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CHAPTER 1. GENERAL INTRODUCTION

1.1 Abstract

An important goal of inductive learning is to generate accurate and compact classifiers from

data. In a typical inductive learning scenario, instances in a data set are simply represented as

ordered tuples of attribute values. In our research, we explore three methodologies to improve

the accuracy and compactness of the classifiers: abstraction, aggregation, and recursion.

Firstly, abstraction is aimed at the design and analysis of algorithms that generate and deal

with taxonomies for the construction of compact and robust classifiers. In many applications

of the data-driven knowledge discovery process, taxonomies have been shown to be useful in

constructing compact, robust, and comprehensible classifiers. However, in many application

domains, human-designed taxonomies are unavailable. We introduce algorithms for automated

construction of taxonomies inductively from both structured (such as UCI Repository) and

unstructured (such as text and biological sequences) data. We introduce AVT-Learner, an al-

gorithm for automated construction of attribute value taxonomies (AVT) from data, and Word

Taxonomy Learner (WTL), an algorithm for automated construction of word taxonomy from

text and sequence data. We describe experiments on the UCI data sets and compare the per-

formance of AVT-NBL (an AVT-guided Naive Bayes Learner) with that of the standard Naive

Bayes Learner (NBL). Our results show that the AVTs generated by AVT-Learner are compet-

itive with human-generated AVTs (in cases where such AVTs are available). AVT-NBL using

AVTs generated by AVT-Learner achieves classification accuracies that are comparable to or

higher than those obtained by NBL; and the resulting classifiers are significantly more compact

than those generated by NBL. Similarly, our experimental results of WTL and WTNBL on

protein localization sequences and Reuters newswire text categorization data sets show that



2

the proposed algorithms can generate Naive Bayes classifiers that are more compact and of-

ten more accurate than those produced by standard Naive Bayes learner for the Multinomial

Model.

Secondly, we apply aggregation to construct features as a multiset of values for the intrusion

detection task. For this task, we propose a bag of system calls representation for system call

traces and describe misuse and anomaly detection results on the University of New Mexico

(UNM) and MIT Lincoln Lab (MIT LL) system call sequences with the proposed representa-

tion. With the feature representation as input, we compare the performance of several machine

learning techniques for misuse detection and show experimental results on anomaly detection.

The results show that standard machine learning and clustering techniques using the simple

bag of system calls representation based on the system call traces generated by the operat-

ing system’s kernel is effective and often performs better than approaches that use foreign

contiguous sequences in detecting intrusive behaviors of compromised processes.

Finally, we construct a set of classifiers by recursive application of the Naive Bayes learning

algorithms. Naive Bayes (NB) classifier relies on the assumption that the instances in each

class can be described by a single generative model. This assumption can be restrictive in

many real world classification tasks. We describe recursive Naive Bayes learner (RNBL),

which relaxes this assumption by constructing a tree of Naive Bayes classifiers for sequence

classification, where each individual NB classifier in the tree is based on an event model (one

model for each class at each node in the tree). In our experiments on protein sequences, Reuters

newswire documents and UC-Irvine benchmark data sets, we observe that RNBL substantially

outperforms NB classifier. Furthermore, our experiments on the protein sequences and the text

documents show that RNBL outperforms C4.5 decision tree learner (using tests on sequence

composition statistics as the splitting criterion) and yields accuracies that are comparable to

those of support vector machines (SVM) using similar information.
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1.2 Motivation

1.2.1 Motivation for Abstraction

An important goal of inductive learning is to generate accurate and compact classifiers

from data. In a typical inductive learning scenario, instances to be classified are represented

as ordered tuples of attribute values. However, attribute values can be grouped together to

reflect assumed or actual similarities among the values in a domain of interest or in the context

of a specific application. Such a hierarchical grouping of attribute values yields an attribute

value taxonomy (AVT).

Hierarchical groupings of attribute values (AVT) are quite common in biological sciences.

For example, the Gene Ontology Consortium is developing hierarchical taxonomies for de-

scribing many aspects of macromolecular sequence, structure, and function (Ashburner et al.,

2000). Undercoffer et al. (Undercoffer et al., 2004) have developed a hierarchical taxonomy

which captures the features that are observable or measurable by the target of an attack or

by a system of sensors acting on behalf of the target. Several ontologies being developed as

part of the Semantic Web related efforts (Shadbolt et al., 2006; Berners-Lee et al., 2001) also

capture hierarchical groupings of attribute values. Kohavi and Provost (Kohavi and Provost,

2001) have noted the need to be able to incorporate background knowledge in the form of

hierarchies over data attributes in electronic commerce applications of data mining.

There are several reasons for exploiting AVT in learning classifiers from data, perhaps the

most important being a preference for comprehensible and simple, yet accurate and robust

classifiers (Pazzani et al., 1997) in many practical applications of data mining. The availability

of AVT presents the opportunity to learn classification rules that are expressed in terms of

abstract attribute values leading to simpler, easier-to-comprehend rules that are expressed in

terms of hierarchically related values.

Another reason for exploiting AVTs in learning classifiers from data arises from the neces-

sity, in many application domains, for learning from small data sets where there is a greater

chance of generating classifiers that over-fit the training data. A common approach used by
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statisticians when estimating from small samples involves shrinkage (Duda et al., 2000) or

grouping attribute values (or more commonly class labels) into bins, when there are too few

instances that match any specific attribute value or class label, to estimate the relevant statis-

tics with adequate confidence. Learning algorithms that exploit AVT can potentially perform

shrinkage automatically thereby yielding robust classifiers. In other words, exploiting informa-

tion provided by an AVT can be an effective approach to performing regularization to minimize

over-fitting (Zhang and Honavar, 2003).

Consequently, several algorithms for learning classifiers from AVTs and data have been

proposed in the literature. This work has shown that AVTs can be exploited to improve

the accuracy of classification and in many instances, to reduce the complexity and increase

the comprehensibility of the resulting classifiers (Dhar and Tuzhilin, 1993; Han and Fu, 1996;

Hendler et al., 1996; Taylor et al., 1997; Zhang and Honavar, 2003; Zhang et al., 2002). Most of

these algorithms exploit AVTs to represent the information needed for classification at different

levels of abstraction.

However, in many domains, AVTs specified by human experts are unavailable. Even when

a human-supplied AVT is available, it is interesting to explore whether alternative groupings

of attribute values into an AVT might yield more accurate or more compact classifiers. Thus,

we explore the problem of automated construction of AVTs from data. In particular, we are

interested in AVTs that are useful for generating accurate and compact classifiers.

Furthermore, we extend our exploration to word taxonomy of unstructured data such as

text and sequences with the similar arguments.

Word taxonomies present the possibility of learning classification rules that are simpler

and easier-to-understand when the terms in the rules are expressed in terms of abstract values.

With previous work (Kang et al., 2004; Zhang and Honavar, 2004), abstraction of similar

concepts by the means of attribute value taxonomy (AVT) has been shown to be useful in

generating concise and accurate classifiers.

Against these backgrounds, we introduce word taxonomy guided Naive Bayes learner for

the multinomial event model (WTNBL-MN). WTNBL-MN is a word taxonomy based gener-
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alization of the standard Naive Bayes learning algorithm for the multinomial model.

Because word taxonomy is not available in many domains, there is a need for automated

construction of word taxonomy. Hence, we describe a word taxonomy learner (WTL) that

automatically generates word taxonomy from sequence data by clustering of words based on

their class conditional distribution.

To evaluate our algorithms, we conducted experiments using two classification tasks: (a)

assigning Reuters newswire articles to categories, (b) and classifying protein sequences in terms

of their localization. We used Word Taxonomy Learner (WTL) to generate word taxonomy

from the training data. The generated word taxonomy was provided to WTNBL-MN to learn

concise Naive Bayes classifiers that used abstract words of word taxonomy.

1.2.2 Motivation for Aggregation

Detection of attempts to compromise the integrity, confidentiality, or availability of com-

puting and communication networks is an extremely challenging problem (Denning, 1987).

Most current approaches to the design of intrusion detection systems (IDS) are based on the

premise that the actions used in an attempted intrusion can be differentiated from the actions

executed by users or processes during the normal operation of the computing and communica-

tion networks (Axelsson, 2000; Murali and Rao, 2005). An effective IDS logs actions executed

by users or processes for investigation, alerts the system administrator when the monitored

activities are indicative of attempted intrusion, and, if appropriate, takes corrective measures

e.g., expelling the intruder.

Intrusion detection and prevention generally refers to a broad range of strategies for de-

fending against malicious attacks. Intrusion detection can be categorized into misuse detection

and anomaly detection. Misuse typically is a known attack, e.g., a hacker attempting to break

into an email server in a way that IDS has already trained. A misuse detection system tries

to model normal and abnormal behavior from known attacks. It works by comparing network

traffic, system call sequences, or other features of known attack patterns. An anomaly is some-

thing out of the ordinary, e.g., abnormal network traffic which is actually caused by unknown
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attacks. An anomaly detection system models normal behavior and identifies a behavior as

abnormal (or anomalous) if it is sufficiently different from known normal behaviors.

IDS can be classified into those that focus on modeling the behavior of users and those

that focus on modeling the behavior of processes (Ghosh and Schwartzbard, 1999). System

call data are one of the most common types of data used to model the behavior of processes.

Such data can be collected by logging the system calls using operating system utilities e.g.

Linux strace or Solaris Basic Security Module (BSM).

There has been a great deal of research on how to design and implement intrusion detection

systems. For example, Mukherjee et al (Mukherjee et al., 1994) used a combination of host

monitors and network monitors with a centralized director for suspicious system activities in

the distributed intrusion detection system (DIDS) project. Because it is difficult to manually

specify activities that signal intrusive behavior, there has been much work on adaptive or

machine learning or data mining approaches for intrusion detection. Forrest et al (Forrest

et al., 1996) worked on the Computer Immunology project and explored approaches inspired by

the activities of the immune systems of animals for detecting and defending against intrusions.

Subsequently, several groups have explored data mining approaches for intrusion detection (Lee

et al., 1999; Helmer et al., 2001; Eskin et al., 2002; Campos and Milenova, 2005).

In most IDS that model the behavior of processes, intrusions are detected by observing

fixed-length, contiguous subsequences of system calls. For example, in anomaly detection,

subsequences of input traces are matched against normal sequences in database so that foreign

sequences (Forrest et al., 1996; Hofmeyr et al., 1998) are detected. One potential drawback of

this approach is that the size of the database that contains fixed-length contiguous subsequences

increases exponentially with the length of the subsequences. For example, if the number

of system calls is 200 and the length of the subsequences is 6, the size of the database is

theoretically 2006 = 64 × 1012. In practice, only normal subsequences are stored, so actual

database size is smaller, but still considerably bigger than the hypothesis size generated by our

approach.

