm 

In this section, we will show how the above geometric interpretation immediately suggests 

an algorithm that reduces the O (N3) run time to D (N log N) run time without in any way 

disturbing the biological meaning of the procedure, described briefly in the next paragraph, 

adopted in [7] . 

To cluster a set ~ of N gene expression vectors G1, G2, ... , Gov, each vector is initially 

considered to be in a cluster with itself as the only member of that cluster. Thus, at the 

beginning, each of the genes can be viewed as a set of N singleton clusters, each represented 

by the only gene expression vector that it contains. Of these N clusters, a pair represented by, 

say Gi and G~, that yields the highest correlation coefficient, S(GZ, G~) from the (2) possible 

values are chosen to belong to a cluster that is represented by another gene expression vector 

GZ~ . The components of the gene expression vector GZ~ that represents this newly formed 

cluster are determined by taking a weighted average of the components, namely, Gi and G~, 

respectively. The weight attributed to each of the merged clusters is the number of genes 

contained in the cluster divided by the sum of the total membership of the two joined clusters. 

Once this representative gene expression vector, GZ~ is calculated, the clusters represented by 

Gi and G~ that took part in the formation of the most recent cluster GZ~ are deleted and the 

vector G2~ is inserted into C thus reducing the cardinality of ~ by one. The above procedure 

is repeated and at every stage the cardinality of ~ decreases by one. The algorithm stops 

when ~ ~ ~ = 1. Thus, there are N — 1 stages in the above clustering algorithm with each 

stage taking O (~ Gi ~ ~) run time where GZ denotes the set of clusters at the ith stage. Since 

Gi ~ = N — i , i E [0, N — 1], the total run time is easily seen to be O (N3) . 

In this section, we will show how the above geometric interpretation immediately suggests 

an algorithm that reduces the D(N3) run time to D(N log N) run time without in any way 

disturbing the biological meaning of the procedure, described briefly in the next paragraph, 

adopted in [7] . 

If one can reduce the O (~ GZ ~ 2) run time to O (log ~ G~ ~) at every clustering stage i, it imme-

diately follows that the above clustering procedure can be accomplished in O (N log N) time. 
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Algorithm 3 CLUSTER() 

Normalize each vector in ~. 
N = 
Build fair split tree on the N points whose coordinates are components of the corresponding 
normalized vectors. 
while (N > 1) 

Find closest pair, say, points i and j 
i + j =merge (i, j) 
Delete i and j from ~ 
Insert point i + j into ~ 
N=N -1 

Figure 3.3 An O(N log N) clustering algorithm. 

The geometrical reduction described in aforementioned section achieves just that. 

We propose the algorithm shown in Fig. 3.3 which requires three basic operations, namely: 

• Given a set ~ of N points, find a closest pair. 

• Delete two points from C. 

• Insert one point into ~. 

Data structures that support each of the above operations in O(log ~~~) time already exist. 

We will use a data structure called modified fair split tree for our purpose, though any other 

spatial data structure that supports the above operations in O(iog ~~~) time will suffice. For 

further details about the above data structure and the operations defined on it, we refer the 

reader to the original sources [2, 3~. It is shown in [2] that a modified fair split tree can be 

built on N points in O(N log N) time. In addition, this data structure supports deletion and 

insertion operations in O(log N) time, respectively. Finding the closest pair using the modified 

fair split tree takes O(log N) time as well. All the aforementioned run times have constant 

factors dependent on the number of dimensions, D. Our algorithm for the clustering of N 

gene expression vectors is summarized in Fig. 3.3. The input to the algorithm is the set ~ of 

all the D-dimensional gene vectors. Its run time is easily seen to be O(N log N). The space 

requirement is O(N) as shown in [2]. 
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// Create a list in each leaf i with xi for that leaf as the only element 

Algorithm 4 SORT(v) 

if (v is a leaf) 
return list in v 

else 
left list =SORT (left _child (v) ) 
rightlist=SORT(right_child(v) ) 
if (rightmost element in leftlist < leftmost element in rightlist) 

concatenate list in left_child(v) and list in right_child(v) 
else 

concatenate list in right_child(v) and list in left_child(v) 
return the concatenated list 

Figure 3.4 Algorithm SORT(v). SORT(v) is initially called with the root. 

3.4 Proof of optimality 

Optimality of the algorithm can be shown using a reduction from sorting. The required 

~Z (N log N) lower bound can be established even for the 2D case. Consider a set of N distinct 

real numbers between 0 and 1. Construct an N x 2 gene expression matrix in which the 

ith row is (~i, y2) where y2 = 1 — x2 in O (N) time. Applying a clustering algorithm on 

this gene expression matrix will yield a dendrogram T which is a full binary tree with root 

r and N leaves. Each leaf in T represents a two dimensional gene vector GZ - (xi, y2) . Now 

consider the sorting algorithm in Fig 3.4. It is easy to see that since the size of T is O(N), 

SORT (v) runs in linear time. Correctness of SORT (v) follows from the facts that: (a) if GZ

and G~ are clustered, then xi and x~ are neighbors in the final sorted order. To prove this, 

note that if Gi and G~ are clustered by the algorithm, then it follows from the correctness 

of the clustering algorithm that S (GZ , G~) > S (GZ , G~) ~ d (GZ , G~) < d (GZ , G~) b 1~ ~ i, j . 

Without loss of generality, assume that ~i < x~. Let us assume that ~ G~ - (x~, yk ) such that 

xi < ~k < x~ . Since yZ = 1 — x2 b 1 < i < N, it follows that y~ < y~ < y2 . Therefore, 

d(Gz~ Gk) _ (xk — xi)2 + (yk — yi)2 < (xj — xi}2 + (yk — yi)2 < (xj — ~Z)2 + (yj — yZ)2 = d(GZ, Gj ). 

But d (Gi , G~) < d (GZ , G~) ~ S (Gi , G~) < S (GZ , Gk) which contradicts the fact that GZ and 

G~ were clustered by the algorithm. (b} at each internal node of T, concatenation of two 
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sorted lists conserves the order in the resulting list. The clustering algorithm that yielded 

the dendrogram T must then be S2(N log N) in order not to violate the algebraic decision 

tree model for the lower bound of the problem of comparison based sorting, thus, proving the 

optimality of CLUSTER(). It should be noted that we proved a lower bound by restricting 

attention to the 2D case since the lower bound for the restricted case also serves as a lower 

bound for the general problem and the lower bound for the restricted case matches the upper 

bound as given by CLUSTER() for any number of dimensions. 
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CHAPTER 4. SINGLE LINKAGE HIERARCHICAL CLUSTERING 

4.1 Overview 

The single link method is the oldest hierarchical clustering method and one of the most 

widely used hierarchical methods because of computationally efficient algorithms. It is also of 

great interest for point pattern recognition. A wide range of algorithms have, in fact, been 

developed for single linkage method [19J. Algorithms reviewed in [19] have complexities ranging 

from O(Nlog N) to O(N5). Many of these algorithms have first constructed the Minimum 

Spanning Tree (MS~, and subsequently transformed this into the single link hierarchy. The 

two problems of single linkage clustering and the MST are closely related. Information is 

lost in transforming the MST into the hierarchy, so that the reverse transformation is not 

possible. An efficient O(NZ) worst case algorithm for transforming the MST into the hierarchy 

is described in [18]. A number of authors [ll] found the mathematical properties of this method 

so appealing that they preferred it to all other hierarchical methods. The properties which are 

not shared by other methods as pointed in [ll] are 

1. Every partition has classes which are optimal with reference to the connectivity criterion 

used. Partitions obtained from the minimum variance method, in contrast are suboptimal 

with respect to intra cluster minimum variance. 