Against this background, we explore an alternative representation of system call traces
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for intrusion detection. Specifically, we use a bag of system calls representation of system

call sequences. In other words, we consider intrusion detection of system call sequence as a

classification problem on a bag of system calls obtained from the system call sequences. With

those problem setting, we constructed and evaluated decision tree (Quinlan, 1993), Naive

Bayes (McCallum and Nigam, 1998), decision list (Rivest, 1987; Cohen, 1995), Support Vector

Machines (SVM) (Cortes and Vapnik, 1995; Platt, 1999), and Logistic Regression (with a ridge

estimator) (Cessie and Houwelingen, 1992) classifiers using bag of system calls representation

of system calls for misuse detection. We also explored an approach to anomaly detection

using a one class Naive Bayes classifier as well as K-means clustering (Bishop, 1996) using the

same representation of system call sequences. Bag of words model is already popular in text

classification and categorization area (Mitchell, 1997), and our motivation is to investigate

the usefulness of the model in intrusion detection tasks.

1.2.3 Motivation for Recursion

Naive Bayes (NB) classifiers, due to their simplicity and modest computational and training

data requirements, are among the most widely used classifiers on many classification tasks,

including text classification tasks (McCallum and Nigam, 1998) and macromolecular sequence

classification tasks that arise in bio-informatics applications (Andorf et al., 2004). NB classifiers

belong to the family of generative models (a model for generating data given a class) for

classification. Instances of a class are assumed to be generated by a random process which is

modeled by a generative model. The parameters of the generative model are estimated (in the

case of NB) assuming independence among the attributes given the class. New instances to be

classified are assigned to the class that is the most probable for the instance.

NB classifier relies on the assumption that the instances in each class can be described by a

single generative model (i.e., probability distribution). According to Langley (Langley, 1993),

this assumption can be restrictive in many real world classification tasks. One way to overcome

this limitation while maintaining some of the computational advantages of NB classifiers is to

construct a tree of NB classifiers. Each node in the tree (a NB classifier) corresponds to one
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set of generative models (one generative model per class), with different nodes in the tree

corresponding to different generative models for a given class. Langley described a recursive

NB classifier (RBC) for classifying instances that are represented by ordered tuples of nominal

attribute values. RBC works analogous to a decision tree learner (Quinlan, 1993), recursively

partitioning the training set at each node in the tree until the NB classifier of the node simply

cannot partition the corresponding data set. Unlike in the case of the standard decision tree,

the branches out of each node correspond to the most likely class lebels assigned by the NB

classifier at that node. In cases where each class cannot be accurately modeled by a single

Naive Bayes generative model, the subset of instances routed to one or more branches belong

to more than one class. RBC models the distribution of instances in a class at each node using

a Naive Bayes generative model. However, according to Langley’s reports of experiments on

some of the UC-Irvine benchmark data sets, the recursive NB classifier did not yield significant

improvements over standard NB classifier (Langley, 1993).

We revisit the idea of recursive NB classifier in the context of text/sequence classification

tasks and most of the UC-Irvine benchmark data sets. We describe RNBL, an algorithm for

constructing a tree of Naive Bayes classifiers for sequence classification with two different event

models and two stopping criteria. For text and sequence classification, each NB classifier in the

tree is based on a multinomial event model (McCallum and Nigam, 1998) (one for each class at

each node in the tree). Our choice of the multinomial event model is influenced by its reported

advantages over the multivariate event model of sequences (McCallum and Nigam, 1998) in text

classification tasks. For UC-Irvine benchmark data sets, RNBL uses multivariate event model.

RNBL works in a manner similar to Langley’s RBC, recursively partitioning the training set of

labeled sequences at each node in the tree until a stopping criterion is satisfied. The branches

out of each node correspond to the most likely class assigned by the NB classifier at that node.

As for the stopping criterion, RNBL uses either a conditional minimum description length

(CMDL) score for the classifier (Friedman et al., 1997) or area under the ROC curve (AUC).

The CMDL score is specifically adapted to the case of RNBL based on the CMDL score for

the NB classifier using the multinomial event model for sequences (Kang et al., 2005d).



9

1.3 Our Approach

Conceptually, our research can be recapitulated as follows:

Naive Bayes

System Call Traces

Word Taxonomy

Attribute Value Taxonomy

Text and Sequence

One flat table
Data Representation

Recursion

Aggregation (Bag)

Abstraction (Taxonomy)

Methods

Research Map

Figure 1.1 Conceptual map of this research

We use abstraction to generate taxonomy from data, aggregation to construct a bag of

system calls from sequences for intrusion detection, and recursion to construct a tree of Naive

Bayes (NB) classifiers where each individual NB classifier in the tree is associated with a node.

1.3.1 Learning Taxonomy from Data

We invented AVT-Learner, an algorithm for automated construction of attribute value

taxonomies (AVT) from data, and Word Taxonomy Learner (WTL) for automated construction

of word taxonomy from text and sequence data.

We have introduced AVT-Learner and WTL, algorithms for automated construction of

taxonomies from data. The algorithm uses hierarchical agglomerative clustering (HAC) to

cluster values based on the distribution of classes that co-occur with them. We have performed

experiments on various benchmark data sets such as UCI data sets, text data sets (Reuters

newswire articles), and protein sequences (with localization labels). The experimental results

indicate that the proposed algorithm can generate classifiers that are more compact and often

more accurate than those produced by standard machine learning algorithms. The results also

show that the taxonomies generated by AVT-Learner are competitive with taxonomies made

by human experts (in cases where such taxonomies are available).

To extend our exploration of taxonomy to unstructured data such as text and sequences
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with the similar arguments, we devised word taxonomy guided Naive Bayes learner for the

multinomial event model (WTNBL-MN). WTNBL-MN is a word taxonomy based generaliza-

tion of the standard Naive Bayes learning algorithm for the multinomial model.

Thorough explanation on the algorithms and their experimental results are discussed in

chapter 2.

1.3.2 Intrusion Detection Using a Bag of System Calls

This is to generate effective features for accurate classifiers by aggregation based on a bag

of values

We have proposed a “bag of system calls” representation for intrusion detection in sys-

tem call sequences and describe misuse and anomaly detection results with standard machine

learning techniques on two benchmark data sets with the proposed representation. With the

feature representation as input, we have compared the performance of several machine learn-

ing techniques for misuse detection and show experimental results on anomaly detection. The

results show that standard machine learning and clustering techniques on simple “bag of sys-

tem calls” representation of system call sequences is effective and often performs better than

those approaches that use foreign contiguous subsequences in detecting intrusive behaviors of

compromised processes.

Chapter 3 provides detailed explanation on the algorithms and their experimental results.

1.3.3 Recursive Naive Bayes Learner

We have designed RNBL, a recursive Naive Bayes learner which relaxes the assumption

that the instances in each class can be described by a single generative model by constructing

a tree of Naive Bayes (NB) classifiers for sequence classification where each individual NB

classifier in the tree is based on a multinomial generative model (one for each class at each

node in the tree). Contrary to previous reports by Langley (Langley, 1993) in the case of

a recursive NB classifier (RBC) for the data sets of which the instances are represented as

tuples of nominal attribute values, we observe on protein sequence and text classification tasks,
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RNBL substantially outperforms NB classifier. Furthermore, our experiments show that RNBL

outperforms C4.5 decision tree learner (using tests on sequence composition statistics as the

splitting criterion) and yields accuracies that are comparable to that of support vector machine

(SVM) on text/sequence classification.

A detailed discussion can be found in chapter 4.

1.4 A Survey of Related Studies

1.4.1 Related Work on Learning Taxonomy

Gibson and Kleinberg (Gibson, 1988) introduced STIRR, an iterative algorithm based

on non-linear dynamic systems for clustering categorical attributes. Ganti et. al. (Ganti

et al., 1999) designed CACTUS, an algorithm that uses intra-attribute summaries to cluster

attribute values. Zaki et al. (Zaki et al., 2005) presented CLICKS algorithm that finds clusters

in categorical datasets based on a search for k-partite maximal cliques. However, all of them

did not make taxonomies and use the generated for improving classification tasks.

Pereira et. al. (Pereira et al., 1993) described distributional clustering for grouping words

based on class distributions associated with the words in text classification. Yamazaki et

al., (Yamazaki et al., 1995) described an algorithm for extracting hierarchical groupings from

rules learned by FOCL (an inductive learning algorithm) (Pazzani and Kibler, 1992) and

reported improved performance on learning translation rules from examples in a natural lan-

guage processing task. Slonim and Tishby (Slonim et al., 2006) described a technique (called

the agglomerative information bottleneck method) which extended the distributional clustering

approach described by Pereira et al. (Pereira et al., 1993), using Jensen-Shannon divergence for

measuring distance between document class distributions associated with words and applied

it to a text classification task. Baker and McCallum (Baker and McCallum, 1998) reported

improved performance on text classification using a technique similar to distributional cluster-

ing and a distance measure, which upon closer examination, can be shown to be equivalent to

Jensen-Shannon divergence (Slonim et al., 2005, 2006). Dimitropoulos et al. (Dimitropoulos

et al., 2006) augmented Internet Autonomous System (AS) Taxonomy to the data set for ASes
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classification and successfully classified 95.3% of ASes with expected accuracy of 78.1%.

To the best of our knowledge, there has been little work on the evaluation of techniques

for generating hierarchical groupings of attribute values (AVTs) on classification tasks using

a broad range of benchmark data sets using algorithms such as AVT-DTL or AVT-NBL that

are capable of exploiting AVTs in learning classifiers from data.

1.4.2 Related Work on Intrusion Detection Using a Bag of System Calls

Liao and Vermuri (Liao and Vemuri, 2002) used k-Nearest Neighbor (kNN) algorithm

to classify normal and intrusive system call traces. They tested the kNN classifier on 1998

MIT Lincoln Lab BSM data and obtained effective detection rate and low false positive rate.

However, they did not perform the detailed analysis with various machine learning techniques

and multiple data sets. Their algorithm did not generate comprehensible rule sets for intrusive

programs, which is very important for intrusion detection system and analysis.

Warrender, Forrest, and Pearlmutter (Warrender et al., 1999) have presented several in-

trusion detection methods based upon system call trace data. They tested a method that

utilizes sliding windows to determine a database of normal sequences to form a database for

testing against test instances. They then used a similar method to compare windows in the

test instances against the database and classify instances according to a function of the sim-

ilarity of these sequences to those in the normal sequence database. The function requires

sequential analysis of a window of system calls for each call made by a process. This requires

the maintenance of a large database of normal system call trace sequences.

The same authors have described a rule-based classification method that requires alterations

to the training data to learn. This model involves prediction of the next system call to be

made by a process given some number of calls made immediately before. This method requires

enumeration of all unique system call traces within a given program. This is quite demanding

on a learner, especially in a situation where the datasets are quite large indeed. Even the

space requirements are quite large relative to the input dataset. Finally, classification time is

high for such methods because (in the worst case) each rule needs to be checked for each input
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instance.

Warrender et al. have presented Hidden Markov Model (HMM) methods for intrusion

detection. Although this method does not require modification of the input dataset, it does

require individual examination of each dataset to determine the optimal HMM to attempt to

learn in each case. While this requirement does not seem overly demanding, we would prefer

a method which allows classification of multiple input datasets in the same format if possible.

Additionally construction of accurate HMM models can be quite demanding in terms the

amount of training data as well as computational effort. Warrender, et al. observe that, for a

process that makes S system calls, S states (and thus 2S2 values) must be computed. Datasets

of interest in practice contain large amounts of processes (eight hours per day worth in the

case of the MIT Lincoln Labs datasets), and each process makes a large number of system calls

throughout its lifetime. Computing even polynomially many values for each instance becomes

a problem at this scale.

Normalized frequency of audit data was used in SRI NIDES (Anderson et al., 1995). In

NIDES, probability distribution of long term behavior of a program is generated and main-

tained as its profile. For detecting the anomalous behavior of the program, the profile is

compared with short term behavior of the program, which is also maintained as probability

distribution, using a statistical test similar to χ2 test. The behavior of a program is charac-

terized by its audit data such as file access, CPU usage, etc. We maintain the raw count of

system calls that are sequentially observed from the program as its profile, but this approach

can be applied to other types of audit data. In some machine learning algorithms, raw counts

are normalized and statistically compared with new behavior of the program. The Naive Bayes

learning algorithm, which is one of the learning algorithms reported in this study, generates

class-conditional probability distributions and prior distributions of the raw counts and statis-

tically compares them with new distribution from the new behavior of the program. Moreover,

as we showed, our profile representation can be used effectively with various machine learning

algorithms.

One of the most popular rule induction techniques used in IDS is Repeated Incremental
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Pruning to Produce Error Reduction (RIPPER) rule learning algorithm (Cohen, 1995). Lee

et al. (Lee and Stolfo, 1998) used RIPPER on a set of substrings of length 7 generated by

the sliding window from sendmail system call traces. The generated rules are based on the

insight that intrusion can be captured from the fixed-length substrings. For example, the rule

‘normal: p2 = 104, p7 = 112’ means ‘if p2 is 104 and p7 is 112 then the substring is normal’.

This approach, as in the case of STIDE, employs a user-supplied threshold to determine if the

input trace is normal or intrusive. We applied RIPPER on a bag of system calls representation,

and we obtained rules based on counts such as ‘(count(fcntl) ≥ 1) and (count(rename) ≤ 0)

and (count(read) ≥ 5) → class=intrusion’ where count(X) returns the number of occurrence of

system call X in the input trace. The rules generated by our method apply to the entire system

call trace (as opposed to fixed length substring of traces). In our case, the relevant thresholds

are learned directly from the training data, thereby avoiding the necessity of user-supplied

thresholds.

Supervised learning techniques like Multi Layer Perceptron (MLP) with Error Back Propa-

gation (Ghosh and Schwartzbard, 1999) have been investigated, as have unsupervised learning

techniques like Self-Organized Feature Map (SOM) (Gunes Kayacik, 2003). Kang et al. (Kang

et al., 2005a) used principal component analysis (PCA) and time-delay neural network (TDNN)

for mutated attacks. In their model, a network packet is considered as a gray level image where

each byte of a packet is represented a pixel. Chebrolua et al. (Chebrolua et al., 2005) used

Bayesian Network and Classification and Regression Trees (CART) to detect important fea-

tures for intrusion detection. Spencer (Spencer, 2005) used artificial neural network to detect

anomalies in wireless devices. Jiang et al. (Jiang et al., 2005) combined neural network with

hidden Markov model (HMM) for efficient intrusion detection. Cha et al. (Cha et al., 2005)

designed neural network system using Soundex algorithm to find anomalous behavior patterns.

Xu and Xie (Xu and Xie, 2005) introduced Markov reward process model for the behavior of

the system call sequences and converted the intrusion detection to predicting the value func-

tion of the Markov reward process. Yang et al. (Yang et al., 2005) designed intrusion detection

system based on radial basis function (RBF) and compared the performance with back prop-
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agation network. Yang (Yang, 2005) viewed intrusion detection task as a case of data mining

applied to time series. He used autoregressive moving average (ARMA) and Hopfield mod-

els to analyze the time series. Gao et al. (Gao et al., 2005) proposed a method of applying

principal component neural networks for intrusion feature extraction. The extracted features

are employed by SVM for classification. Using neural networks generally requires the spec-

ification of hidden nodes, and the generated model from learning neural network is hard to

comprehend. Sy (Sy, 2005) defined the access signature as the collection of the statistically

significant association patterns of 4th order using mutual information from the sequence of

UNIX command data and used the signature for masquerader detection. Lu et al. (Lu et al.,

2005) used several data mining techniques such as clustering, classification, and association

rules to maximize the effectiveness in identifying attacks, thereby helping the users to con-

struct more secure information systems. Jiang et al. (Jiang et al., 2006) proposed a novel

method to compute the cluster radius threshold. They perform the data classification by an

improved nearest neighbor (INN) method and presented a powerful clustering-based method

for the unsupervised intrusion detection (CBUID).

All of these approaches use n-gram representation for modeling intrusion, but our ap-

proaches uses a bag of system calls representation.

Peddabachigaria et al. (Peddabachigaria et al., 2005) modeled intrusion detection system

using decision tree and support vector machines (SVM). Their hybrid system combined clas-

sifiers to maximize the accuracy and had more accurate results. One class support vector ma-

chines (OCSVM) which can be useful in learning unlabeled data sets, are used for supervised

anomaly detection by a few researchers. Heller et al. (Heller et al., 2003) compared OCSVM

with probabilistic anomaly detection (PAD) algorithm for Windows Registry data, and con-

cluded that well-defined kernels are important to enhance the performance of OCSVM. Lee et

al. (Lee et al., 2005) proposed Multi-step Multi-class Intrusion Detection System (MMIDS),

which alleviates some drawbacks associated with misuse detection and anomaly detection. The

MMIDS consists of a hierarchical structure of one-class SVM, novel multi-class SVM, and incre-

mental clustering algorithm: Fuzzy-ART. Yilmazel et al. (Yilmazel et al., 2005) compared bag
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of words representation (BOW) and NLP based representation for both typical and one-class

classification problem using SVM algorithm. Ma et al. (Ma et al., 2005) implemented multi-

class SVMs (one-versus-rest, one-versus-rest method and a new Decision Tree (DT) SVM) for

intrusion detection. They also applied a support vector (SV) reduction algorithm and found

that it decreases the training time dramatically while improves the detection rate. Steinwart et

al. (Steinwart et al., 2005) interpreted anomaly detection as a binary classification problem of

finding level sets for the data generating density. They compared the corresponding classifica-

tion risk with the standard performance measure for the density level problem, and found that

the empirical classification risk can serve as an empirical performance measure for the anomaly

detection. According to the interpretation, they proposed a support vector machine (SVM)

for anomaly detection and compared their SVM to other commonly used methods including

the standard one-class SVM.

For protein classification, Leslie et al. introduced spectrum kernel (Leslie et al., 2002a)

and mismatch kernel (Leslie et al., 2002b). Spectrum kernel is for k-length continuous subse-

quences, and mismatch kernel is similar to spectrum kernel but mismatches are allowed. Tian

et al. (Tian et al., 2004) developed string kernel for intrusion detection. Their kernel penal-

izes non-continuous occurrences and feature map is indexed by all possible subsequences. Our

future work includes one class SVM experiment on a bag of words feature representation.

Liu et al. (Liu et al., 2005a) investigated three system-call-based feature representations

for “insider threat” and “external threat”: n-grams of system call names, histograms of system

call names, and individual system calls with associated parameters, and found that none of

these representations consistently performs as well when dealing with the internal threat as

previous results show for external threat detection.

Recently, string alignment techniques has been used for intrusion detection and worm

detection. Using string alignment techniques for intrusion detection is one of our important

future work.

Coull et al. (Coull et al., 2003) first proposed bio-informatics techniques for intrusion de-

tection. They used a semi-global alignment and unique scoring function for detecting intrusive



17

sequences. Takeda (Takeda, 2005) also applied bio-informatics techniques for network intrusion

detection. Tripp (Tripp, 2005) describes a finite state machine approach to string matching

for an intrusion detection system. To obtain high performance, he designed a hardware for a

parallel string matching. Newsome et al. (Newsome et al., 2005) used an adaptation of the

Smith-Waterman (Smith and Waterman, 1981) algorithm to find an alignment for generating

signatures, which are applied to match polymorphic worm payloads. Tang and Chen (Tang

and Chen, 2005) introduced position-aware distribution signature (PADS), which fits in the

gap between the traditional signatures and the anomaly-based systems, and proposed two

algorithms based on Expectation-Maximization (EM) and Gibbs Sampling for efficient compu-

tation of PADS from polymorphic worm samples. Jiang and Xu (Jiang and Xu, 2005) proposed

behavioral footprinting. They modeled each infection step as a behavior phenotype and the

entire infection session as a sequential behavioral footprint, and presented advanced sequence

analysis techniques to extract a worm’s behavioral footprint from its infection traces

1.4.3 Related Work on Recursive Naive Bayes Learner

As noted earlier, Langley (Langley, 1993) investigated recursive Bayesian classifiers for the

instances described by tuples of nominal attribute values. RNBL reported in this study applies

to not only the data of such kind, but also text/sequence data with multivariate/multinomial

event models.

There have been research work on relaxing the independence assumption of a Naive Bayes

learning algorithm. Kohavi (Kohavi, 1996) introduced NBTree algorithm, a hybrid of a decision

tree and Naive Bayes classifiers for instances represented using tuples of nominal attributes.

NBTree evaluates the attributes available at each node to decide whether to continue building

a decision tree or to terminate with a Naive Bayes classifier. In contrast, RNBL algorithm,

like Langley’s RBC, builds a decision tree, whose nodes are all Naive Bayes Classifiers.

Webb et al. (Webb et al., 2005) proposed an approach to improve the accuracy of Naive

Bayes by weakening its attribute independence assumption by averaging all of a constrained

class of classifiers. Langseth and Nielsen (Langseth and Nielsen, 2006) focus on a relatively
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new set of models, termed Hierarchical Naive Bayes models. Hierarchical Naive Bayes models

extend the modeling flexibility of Naive Bayes models by introducing latent variables to relax

some of the independence statements in these models. Liu et al. (Liu et al., 2005b) propose an

algorithm named Graph-NB, which upgrades Naive Bayesian classifier to deal with multiple

tables directly. In order to take advantage of linkage relationships among tables, and treat

different tables linked to the target table differently, a semantic relationship graph is developed

to describe the relationship and to avoid unnecessary joins.

Gama and Brazdil (Gama and Brazdil, 2000) proposed an algorithm that generates a

cascade of classifiers. Their algorithm combines Naive Bayes, C4.5 decision tree and linear dis-

criminants, and introduces a new attribute at each stage of the cascade. Gama (Gama, 2001)

proposed an algorithm for multivariate tree learning that combines a univariate decision tree

with a discriminant function by means of constructive induction. The algorithm uses Linear

Bayes classifier for constructing new attributes. For growing trees, the algorithm builds multi-

variate decision nodes, and for pruning, the algorithm builds functional decision nodes. In both

approaches, they performed experiments on several UC-Irvine benchmark data sets (Blake and

Merz, 1998) for classifying instances represented as tuples of nominal attribute values. RNBL

also recursively applies only the Naive Bayes classifier based on the multivariate/multinomial

event models for text and sequences.

Area under the curve (AUC) has been used for the evaluation of prediction ability of the

learning algorithms. Huang and Ling (Huang and Ling, 2005) established formal criteria for

comparing AUC and accuracy for learning algorithms and showed theoretically and empirically

that AUC is a better measure (defined precisely) than accuracy. Brefeld and Scheffer (Brefeld

and Scheffer, 2005) presented a rigorous derivation of an AUC maximizing Support Vector

Machine (SVM). In our research, we maximize AUC for recursive Naive Bayes learner.