2. Monotonic transformation of input dissimilarities (i.e a transformation which preserves 

order) has no e$'ect on the hierarchy. This may be of importance where a question is 

raised over the scaling of directly-constructed dissimilarities. 

3. Small changes iri the input dissimilarities produce small changes in the hierarchy pro- 

duced. Thus, the single link method is a stable method. 
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4. It is easy to graphically represent the results of linkage based clustering methods on 

2-dimensional data and the hierarchical method or the minimal spanning tree are very 

suitable for many types of pattern recognition problems. 

The automatic recognition of groups of points is an important problem in the pattern 

recognition area. For example, in Figure 4.1 all hierarchical clustering algorithms perform well 

when presented with well-separated, compact clusters. For elongated clusters ,the single link 

method with its chaining effect would be ideally suited. For linking and touching globular 

groups, single link may not be of direct use. The minimum variance method should however 

find the clusters. Finally, in case of concentric groups or of groups characterized by differing 

densities, the MST may be used. In the former case, a large link will indicate whether the MST 

must be broken to form two components. In the latter case, a histogram of edge dissimilarity 

weights should uncover two distinguishable sets of dissimilarities: edges of small dissimilarity 

will relate to the high density part of the point pattern, and edges of greater dissimilarity will 

relate to the low density region. Deleting all edges of dissimilarity weight greater than some 

threshold in the MST causes the resultant tree to connect only high density points. 

4.2 Existing algorithms 

Since the problem of performing the single link clustering is equivalent to finding the MST 

of the given points, most of the algorithms first find the MST of the input points. The number 

of points N correspond to the vertices V of the graph. A dissimilarity measure is used to 

find the edge weights between the vertices. The set of edges between all possible pairs of 

vertices is denoted by E. The problem of finding a minimum spanning tree of a given weighted 

graph has been studied extensively and numerous (sequential and randomized) algorithms 

have been devised. Asymptotically optimal randomized algorithms have been developed [12], 

which run in time O(~V~ ~- ~E~) with high probability. A deterministic algorithm with a run 

time of O(~E~a(~E~, ~V ~)) has been given in [4] where a is the inverse Ackerman's function. 

Shamos and Hoey [21] have presented an O(Nl,og N) time algorithm for this problem assuming 

that the points are from a two-dimensional space. Yao [27) considers the euclidean MST 
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Figure 4.1 Point patterns whose constituent groups are to be automatically 
recognized. 
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Algorithm 5 Single Link Clustering 

Compute the array D(i, j) which contains the (dis)similarity between points i and j, 
for all possible pairs (i, j). 
Compute nearest neighbor N(i) for every point i. 
Repeat N - 1 times 

Determine i,j such that D(i, j) is minimized. 
Agglomerate clusters i and j. 
Update each D(i, j) and N(i) as necessary. 

Figure 4.2 A simple O(N2) single link clustering algorithm. 

problem in d dimensions (d > 3). In particular, he presented an algorithm with a run time 

of O(N2-°~d~(log N)1-a(d)J where a(d) = 2-~d+l). When d = 3 an improved algorithm with a 

run time of O(Nlog N)1.8 has also been given in [27]. Most of these algorithms run in almost 

O(N2) time and are impractical for high dimensional data. A much simpler algorithm which 

can be employed for single linkage clustering is shown in Figure 4.2. 

Computing the arrays D(i, j) and N(i) takes O(N2) time. Using these arrays comput-

ing two closest clusters can be performed in O(N) time by examining each cluster's nearest 

neighbor. To agglomerate clusters, we can simply store which clusters were agglomerated and 

update the arrays. The single link metric has the property that if we agglomerate clusters i 

and j into i + j, any cluster that had either i or j as its nearest neighbor now has i + j as its 

nearest neighbor. This property allows us to update the arrays in O(N) time for the single 

link metric, yielding an O(N2) time algorithm. 