1.5 Dissertation Organization

In this study, we aim to explore the approaches to generate accurate and compact classifiers

from data. Following is the outline of this study.
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The rest of this dissertation is organized as follows:

Chapter 1: This chapter presents the problems we address, a survey of current studies, and

the outline of the dissertation.

Chapter 2: We developed algorithms for automated construction of taxonomies inductively

from both structured (such as UCI Repository) and unstructured (such as text and biological

sequences) data. AVT-Learner is an algorithm for automated construction of attribute value

taxonomies (AVT) from data, and Word Taxonomy Learner (WTL) is for automated construc-

tion of word taxonomy from text and sequence data. AVT-Learner and WTL use Hierarchical

Agglomerative Clustering (HAC) to cluster attribute values based on the distribution of classes

that co-occur with the values. For WTL, we also devised Word Taxonomy guided Naive Bayes

Learner for the Multinomial Event Model (WTNBL-MN) that exploits word taxonomy to gen-

erate compact classifiers. WTNBL-MN is a generalization of the Naive Bayes learner for the

Multinomial Event Model for learning classifiers from data using word taxonomy. We describe

experiments on UCI data sets that compare the performance of AVT-NBL (an AVT-guided

Naive Bayes Learner) with that of the standard Naive Bayes Learner (NBL) applied to the

original data set. The result have been published in in IEEE International Conference on

Data Mining in 2004 (Kang et al., 2004) and Symposium on Abstraction, Reformulation, and

Approximation in 2005 (Kang et al., 2005d).

Chapter 3: We propose a bag of system calls representation for intrusion detection in sys-

tem call sequences and describe misuse and anomaly detection results with standard machine

learning techniques on University of New Mexico (UNM) and MIT Lincoln Lab (MIT LL)

system call sequences with the proposed representation. With the feature representation as

input, we compare the performance of several machine learning techniques for misuse detection

and show experimental results on anomaly detection. The results show that standard machine

learning and clustering techniques on simple bag of system calls representation of system call

sequences in the operating system’s kernel is effective and often performs better than those

approaches that use foreign contiguous sequences in detecting intrusive behaviors of compro-

mised processes. We published the results in IEEE International Conference on Intelligence
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and Security Informatics in 2005 (Kang et al., 2005c) and IEEE Systems Man and Cybernetics

Information Assurance Workshop (Kang et al., 2005b).

Chapter 4: We describe recursive Naive Bayes learner (RNBL), which relaxes this assump-

tion by constructing a tree of Naive Bayes classifiers for sequence classification, where each

individual NB classifier in the tree is based on an event model (one model for each class at each

node in the tree). In our experiments on protein sequences, Reuters newswire documents and

UC-Irvine benchmark data sets, we observe that RNBL substantially outperforms NB classi-

fier. Furthermore, our experiments on the protein sequences and the text documents show that

RNBL outperforms C4.5 decision tree learner (using tests on sequence composition statistics

as the splitting criterion) and yields accuracies that are comparable to those of support vector

machines (SVM) using similar information. We had published preliminary results in the Tenth

Pacific-Asia Conference on Knowledge Discovery and Data Mining (Kang et al., 2006).

Chapter 5: presents the summary of this study, contributions and the future work of my

dissertation.
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CHAPTER 2. LEARNING TAXONOMIES FROM DATA

This chapter is an extended version of the papers published in IEEE International Confer-

ence on Data Mining in 2004 (Kang et al., 2004) and Symposium on Abstraction, Reformula-

tion, and Approximation in 2005 (Kang et al., 2005d).

2.1 Abstract

Taxonomies have been shown to be useful in constructing compact, robust, and compre-

hensible classifiers. However, in many application domains, human-designed taxonomies are

unavailable. We introduce algorithms for automated construction of taxonomies inductively

from both structured (such as UCI Repository) and unstructured (such as text and biolog-

ical sequences) data. We invented AVT-Learner, an algorithm for automated construction

of attribute value taxonomies (AVT) from data, and Word Taxonomy Learner (WTL) for

automated construction of word taxonomy from text and sequence data. AVT-Learner and

WTL use Hierarchical Agglomerative Clustering (HAC) to cluster attribute values based on

the distribution of classes that co-occur with the values. For WTL, we also devised Word

Taxonomy guided Naive Bayes Learner for the Multinomial Event Model (WTNBL-MN) that

exploits word taxonomy to generate compact classifiers. WTNBL-MN is a generalization of the

Naive Bayes learner for the Multinomial Event Model for learning classifiers from data using

word taxonomy. We describe experiments on UCI data sets that compare the performance

of AVT-NBL (an AVT-guided Naive Bayes Learner) with that of the standard Naive Bayes

Learner (NBL) applied to the original data set. Our results show that the AVTs generated

by AVT-Learner are competitive with human-generated AVTs (in cases where such AVTs are

available). AVT-NBL using AVTs generated by AVT-Learner achieves classification accuracies
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Figure 2.1 Human-made AVT from ‘odor’ attribute of UCI AGARI-
CUS-LEPIOTA mushroom data set.

that are comparable to or higher than those obtained by NBL; and the resulting classifiers are

significantly more compact than those generated by NBL. Similarly, our experimental results

of WTL and WTNBL on protein localization sequences and Reuters text show that the pro-

posed algorithms can generate Naive Bayes classifiers that are more compact and often more

accurate than those produced by standard Naive Bayes learner for the Multinomial Model.

2.2 Introduction

An important goal of inductive learning is to generate accurate and compact classifiers

from data. In a typical inductive learning scenario, instances to be classified are represented

as ordered tuples of attribute values. However, attribute values can be grouped together to

reflect assumed or actual similarities among the values in a domain of interest or in the context

of a specific application. Such a hierarchical grouping of attribute values yields an attribute

value taxonomy (AVT). For example, Figure 2.1 shows a human-made taxonomy associated

with the nominal attribute ‘Odor’ of the UC Irvine AGARICUS-LEPIOTA mushroom data

set (Blake and Merz, 1998).

Hierarchical groupings of attribute values (AVT) are quite common in biological sciences.

For example, the Gene Ontology Consortium is developing hierarchical taxonomies for de-

scribing many aspects of macromolecular sequence, structure, and function (Ashburner et al.,

2000). Undercoffer et al. (Undercoffer et al., 2004) have developed a hierarchical taxonomy

which captures the features that are observable or measurable by the target of an attack or
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by a system of sensors acting on behalf of the target. Several ontologies being developed as

part of the Semantic Web related efforts (Shadbolt et al., 2006; Berners-Lee et al., 2001) also

capture hierarchical groupings of attribute values. Kohavi and Provost (Kohavi and Provost,

2001) have noted the need to be able to incorporate background knowledge in the form of

hierarchies over data attributes in electronic commerce applications of data mining.

There are several reasons for exploiting AVT in learning classifiers from data, perhaps the

most important being a preference for comprehensible and simple, yet accurate and robust

classifiers (Pazzani et al., 1997) in many practical applications of data mining. The availability

of AVT presents the opportunity to learn classification rules that are expressed in terms of

abstract attribute values leading to simpler, easier-to-comprehend rules that are expressed in

terms of hierarchically related values. Thus, the rule (odor = pleasant) → (class = edible) is

likely to be preferred over ((odor = a) ∧ (color = brown)) ∨ ((odor = l) ∧ (color = brown)) ∨
((odor = s) ∧ (color = brown)) → (class = edible) by a user who is familiar with the odor

taxonomy shown in Figure 2.1.

Another reason for exploiting AVTs in learning classifiers from data arises from the neces-

sity, in many application domains, for learning from small data sets where there is a greater

chance of generating classifiers that over-fit the training data. A common approach used by

statisticians when estimating from small samples involves shrinkage (Duda et al., 2000) or

grouping attribute values (or more commonly class labels) into bins, when there are too few

instances that match any specific attribute value or class label, to estimate the relevant statis-

tics with adequate confidence. Learning algorithms that exploit AVT can potentially perform

shrinkage automatically thereby yielding robust classifiers. In other words, exploiting informa-

tion provided by an AVT can be an effective approach to performing regularization to minimize

over-fitting (Zhang and Honavar, 2003).

Consequently, several algorithms for learning classifiers from AVTs and data have been

proposed in the literature. This work has shown that AVTs can be exploited to improve

the accuracy of classification and in many instances, to reduce the complexity and increase

the comprehensibility of the resulting classifiers (Dhar and Tuzhilin, 1993; Han and Fu, 1996;
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Hendler et al., 1996; Taylor et al., 1997; Zhang and Honavar, 2003; Zhang et al., 2002). Most of

these algorithms exploit AVTs to represent the information needed for classification at different

levels of abstraction.

However, in many domains, AVTs specified by human experts are unavailable. Even when

a human-supplied AVT is available, it is interesting to explore whether alternative groupings of

attribute values into an AVT might yield more accurate or more compact classifiers. Against

this background, we explore the problem of automated construction of AVTs from data. In

particular, we are interested in AVTs that are useful for generating accurate and compact

classifiers.

Furthermore, we extend our exploration to word taxonomy of unstructured data such as

text and sequences with the similar arguments.

Word taxonomies present the possibility of learning classification rules that are simpler

and easier-to-understand when the terms in the rules are expressed in terms of abstract values.

With previous work (Kang et al., 2004; Zhang and Honavar, 2004), abstraction of similar

concepts by the means of attribute value taxonomy (AVT) has been shown to be useful in

generating concise and accurate classifiers.

Against this background, we introduce word taxonomy guided Naive Bayes learner for the

multinomial event model (WTNBL-MN). WTNBL-MN is a word taxonomy based generaliza-

tion of the standard Naive Bayes learning algorithm for the multinomial model.

Because word taxonomy is not available in many domains, there is a need for automated

construction of word taxonomy. Hence, we describe a word taxonomy learner (WTL) that

automatically generates word taxonomy from sequence data by clustering of words based on

their class conditional distribution.

To evaluate our algorithms, we conducted experiments using two classification tasks: (a)

assigning Reuters newswire articles to categories, (b) and classifying protein sequences in terms

of their localization. We used Word Taxonomy Learner (WTL) to generate word taxonomy

from the training data. The generated word taxonomy was provided to WTNBL-MN to learn

concise Naive Bayes classifiers that used abstract words of word taxonomy.
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2.3 Learning Taxonomies from Data

We start with definitions of preliminary concepts necessary to describe our algorithms. We

then precisely define the problem as learning classifier from taxonomy and data.

2.3.1 Definition of Attribute Value Taxonomy (AVT)

Let A = {A1, A2, . . ., An} be a set of nominal attributes. Let Vi =
{
v1
i , v

2
i , . . ., v

mi
i

}
be

a finite domain of mutually exclusive values associated with attribute Ai where vj
i is the jth

attribute value of Ai and mi is the number possible number of values of Ai, that is, |Vi|. We

say that Vi is the set of primitive values of attribute Ai. Let C = {C1, C2, . . ., Ck} be a set of

mutually disjoint class labels. A data set is D ⊆ V1 × V2 × . . .× Vn × C.

Let T = {T1, T2, . . ., Tn} denote a set of AVT such that Ti is an AVT associated with the

attribute Ai, and Leaves(Ti) denote a set of all leaf nodes in Ti. After Haussler (Haussler,

1988), we define a cut δi of an AVT Ti as follows:

Definition 1 (Cut over AVT) A cut δi is a subset of nodes in Ti satisfying the following

two properties:

1. For any leaf l ∈ Leaves(Ti), either l ∈ δi or l is a descendant of a node n ∈ δi.

2. For any two nodes f, g ∈ δi, f is neither a descendant nor an ancestor of g.

For example, {Bad, a, l, s, n} is a cut through the AVT for odor shown in Figure 2.1. Note

that a cut through Ti corresponds to a partition of the values in Vi. Let ∆ = {δ1, δ2, . . .δn} be

a set of cuts associated with AVTs in T = {T1, T2, . . .Tn}.

Definition 2 (Specialization and Abstraction over AVT) We say that a cut δ̂i is a spe-

cialization of a cut δi if δ̂i is obtained by replacing at least one node v ∈ δi by its descendants.

Conversely, δi is an abstraction of δ̂i

Figure 2.2 illustrates a specialization process in taxonomy T . The cut γ2 = {A,B, C,D}
in T2 has been refined to δ = {A,B1, B2, C, D} by replacing B with its two children B1,B2,
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Figure 2.2 Illustration of Cut Specialization over AVT: The
cut γ2 = {A,B, C, D} in T2 has been refined to
δ = {A,B1, B2, C, D} by replacing B with its two children
B1,B2, and δ1 = γ1 and δ3 = γ3. Therefore ∆ = {δ1, δ2, δ3} is
a specialization of Γ = {γ1, γ2, γ3}.

and δ1 = γ1 and δ3 = γ3. Therefore ∆ = {δ1, δ2, δ3} is a specialization of Γ = {γ1, γ2, γ3}, and

corresponding hypothesis h (∆) is a specialization of h (Γ).

Definition 3 (Instance Space) Any choice of ∆ defines an input space I∆. If there is a

node ∈ ∆ and /∈ Leaves(T ), the induced input space I∆ is an abstraction of the original input

space I.

With a data set D, AVT T and corresponding valid cuts, we can extend our definition of

instance space to include instance spaces induced from different levels of abstraction of the

original input space. Thus, taxonomy guided learning algorithm work on this induced input

space.

2.3.2 Definition of Word Taxonomy (WT)

For word taxonomy over the unstructured data such as text documents or sequences, we

define abstraction based on the frequency of values associated with the same class label.

Let Σ = {w1, w2, . . ., wN} be a dictionary of words, C = {c1, c2, . . ., cM} a finite set of

mutually disjoint class labels, and fi,j denote an integer frequency of word wi in a sequence

dj . Then, sequence dj is represented as an instance Ij , a frequency vector < fi,j > of wi, and

each sequence belongs to a class label in C. Finally, a data set D is represented as a collection

of instance and their associated class label {(Ij , cj)}.
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Figure 2.3 Illustration of Cut Specialization: The cut γ = {A,B} is been
refined to γ̂ = {A1, A2, B} by replacing A with A1 and A2

Let TΣ be a word taxonomy defined over the possible words of Σ. Let Nodes(TΣ) denote

the set of all values in TΣ and Root(TΣ) denote the root of TΣ. We represent the set of leaves

of TΣ as Leaves(TΣ) ⊆ Σ. The internal nodes of the tree correspond to abstract values of Σ.

After Haussler (Haussler, 1988), we define a cut γ through a word taxonomy TΣ as follows.

Definition 4 (Cut over WT) A cut γ is a subset of nodes in word taxonomy TΣ satisfying

the following two properties:

1. For any leaf l ∈ Leaves(TΣ), either l ∈ γ or l is a descendant of a node in TΣ.

2. For any two nodes f,g ∈ γ, f is neither a descendant not an ancestor of g.

A cut γ induces a partition of words in TΣ.

Definition 5 (Specialization and Abstraction over WT) We say that a cut γ̂ is a spe-

cialization of a cut γ if γ̂ is obtained by replacing at least one node v ∈ γ by its descendants.

Conversely, γ is an abstraction of γ̂

Figure 2.3 illustrates a specialization process in word taxonomy TΣ. The cut γ = {A,B}
is been refined to γ̂ = {A1, A2, B} by replacing A with A1 and A2. Thus, corresponding

hypothesis hγ̂ is a specialization of hγ .
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2.3.3 Algorithms of Learning Taxonomies from Data

2.3.3.1 Learning Attribute Value Taxonomies

Firstly, we describe AVT-Learner, an algorithm for automated construction of AVT from

a data set of instances wherein each instance is described by an ordered tuple of N nominal

attribute values and a class label.

The problem of learning AVTs from data can be stated as follows: given a data set D ⊆
V1 × V2 × . . .× Vn ×C and a measure of dissimilarity (or equivalently similarity) between any

pair of values of an attribute, output a set of AVTs T = {T1, T2, . . ., Tn} such that each Ti

(AVT associated with the attribute Ai ) corresponds to a hierarchical grouping of values in Vi

based on the specified similarity measure.

We use hierarchical agglomerative clustering (HAC) of the attribute values according to

the distribution of classes that co-occur with them. Let DM (P (x) ||P (y)) denote a measure

of pairwise divergence between two probability distributions P (x) and P (y) where the ran-

dom variables x and y take values from the same domain. We use the pairwise divergence

between the distributions of class labels associated with the corresponding attribute values as

a measure of the dissimilarity between the attribute values. Thus, two values of an attribute

are considered to be more similar to each other than any other pair of values if their class dis-

tributions are more similar to each other than the class distributions associated with any other

pair of values for the same attribute. The lower the divergence between the class distributions

associated with two attributes, the greater is their similarity. The choice of this measure of

dissimilarity between attribute values is motivated by the intended use of the AVT, namely,

the construction of accurate, compact, and robust classifiers. If two values of an attribute

are indistinguishable from each other with respect to their class distributions, they provide

statistically similar information for classification of instances.

The algorithm for learning AVT for a nominal attribute is shown in Figure 2.4. The basic

idea behind AVT-Learner is to construct an AVT Ti for each attribute Ai by starting with

the primitive values in Vi as the leaves of Ti and recursively add nodes to Ti one at a time by

merging two existing nodes. To aid this process, the algorithm maintains a cut δi through the
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AVT Ti, updating the cut δi as new nodes are added to Ti. At each step, the two attribute

values to be grouped together to obtain an abstract attribute value to be added to Ti are

selected from δi based on the divergence between the class distributions associated with the

corresponding values. That is, a pair of attribute values in δi are merged if they have more

similar class distributions than any other pair of attribute values in δi. This process terminates

when the cut δi contains a single value which corresponds to the root of Ti. If |Vi| = mi, the

resulting Ti will have (2mi − 1) nodes when the algorithm terminates.

In the case of continuous-valued attributes, we define intervals based on observed values for

the attribute in the data set. We then generate a hierarchical grouping of adjacent intervals,

selecting at each step two adjacent intervals to merge using the pairwise divergence measure.

A cut through the resulting AVT corresponds to a discretization of the continuous-valued

attribute. A similar approach can be used to generate AVT from ordinal attribute values.

2.3.3.2 Learning Word Taxonomy

The problem of learning a word taxonomy from sequence data can be stated as follows:

Given a data set represented as a set of instances where an instance is a frequency vector

< fi, c > of a word wi ∈ Σ and associated class label c, and a similarity measure among the

words, output word taxonomy TΣ such that it corresponds to a hierarchical grouping of words

in Σ based on the specified similarity measure.

Since this problem is similar to the problem for learning AVT, we take the similar approach

of AVT Learner to Word Taxonomy Learner (WTL).

2.3.4 Pairwise Divergence Measures

There are several ways to measure similarity between two probability distributions. We

have tested thirteen divergence measures for probability distributions P and Q, which includes

J-divergence. Jensen-Shannon divergence, and Arithmetic and geometric mean divergence.

J-divergence (Topsφe, 2000) also known as Jeffreys-Kullback-Liebler divergence, is a sym-
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AVT-Learner :
begin

1. Input : data set D

2. For each attribute Ai:

3. For each attribute value vj
i :

4. For each class label ck: estimate the probability p
(
ck|vj

i

)

5. Let P
(
C|vj

i

)
=

{
p

(
c1|vj

i

)
, . . ., p

(
ck|vj

i

)}
be the class distri-

bution associated with value .

6. Set δi ← Vi; Initialize Ti with nodes in δi.

7. Iterate until |δi| = 1:

8. In δi, find (x, y) = argmin {DM (P (C|vx
i ) ||P (C|vy

i ))}

9. Merge vx
i and vy

i (x 6= y) to create a new value vxy
i .

10. Calculate probability distribution P (C|vxy
i ).

11. λi ← δi ∪ {vxy
i } \ {vx

i , vy
i }.

12. Update Ti by adding nodes vxy
i as a parent of vx

i and vy
i .

13. δi ← λi.

14. Output : T = {T1, T2, . . ., Tn}

end.

Figure 2.4 Pseudo-code of AVT-Learner
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metric version of Kullback-Liebler divergence. J-divergence between two probability distribu-

tions P and Q is defined as follows:

J (P ||Q) = (K (P ||Q) + K (Q||P )) =
∑

(pi − qi) log

(
pi

qi

)

where Kullback-Liebler divergence, variously known as relative information, directed diver-

gence, relative entropy, function of discrimination, is given by:

K (P ||Q) =
∑(

pilog

(
pi

qi

))

Kullback-Liebler divergence is a natural measure for dissimilarity between distributions. It

is non-negative and reflexive, but it is asymmetric and doesn’t satisfy triangle inequality.

Jensen-Shannon divergence (Slonim et al., 2006) is weighted information gain, also

called Jensen difference divergence, information radius, Jensen difference divergence, and

Sibson-Burbea-Rao Jensen Shannon divergence. It is given by:

I (P ||Q) =
1
2

[∑
pilog

(
2pi

pi + qi

)
+

∑
qilog

(
2qi

pi + qi

)]

Jensen-Shannon divergence is reflexive, symmetric and bounded. Figure 2.5 shows an AVT of

‘odor’ attribute generated by AVT-Learner (with binary clustering).

Arithmetic and geometric mean divergence (A & G divergence) (Taneja, 1995),

popularly known as Backward Jensen Shannon divergence is given by:

T (P ||Q) =
∑(

pi + qi

2

)
log

(
pi + qi

2
√

piqi

)

It is the KL divergence between arithmetic mean and geometric mean of two distributions.

Since the results from different symmetric divergence measures do not make a remarkable

difference, we limit the discussion to Jensen-Shannon divergence measure in this dissertation.

2.4 Evaluation of Taxonomies

The intuition behind our approach to evaluating the AVT generated by AVT-Learner is

the following: an AVT that captures relevant relationships among attribute values can result

in the generation of simple and accurate classifiers from data, just as an appropriate choice of
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Figure 2.5 AVT of ‘odor’ attribute of UCI AGARICUS-LEPIOTA mush-
room data set generated by AVT-Learner using Jensen-Shannon
divergence (binary clustering)

axioms in a mathematical domain can simplify proofs of theorems. Thus, the simplicity and

predictive accuracy of the learned classifiers based on alternative choices of AVT can be used

to evaluate the utility of the corresponding AVT in specific contexts. Similar arguments are

applicable for word taxonomy learner (WTL).