4.3 New algorithm 

In this section, we propose a new algorithm for performing single link hierarchical clustering. 
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Algorithm 6 A New Algorithm 

Find the nearest neighbor N(z} for every point Z. 
Sort these nearest neighbor distances. 
Make a cut in this sorted list. 
Repeat until a single cluster remains or cut covers all the points. 

Perform the clustering for points on the left side of the cut and build the dendro-
gram. 
Cut the dendrogram according to a specific criterion(which will be defined shortly). 
Cluster parts of the dendrogram, find nearest neighbors of these clusters and merge 
this list with the sorted list on the right side of the cut. 

Figure 4.3 Anew O(N2) single link clustering algorithm. 

4.4 Criterion for cutting the dendrogram 

A dendrogram of N leaves can be considered a binary tree with N leaves and N-1 internal 

nodes. Henceforth, the terms dendrogram and tree will be used interchangeably when the 

difference is clear from the context. The dendrogram is decomposed according to Figure 4.4. 

Thus the dendrogram is decomposed into a set of connected components, which we claim 

are correct with respect to the final dendrogram of the input points. In other words, we stop 

cutting the dendrogram whenever we encounter an internal node which has atleast one child 

as a leaf. 

Claim 1 Cutting the dendrogram according to Figure 4.l~ yields correct clusters according to 

the final dendrogram. 

Proof: Initially, since we are sorting the nearest neighbor distances, all the points to the left 

side of the cut have their nearest neighbors on the same side of the cut. We stop breaking the 

dendrogram when we encounter an internal node which has atleast one child as a leaf. Suppose 

at the point of stopping, the internal node say X has as its children a leaf node i and subtree 

rooted at Y (see Fig(4.5)) . Suppose i was clustered with the set containing leaves underneath 

node Y because of its distance d (i, j) with a leaf say j . We are claiming that the cluster under 
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Algorithm ?Algorithm to decompose the dendrogra~ 

Push the node onto the stack. 
While stack is not empty 

Pop a node from the stack. 
If (node is a leaf) 

End and exit out of the loop. 
else 

Push the children of the node onto the stack. 
Delete the set of edges between the node and children of the node. 

Figure 4.4 Algorithm is initially called with the root of the tree. 

X is correct. Suppose for contradiction, cluster under X is not correct. There are two cases 

possible. 

Case I: Cluster under node Y should have clustered with a different cluster before it clustered 

with i. In which case the pair involved in clustering Y with other cluster must have been to 

left of pair (i, j) in the sorted list. Hence, that cluster must have clustered with cluster under 

Y before it clustered with i, thus contradicting the clustering process which is applied to all 

the points on the left side of the cut. 

Case II: Node i must be clustered with a different cluster. This case can be proved in a 

similar way as the first case. ■ 

J 

Figure 4.5 An example binary tree 



26 

4.5 Run time analysis 

Finding the nearest neighbor of every point takes O (N2 ) time, if there are N points to start 

with. Sorting these N distances takes O (Nl og N) times using any of the common comparison 

based sorting algorithms like merge-sort or heap-sort. Suppose the cut is made such that aN 

points are on the Ieft side of the cut and (1 — a) N points are on the right side of the cut. 

The number of points on the left side are reduced by atleast half, since every point is atleast 

clustered with its nearest neighbor. The recurrence can be given as: 

T(N) = T(aN) +T((1 — 2 )N) + O(N2) (4.1) 

To solve this recurrence, we will use induction. Let T (N) < cN2 for some constant c and 

O(N2) = kN2 for some constant k. Substituting in the equation 4.1 we get 

2 
c(aN)2 + c((1 — 2 )1V)2 + kN2 < cN2 ~ k < c(a — 54 ~ ~ ~ ~ (4a 4 5a2) 

~4.2~ 

In other words, for any J~, we can choose a such that the above inequality holds, thus proving 

the induction. Hence, the total run time of the algorithm is O (N2) . 