For evaluation, it is necessary to discuss the learning algorithms that can exploit tax-

onomies. We explain AVT-NBL (Zhang and Honavar, 2004) for structured data and WTNBL-

MN for unstructured data.

2.4.1 AVT Guided Variants of Standard Learning Algorithms

It is possible to extend standard learning algorithms in principled ways so as to exploit the

information provided by AVT. AVT-DTL (Yamazaki et al., 1995; Zhang et al., 2002; Zhang

and Honavar, 2003) and the AVT-NBL (Zhang and Honavar, 2004) which extend the decision

tree learning algorithm (Quinlan, 1993) and the Naive Bayes learning algorithm (Langley et al.,

1992) respectively are examples such algorithms.
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The basic idea behind AVT-NBL is to start with the Naive Bayes Classifier that is based

on the most abstract attribute values in AVTs and successively refine the classifier by a scoring

function - a Conditional Minimum Description Length (CMDL) score suggested by Friedman

et al. (Friedman et al., 1997) to capture trade-off between the accuracy of classification and

the complexity of the resulting Naive Bayes classifier.

The experiments reported by Zhang and Honavar (Zhang and Honavar, 2004) using several

benchmark data sets show that AVT-NBL is able to learn, using human generated AVT,

substantially more accurate classifiers than those produced by Naive Bayes Learner (NBL)

applied directly to the data sets as well as NBL applied to data sets represented using a set

of binary features that correspond to the nodes of the AVT (PROP-NBL). The classifiers

generated by AVT-NBL are substantially more compact than those generated by NBL and

PROP-NBL. These results hold across a wide range of missing attribute values in the data

sets. Hence, the performance of Naive Bayes classifiers generated by AVT-NBL when supplied

with AVT generated by the AVT-Learner provide useful measures of the effectiveness of AVT-

Learner in discovering hierarchical groupings of attribute values that are useful in constructing

compact and accurate classifiers from data.

2.4.2 WTNBL-MN Algorithm

The problem of learning classifiers from a word taxonomy and sequence data is a natural

generalization of the problem of learning classifiers from the sequence data. Original data set

D is a collection of labeled instances < Ij , cj > where I ∈ I. A classifier is a hypothesis in

the form of function h : I → C, whose domain is the instance space I and whose range is the

set of class C. A hypothesis space H is a set of hypotheses that can be represented in some

hypothesis language or by a parameterized family of functions. Then, the task of learning

classifiers from the data set D is induce a hypothesis h ∈ H that satisfies given criteria.

Hence, the problem of learning classifiers from word taxonomy and data can be described

as follows: Given word taxonomy TΣ over words Σ and a data set D, the aim is induce a

classifier hγ∗ : Iγ∗ → C where γ∗ is a cut that maximizes given criteria. Of interest here is that
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the resulting hypothesis space Hγ̂ of a chosen cut γ̂ is efficient in searching for both concise

and accurate hypothesis.

Word taxonomy guided Naive Bayes Learner is composed of two major components: (a)

estimation of parameters of Naive Bayes classifiers based on a cut, (b) and a criterion for

specializing or abstracting a cut.

2.4.2.1 Aggregation of Class Conditional Frequency Counts

We can estimate the relevant parameters of a Naive Bayes classifier efficiently by aggre-

gating class conditional frequency counts. For a particular node of a given cut, parameters

of the node can be estimated by summing up the class conditional frequency counts of its

children (Zhang and Honavar, 2004).

Given word taxonomy TΣ, we can define a tree of class conditional frequency counts Tf such

that there is one-to-one correspondence between the nodes of word taxonomy TΣ and the nodes

of the corresponding Tf . The class conditional frequency counts associated with a non leaf

node of Tf is the aggregation of the corresponding class conditional frequency counts associated

with its children. Because a cut through word taxonomy corresponds a partition of the set of

words, the corresponding cut through Tf specifies a valid class conditional probability table

for words. Therefore, to estimate each nodes of Tf , we simply estimate the class conditional

frequency counts of primitive words in Σ, which corresponds to the leaves of Tf . Then we

aggregate them recursively to calculate the class conditional frequency counts associated with

their parent node.

2.4.2.2 Multinomial model for Representing Text/Sequence

In a multinomial model, a sequence is represented as a vector of word occurrence frequencies

fi,j . The probability of an instance Ij given its class cj is defined as follows:

P (dj |cj) =





(∑|Σ|
i fi,j

)
!

∏|Σ|
i (fi,j)!





|Σ|∏

i

{pfi,j

i,j } (2.1)



35

The term

{(∑|Σ|
i fi,j

)
!

∏|Σ|
i (fi,j)!

}
represents the number of possible combinations of words for the

instance Ij .

In equation 2.1, pi,j is basically calculated as follows:

pi,j =
Count(cj , wi)

Count(cj)

Count(cj , wi) is the number of times word wi appears in all the instances that have a

class label cj , and Count(cj) is the total number of words in a particular class label cj . With

Laplacian smoothing, pi,j will be as follows:

pi,j =
1 + Count(cj , wi)
|Σ|+ Count(cj)

Or, if we follow the Dirichlet prior, pvi,c will be as follows:

pvi,c =
L̄/|v|+ Count(c, vi)

L̄ + Count(c)

where, L̄ is an average length and |v| is the number of values.

If we consider the number of words in an instance (in other words, document length)(McCallum

and Nigam, 1998) but assume that the document length is independent of class for simplicity,

we will get the following.

P (v|c) = P (d)

{
d!

∏|v|
i vi!

} |v|∏

i

{pvi
vi,c} (2.2)

where, d =
(∑|v|

i vi

)
, the number of words in a particular instance (document length). In

practice, the document length may be class dependent. In practice, we may let the document

length class dependent

P (v|c) = P (|d||c)
{

d
∏|v|

i vi!

} |v|∏

i

{pvi
vi,c}

2.4.2.3 Conditional Minimum Description Length of Naive Bayes Classifier

We use conditional minimum description length (CMDL) (Friedman et al., 1997) score to

grade the specialization or abstraction of Naive Bayes classifier for the multinomial model.
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Let vj be a set of attribute values of jth instance dj ∈ D, and cj ∈ C a class label associated

with dj . Then, the conditional log likelihood of the hypothesis B given data D is

CLL(B|D) = |D|
|D|∑

log{PB(c|v)} = |D|
|D|∑

log

{
PB(c)PB(v|c)∑|C|

ci
PB(ci)PB(v|ci)

}
(2.3)

For Naive Bayes classifier, this score can be efficiently calculated (Zhang and Honavar,

2004).

CLL(B|D) = |D|
|D|∑

log

{
PB(c)

∏vi∈v{PB(vi|c)}∑|C|
ci

PB(ci)
∏vj∈v{PB(vj |ci)}

}

And the corresponding conditional minimum description length (CMDL) score is defined

as follows:

CMDL(B|D) = −CLL(B|D) +
{

log |D|
2

}
size(B)

where, size(B) is a size of the hypothesis B which corresponds to the number of parameters

in conditional probability tables (CPT) of B.

In case of a Naive Bayes classifier with multi-variate Bernoulli model, size(B) is defined as

size(B) = (|C| − 1) + |C|
|v|∑

i=1

(|vi| − 1)

where |C| is the number of class labels, |v| is the number of attributes, and |vi| is the

number of attribute values for an attribute vi.

2.4.2.4 Conditional Minimum Description Length of a Naive Bayes Classifier

for the Multinomial Model

Combining the equations 2.1 and 2.3, we can obtain the conditional log likelihood of the

classifier B given data D under the Naive Bayes multinomial model.

CLL(B|D) = |D|
|D|∑

j

log





P (cj)

{(∑|Σ|
i fi,j

)
!

∏|Σ|
i (fi,j)!

}
∏|Σ|

i {pfi,j

i,j }

∑|C|
k

{
P (ck)

{(∑|Σ|
i fi,k

)
!

∏|Σ|
i (fi,k)!

}
∏|Σ|

i {pfi,k

i,k }
}





(2.4)
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where, |D| is the number of instances, cj ∈ C is a class label for instance dj ∈ D, fi,j is

a integer frequency of word wi ∈ Σ in instance dj , and pi,j is the estimated probability that

word wi occurred in the instances associated to class label j.

Conditional Minimum Description Length (CMDL) of a Naive Bayes Classifier for the

multinomial model is defined as follows:

CMDL(B|D) = −CLL(B|D) +
{

log |D|
2

}
size(B)

where, size(B) is a size of the hypothesis B which corresponds to the number of entries in

conditional probability tables (CPT) of B.

Therefore, size(B) is estimated as

size(B) = (|C| − 1) + |C||Σ| (2.5)

where |C| is the number of class labels, and |Σ| is the cardinality of the vocabulary (i.e.

the number of all distinct words).

2.4.2.5 Computation of CMDL score

Because each word is assumed to be independent of others given the class, the search for

the word taxonomy guided Naive Bayes classifier can be performed efficiently by optimizing

the CMDL criterion independently for each word. Thus, the resulting hypothesis h intuitively

trades off the complexity in terms of the number of parameters against the accuracy of classi-

fication. The algorithm terminates when none of candidate specialization or abstraction of the

classifier yield statistically significant improvement in the CMDL score. Figure 2.6 outlines

the algorithm that searches for the optimal cut by specialization in top-down direction.
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WTNBL-MN (specialization):
begin

1. Input : data set D and word taxonomy TΣ

2. Initialize a cut γ to the root of TΣ

3. Estimate probabilities that specify the hypothesis hγ

4. Repeat until no change in cut γ

5. γ̄ ← γ

6. For each node v ∈ γ :

7. Generate a refinement γv of γ by replacing v with its children.

8. Construct corresponding hypothesis hγv .

9. If CMDL(hγv |D) < CMDL(hγ̄ |D), then replace γ̄ with γv.

10. If γ 6= γ̄ then γ ← γ̄

11. Output : hγ

end.

Figure 2.6 Pseudo-code of Word Taxonomy Guided Naive Bayes Learner
for the Multinomial Model(WTNBL-MN)
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Figure 2.7 Evaluation setup of AVTs with AVT-NBL

2.5 Experiments for AVT

2.5.1 Experimental Setup

Figure 2.7 shows the experimental setup. The AVT generated by the AVT-Learner are

evaluated by comparing the performance of the Naive Bayes Classifiers produced by applying

• NBL to the original data set

• AVT-NBL to the original data set (See Figure 2.7).

For the benchmark data sets, we chose 37 data sets from UCI data repository (Blake and

Merz, 1998).

Among the data sets we have chosen, AGARICUS-LEPIOTA data set and NURSERY data

set have AVT supplied by human experts. AVT for AGARICUS-LEPIOTA data was prepared

by a botanist, and AVT for NURSERY data was based on our understanding of the domain.

We are not aware of any expert-generated AVTs for other data sets.