4.6 Optimal value of a 

We would like to find an optimal value of a, which will decide where the cut must be made 

in the sorted list. According to equation 4.2, in order to minimize the value of c, 4a — 5a2

must be maximized. Difrerentiating with respect to a and equating to 0, we have 

2 
4-10a=0~a= 5 (4.3) 

Thus, the optimal point for making the cut in the sorted list of nearest neighbors is after 

~ 25 J elements. 
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4.7 An example 

In this section, we present an implementation of the algorithm on a small data set. Consider 

a data set of 10 points a, b, ..., j with the distance matrix as shown in Figure 4.1. 

Table 4.1 A sample data set 

a b c d e f g h i j 
a o0 5 9 35 30 25 34 43 51 60 
b 5 00 12 36 31 29 35 42 50 61 
c 9 12 00 37 32 30 36 41 52 62 
d 35 36 37 00 8 20 12 40 53 63 
e 30 31 32 8 00 17 24 44 56 64 
f 25 29 30 20 17 00 10 45 54 65 
g 34 35 36 12 24 10 00 46 55 65 
h 43 42 41 40 44 45 46 00 60 67 
i 51 50 52 

_ 
53 56 54 55 60 00 15 

j 60 61 62 63 64 65 66 67 15 00 

According to the first step of the algorithm, the sorted nearest neighbor list is shown in 

Figure 4.6. The head of the arrow is the point and the tail points to the nearest neighbor of 

the point with the distance to the nearest neighbor stored along the arrow. 

5 

a b d e c f 

5 8 8 9 10 

b a e d a g 

g 

10 15 
V 
f 

Figure 4.6 Sorted list of nearest neighbors. 

15 

l 

40 

h 

i d 

As proved earlier, to optimally cut this sorted list, we need to cut after 5 times the length 

of the list. The dendrogram for the first four points in the list is shown in Figure 4.7 

According to the criterion for cutting the dendrogram, starting from the root (Z in our 

case}, we stop when encountered with a node containing atleast one leaf as a child. In this 

case we stop when after cutting the links between Z to X and Z to Y. We claim the the pairs 



28 

Z 

-~-
X 

a 

Y 

• • • 
b d e 

Figure 4.7 Dendrogram for points on left side of the cut. 

(a, b) and (d, e) are correct with respect to the original dendrogram which is trivially true. Two 

clusters are formed by clustering a and b into one cluster and d and e into another cluster. 

This process is repeated until we build the final dendrogram which is shown in Figure 4.8. 

a b c d e f g 

Figure 4.8 Final dendrogram. 

h i J 
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CHAPTER 5. CONCLUSION AND FUTURE WORK 

In this thesis, we have shown that the interpretation of the correlation coefficient of two 

row vectors of a gene expression matrix as the cosine of the angle between the two row vectors 

can be exploited to convert the problem of clustering genes based on a correlation coefficient 

metric into a dynamic closest pair problem. Such a reduction allows a O(N log N) algorithm 

over the existing O(N3) algorithm. The geometric algorithms used for the dynamic closest 

pair problem have arun-time dependence on D that is exponential. This could be problematic 

if D is large. One possible approach is to use approximate closest pair algorithms which have 

a linear dependence on D. Note that the closest pair algorithm used in the paper is general 

in nature, and does not take into account the special structure of the microarray hierarchical 

clustering problem where all the points lie on the surface of a D-dimensional unit hypersphere. 

It is an interesting open problem to see if better data structures that exploit this specific 

geometry can be designed to realize a more graceful dependence on the number of dimensions. 

A new serial algorithm for single linkage hierarchical clustering has been developed. Since 

hierarchical clustering is widely used for clustering microarray data, parallel algorithms would 

be of great help to cluster large data sets quickly. Most of the parallel algorithms developed 

are for theoretical models. Work done by parallel algorithms which have been implemented on 

microarray data is O(N3), which is worse than O(N2) time taken by serial algorithms. It is an 

open problem if efficient and scalable parallel algorithms can be developed for these sequential 

algorithms. 
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