The mushroom records in the AGARICUS-LEPIOTA data set were drawn from (Lincoff,

1981) by Jeff Schlimmer in 1987. The data set includes descriptions of hypothetical samples

corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family. The

goal of the classifier induced from the data set is discern each species to be definitely edible,

definitely poisonous, or of unknown edibility and not recommended. The guide (Lincoff, 1981)

stated that there is no simple rule for determining the edibility of a mushroom.

Nursery Database was derived from a hierarchical decision model (Olave et al., 1989) orig-

inally developed to rank applications for nursery schools during several years in 1980’s when
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there was excessive enrollment to these schools in Ljubljana, Slovenia, and the rejected appli-

cations frequently needed an objective explanation.

In each experiment, we randomly divided each data set into 3 equal parts and used 1/3 of

the data for AVT construction using AVT-Learner. The remaining 2/3 of the data were used

for generating and evaluating the classifier. Each set of AVTs generated by the AVT-Learner

was evaluated in terms of the error rate and the size of the resulting classifiers (as measured

by the number of entries in conditional probability tables). The error rate and size estimates

were obtained using 10-fold cross-validation on the part of the data set (2/3) that was set

aside for evaluating the classifier. The results reported correspond to averages of the 10-fold

cross-validation estimates obtained from the three choices of the AVT-construction and AVT-

evaluation. This process ensures that there is no information leakage between the data used

for AVT construction, and the data used for classifier construction and evaluation.

10-fold cross-validation experiments were performed to evaluate human expert-supplied

AVT on the AVT evaluation data sets used in the experiments described above for the

AGARICUS-LEPIOTA data set and the NURSERY data set.

We also evaluated the robustness of the AVT generated by the AVT-Learner by using them

to construct classifiers from data sets with varying percentages of missing attribute values. The

data sets with different percentages of missing values were generated by uniformly sampling

from instances and attributes to introduce the desired percentage of missing values.

2.5.2 Results

AVT generated by AVT-Learner are competitive with human-generated AVT

when used by AVT-NBL.

The results of our experiments shown in Figure 2.8 indicate that AVT-Learner is effec-

tive in constructing AVTs that are competitive with human expert-supplied AVTs for use in

classification tasks with respect to the error rates and the size of the resulting classifiers.

AVT-Learner can generate useful AVT when no human-generated AVT are avail-
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012345678 0% 10% 20% 30% 40% 50%Missing ValueError Rate NBLAVT-NBL (JS)AVT-NBL (HT)
Figure 2.8 The estimated error rates of classifiers generated by NBL and

AVT-NBL on AGARICUS-LEPIOTA data with different per-
centages of missing values. HT stands for human-supplied
AVT. JS denotes AVT constructed by AVT-Learner using
Jensen-Shannon divergence.

able.

For most of the data sets, there are no human-supplied AVT’s available. Figure 2.9 shows

the error rate estimates for Naive Bayes classifiers generated by AVT-NBL using AVT generated

by the AVT-Learner and the classifiers generated by NBL applied to the DERMATOLOGY

data set. The results shown suggest that AVT-Learner, using Jensen-Shannon divergence, is

able to generate AVTs that when used by AVT-NBL, result in classifiers that are more accurate

than those generated by NBL.

Additional experiments with other data sets produced similar results. Table 2.1 shows

the classifier’s accuracy on original UCI data sets for NBL and AVT-NBL that uses AVTs

generated by AVT-Learner. 10-fold cross-validation is used for evaluation, and Jensen-Shannon

divergence is used for AVT generation. The user-specified number for discretization is 10.

Thus, AVT-Learner is able to generate AVTs that are useful for constructing compact and

accurate classifiers from data.

AVT generated by AVT-Learner, when used by AVT-NBL, yield substantially

more compact Naive Bayes Classifiers than those produced by NBL

Naive Bayes classifiers constructed by AVT-NBL generally have smaller number of param-
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Table 2.1 Accuracy of classifiers generated by Naive Bayes Learner (NBL) and
AVT Guided Naive Bayes Learner (AVT-NBL) on UCI data sets, cal-
culated by 10-fold cross validation with 95% confidence interval.

Data NBL AVT-NBL
Anneal 86.30±2.25 99.00±0.65
Audiology 73.45±5.76 76.99±5.49
Autos 56.10±6.79 86.83±4.63
Balance-scale 90.40±2.31 91.36±2.20
Breast-cancer 71.68±5.22 72.38±5.18
Breast-w 95.99±1.45 97.28±1.21
Car 85.53±1.66 86.17±1.63
Colic 77.99±4.23 83.42±3.80
Credit-a 77.68±3.11 86.52±2.55
Credit-g 75.40±2.67 75.40±2.67
Dermatology 97.81±1.50 98.09±1.40
Diabetes 76.30±3.01 77.99±2.93
Glass 48.60±6.70 80.84±5.27
Heart-c 83.50±4.18 87.13±3.77
Heart-h 83.67±4.22 86.39±3.92
Heart-statlog 83.70±4.41 86.67±4.05
Hepatitis 84.52±5.70 92.90±4.04
Hypothyroid 95.28±0.68 95.78±0.64
Ionosphere 82.62±3.96 94.59±2.37
Iris 96.00±3.14 94.67±3.60
Kr-vs-kp 87.89±1.13 87.92±1.13
Labor 89.47±7.97 89.47±7.97
Letter 64.12±0.66 70.54±0.63
Lymph 83.11±6.04 84.46±5.84
Mushroom 95.83±0.43 99.59±0.14
Nursery 90.32±0.51 90.32±0.51
Primary-tumor 50.15±5.32 47.79±5.32
Segment 80.22±1.62 90.00±1.22
Sick 92.68±0.83 97.83±0.47
Sonar 67.79±6.35 99.52±0.94
Soybean 92.97±1.92 94.58±1.70
Splice 95.36±0.73 95.77±0.70
Vehicle 44.90±3.35 67.85±3.15
Vote 90.11±2.80 90.11±2.80
Vowel 63.74±2.99 42.42±3.08
Waveform-5000 80.00±1.11 65.08±1.32
Zoo 93.07±4.95 96.04±3.80
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024681012 0% 10% 20% 30% 40% 50%Missing ValueError Rate NBLAVT-NBL (JS)
Figure 2.9 The error rate estimates of the Standard Naive Bayes Learner

(NBL) compared with that of AVT-NBL on DERMATOLOGY
data. JS denotes AVT constructed by AVT-Learner using
Jensen-Shannon divergence.

eters than those from NBL (See Figures 2.10 for representative results). Table 2.2 shows the

classifier size measured by the number of parameters on selected UCI data sets for NBL and

AVT-NBL that uses AVTs generated by AVT-Learner.

These results suggest that AVT-Learner is able to group attribute values into AVT in

such a way that the resulting AVT, when used by AVT-NBL, result in compact yet accurate

classifiers.

2.6 Experiments for Word Taxonomy

The results of experiments described in this section provide evidence that WTNBL-MN

coupled with WTL usually generate more concise and often more accurate classifiers than

those of the Naive Bayes classifiers for the multinomial model. We conducted experiments

with two sequence classification tasks; text (word sequence) classification and proteins (amino

acid sequence) classification. In each case, a word taxonomy is generated using WTL and a

classifier is constructed using WTNBL-MN on the resulting WT and sequence data.
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Figure 2.10 The size (as measured by the number of parameters) of classi-

fiers from the standard Naive Bayes learner (NBL) compared
with those from AVT-NBL on AGARICUS-LEPIOTA data.
HT stands for human-supplied AVT. JS denotes AVT con-
structed by AVT-Learner using Jensen-Shannon divergence.

Table 2.2 The number of parameters of classifiers from NBL and AVT-NBL
on selected UCI data sets

Data NBL AVT-NBL

Audiology 3720 3600
Breast-cancer 104 62
Car 88 80
Dermatology 906 540
Kr-vs-kp 150 146
Mushroom 252 124
Nursery 140 125
Primary-tumor 836 814
Soybean 1919 1653
Splice 864 723
Vote 66 66
Zoo 259 238
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2.6.1 Text Classification

Reuters 21587 distribution 1.0 data set1 consists of 12902 newswire articles in 135 overlap-

ping topic categories.

We build binary classifiers for top ten most populous categories on text classification (Du-

mais et al., 1998; Joachims, 1998; McCallum and Nigam, 1998; Sandler, 2005; Keerthi, 2005;

Joachims, 2005; Gabrilovich and Markovitch, 2005; Carvalho and Cohen, 2005; Rooney et al.,

2006; Zhang and Lee, 2006). In our experiment, stop words were not eliminated, and title

words were not distinguished with body words. We selected top 300 features based on mutual

information with class labels. The mutual information MI(x, c) between a feature x and a

category c is defined as:

MI(x, c) =
x∑ {

c∑{
P (x, c)log

P (x, c)
P (x)P (c)

}}

We followed the ModApte split (Apté et al., 1994) in which 9603 stories are used for

building classifiers and 3299 stories to test the accuracy of the resulting model. We report the

break even points, the average of precision and recall when the difference between the two is

minimum. Precision and recall of text categorization are defined as:

Precision =
|detected documents in the category (true positives)|

|documents in the category (true positives + false negatives)|

Recall =
|detected documents in the category (true positives)|
|detected documents (true positives + false positives)|

Table 2.3 shows the break even point of precision and recall as well as the size of the

classifier (from the equation 2.5) for the ten most frequent categories. WTNBL-MN usually

shows similar performance in terms of break even performance, while the classifiers generated

by WTNBL-MN have smaller size than those generated by the Naive Bayes Learner (NBL).

Figure 2.11 shows Precision-Recall curves (Fawcett, 2003, 2006) of for the “grain” category.

It can be seen that WTNBL-MN generates a Naive Bayes classifier that is more compact than,

but has performance comparable to that of the classifier generated from Naive Bayes learner.
1This collection is publicly available at

http://www.daviddlewis.com/resources/testcollections/reuters21578/.
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Table 2.3 Break even points (BEP) of Classifiers from Naive Bayes Learner with
Multinomial Model (NBL-MN) and WTNBL-MN on 10 Largest Cate-
gories of Reuters 21586 Data

Data NBL-MN WTNBL-MN WTNBL-MN # of documents
(Abstraction) (Specialization)

BEP size BEP size BEP size train test
earn 94.94 602 94.57 376 94.57 348 2877 1087
acq 89.43 602 89.43 446 89.43 472 1650 719
money-fx 64.80 602 64.80 390 65.36 346 538 179
grain 74.50 602 74.50 418 77.85 198 433 149
crude 79.89 602 80.42 450 76.72 182 389 189
trade 59.83 602 59.83 406 47.01 208 369 118
interest 61.07 602 61.07 468 59.54 366 347 131
ship 82.02 602 82.02 314 82.02 348 197 89
wheat 57.75 602 57.75 402 53.52 226 212 71
corn 57.14 602 58.83 344 21.43 106 182 56
Average (top 5) 80.71 602 80.74 416 80.79 309.20
Average (top 10) 72.14 602 72.32 401.40 66.75 280

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Precision−Recall Curve

Naive Bayes
WTNBL−MN (specialization)

Figure 2.11 Precision-Recall Curves for the “Grain” Category
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2.6.2 Protein Sequences

We applied the WTNBL-MN algorithm on two protein data sets with a view to identifying

their localization (Reinhardt and Hubbard, 1998; Andorf et al., 2006).

The first data set is 997 prokaryotic protein sequences derived from SWISS-PROT data

base (Bairoch and Apweiler, 2000). This data set includes proteins from three different subcel-

lular locations: cytoplasmic (688 proteins), periplasmic (202 proteins), and extracellular (107

proteins).

The second data set is 2427 eukaryotic protein sequences derived from SWISS-PROT data

base (Bairoch and Apweiler, 2000). This data set includes proteins from the following four dif-

ferent subcellular locations: nuclear (1097 proteins), cytoplasmic (684 proteins), mitochondrial

(321 proteins), extracellular (325 proteins).

For these data sets2, we conducted ten-fold cross validation. To measure the performance

of the following performance measures (Yan et al., 2004) are applied and the results for the

data set are reported:

Correlation coefficient =
TP× TN− FP× FN√

(TP+FN)(TP+FP)(TN+FP)(TN+FN)

Accuracy =
TP + TN

TP+TN+FP+FN

Sensitivity+ =
TP

TP+FN

Specificity+ =
TP

TP+FP

where, TP is the number of true positives, FP is the number of false positives, TN is the

number of true negatives, and FN is the number of false negatives.

Figure 2.12 shows amino acid taxonomy constructed for the Prokaryotic protein sequences.

Table 2.4 shows the results in terms of the performance measures for the two protein sequences.

For both data sets, the classifiers generated by WTNBL are more concise and show more

accurate performance than the classifier generated by the Naive Bayes Learner (NBL) in terms

of the measures reported.
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Table 2.4 Localization prediction results of Naive Bayes Learner with Multino-
mial Model (NBL-MN) and WTNBL-MN on Prokaryotic and Eukary-
otic protein sequences, calculated by 10-fold cross validation with 95%
confidence interval.

(a) Prokaryotic protein sequences

Correlation
NBL-MN Coefficient Accuracy Specificity+ Sensitivity+ Size
Cytoplasmic 71.96±2.79 88.26±2.00 89.60±1.89 93.90±1.49 42
Extracellular 70.57±2.83 93.58±1.52 65.93±2.94 83.18±2.32 42
Peripalsmic 51.31±3.10 81.85±2.39 53.85±3.09 72.77±2.76 42
WTNBL-MN Correlation
(Abstraction) Coefficient Accuracy Specificity+ Sensitivity+ Size
Cytoplasmic 72.19±2.78 88.37±1.99 89.61±1.89 94.04±1.47 16
Extracellular 69.62±2.85 93.18±1.56 63.83±2.98 84.11±2.27 16
Peripalsmic 50.88±3.10 81.85±2.39 53.90±3.09 71.78±2.79 40
WTNBL-MN Correlation
(Specialization) Coefficient Accuracy Specificity+ Sensitivity+ Size
Cytoplasmic 72.43±2.77 88.47±1.98 89.63±1.89 94.19±1.45 20
Extracellular 69.31±2.86 93.18±1.56 64.03±2.98 83.18±2.32 20
Peripalsmic 51.53±3.10 81.85±2.39 53.82±3.09 73.27±2.75 40

(b) Eukaryotic protein sequences

Correlation
NBL-MN Coefficient Accuracy Specificity+ Sensitivity+ Size
Nuclear 61.00±1.94 80.72±1.57 82.06±1.53 73.38±1.76 46
Extracellular 36.83±1.92 83.11±1.49 40.23±1.95 53.85±1.98 46
Mitochondrial 25.13±1.73 71.69±1.79 25.85±1.74 61.06±1.94 46
Cytoplasmic 44.05±1.98 71.41±1.80 49.55±1.99 81.29±1.55 46
WTNBL-MN Correlation
(Abstraction) Coefficient Accuracy Specificity+ Sensitivity+ Size
Nuclear 58.14±1.96 79.32±1.61 80.51±1.58 71.56±1.79 20
Extracellular 34.40±1.89 83.15±1.49 39.60±1.95 49.23±1.99 32
Mitochondrial 25.15±1.73 72.85±1.77 26.40±1.75 58.88±1.96 26
Cytoplasmic 43.42±1.97 71.16±1.80 49.29±1.99 80.70±1.57 26
WTNBL-MN Correlation
(Specialization) Coefficient Accuracy Specificity+ Sensitivity+ Size
Nuclear 60.82±1.94 80.63±1.57 81.70±1.54 73.66±1.75 24
Extracellular 38.21±1.93 84.01±1.46 42.30±1.97 53.23±1.99 36
Mitochondrial 25.48±1.73 72.35±1.78 26.29±1.75 60.44±1.95 34
Cytoplasmic 43.46±1.97 71.24±1.80 49.37±1.99 80.56±1.57 32
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Figure 2.12 Taxonomy from Prokaryotic Protein Localization Sequences
constructed by WTL

Figure 2.13 shows the ROC curves of the classifiers from Naive Bayes learner and WTNBL-

MN on the classification tasks of Cytoplasmic label and Extracellular label respectively. The

AUCs of Naive Bayes learner and WTNBL-MN for each class are not very different and the

ROC curves of both classifiers nearly overlap each other. This means that either classifier does

not show better performance than the other. However, we have seen in the table 2.12 that

WTNBL-MN yields more compact classifiers than Naive Bayes learner.

2.7 Summary and Discussion

2.7.1 Summary

In many applications of data mining, there is a strong preference for classifiers that are

both accurate and compact (Kohavi and Provost, 2001; Pazzani et al., 1997). Previous work

has shown that attribute value taxonomies can be exploited to generate such classifiers from

data (Zhang and Honavar, 2003, 2004). However, human-generated taxonomies are unavail-
2These datasets are available to download at

http://www.doe-mbi.ucla.edu/˜astrid/astrid.html.
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(a) Cytoplasmic: NB AUC=0.7985 and WTNBL
AUC = 0.7983
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(b) Extracellular: NB AUC=0.7752 and WTNBL
AUC = 0.7753

Figure 2.13 ROC curves of Naive Bayes (NB) and WTNBL-MN on the
classification of Cytoplasmic label and Extracellular label

able in many application domains. Manual construction of taxonomies requires a great deal

of domain expertise, and in case of large data sets with many attributes and many values for

each attribute, manual generation of taxonomies is extremely tedious and hence not feasible

in practice. Against this background, we have described AVT-Learner, an algorithm for au-

tomated construction of attribute value taxonomies (AVT) from data, and Word Taxonomy

Learner (WTL) for automated construction of word taxonomy from text and sequence data.

AVT-Learner and WTL recursively groups values (of attributes) based on a suitable measure of

divergence between the class distributions associated with the values to construct taxonomies.

AVT-Learner is able to generate hierarchical taxonomies of nominal, ordinal, and continuous

valued attributes.

The experiments reported in this chapter show that:

• AVT-Learner and WTL is effective in generating taxonomies that when used by AVT-

NBL and WTNBL-MN, a principled extension of the standard algorithm for learning

Naive Bayes classifiers, result in classifiers that are substantially more compact (and

often more accurate) than those obtained by the standard Naive Bayes Learner (that

does not use taxonomies).
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Figure 2.14 AVT of ‘odor’ attribute of UCI AGARICUS-LEPIOTA
mushroom data set generated by AVT-Learner using
Jensen-Shannon divergence (with quaternary clustering)

• The taxonomies generated by AVT-Learner and WTL are competitive with human sup-

plied taxonomies (in the case of benchmark data sets where human-generated taxonomies

were available) in terms of both the error rate and size of the resulting classifiers.

2.7.2 Discussion

2.7.2.1 Binary vs. K-ary Clustering

The AVTs generated by AVT-Learner are binary trees. Hence, one might wonder if k-ary

AVTs yield better results when used with AVT-NBL. Figure 2.14 shows an AVT of ‘odor’ at-

tribute generated by AVT-Learner (with quaternary clustering). Table 2.5 shows the accuracy

of AVT-NBL when k-ary clustering is used by AVT-Learner. It can be seen that AVT-NBL

generally works best when binary AVTs are used. It is because reducing internal nodes in

AVT-Learner will eventually reduce the search space for possible cuts in AVT-NBL, which

leads to generating a less compact classifier.

2.7.2.2 Ordered vs. Orderless

At each step of merging, AVT-Learner considers all possible pairs of values and does not

consider the order between the values. However, there are attributes whose values are ordered,
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Table 2.5 Accuracy of classifiers generated by AVT Guided Naive Bayes
Learner (AVT-NBL) coupled with k-ary AVT-Learner when k is
2,3 and 4 on selected UCI data sets, calculated by 10-fold cross
validation with 95% confidence interval..

Data 2-ary 3-ary 4-ary

Nursery 90.32±0.51 90.32±0.51 90.32±0.51
Audiology 76.99±5.49 76.55±5.52 76.99±5.49
Car 86.17±1.63 86.17±1.63 86.17±1.63
Dermatology 98.09±1.40 97.54±1.59 97.54±1.59
Mushroom 99.59±0.14 99.73±0.11 99.75±0.11
Soybean 94.58±1.70 94.44±1.72 94.44±1.72

such as discretized attributes or ordinal attributes. For such attributes, one might wonder

if merging most similar “adjacent” values of an ordered attribute may yields better results.

Table 2.6 shows the accuracies of AVT-NBL when the corresponding AVT-Learner maintains

the order of values when it builds the AVT, and the accuracies of AVT-NBL when the AVT-

Learner does not maintain the order of values. It can be seen that AVT-NBL generally works

better when AVT is constructed without concerning the order of attribute values. It is because

AVT-Learner needs to compare more possible pairs of values when the algorithm does not

consider the order of values.

2.7.3 Related Work

Gibson and Kleinberg (Gibson, 1988) introduced STIRR, an iterative algorithm based

on non-linear dynamic systems for clustering categorical attributes. Ganti et. al. (Ganti

et al., 1999) designed CACTUS, an algorithm that uses intra-attribute summaries to cluster

attribute values. Zaki et al. (Zaki et al., 2005) presented CLICKS algorithm that finds clusters

in categorical datasets based on a search for k-partite maximal cliques. However, all of them

did not make taxonomies and use the generated for improving classification tasks.

Pereira et. al. (Pereira et al., 1993) described distributional clustering for grouping words

based on class distributions associated with the words in text classification. Yamazaki et

al., (Yamazaki et al., 1995) described an algorithm for extracting hierarchical groupings from

rules learned by FOCL (an inductive learning algorithm) (Pazzani and Kibler, 1992) and
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Table 2.6 Accuracy of classifiers generated by AVT Guided Naive Bayes Learner
(AVT-NBL) from ordered AVT and orderless AVT on UCI data sets,
calculated by 10-fold cross validation with 95% confidence interval.

Data AVT-NBL (ordered AVT) AVT-NBL (orderless AVT)
Anneal 98.55±0.78 99.00±0.65
Audiology 76.99±5.49 76.99±5.49
Autos 82.93±5.15 86.83±4.63
Balance-scale 91.36±2.20 91.36±2.20
Breast-cancer 72.38±5.18 72.38±5.18
Breast-w 97.28±1.21 97.28±1.21
Car 86.17±1.63 86.17±1.63
Colic 82.61±3.87 83.42±3.80
Credit-a 85.94±2.59 86.52±2.55
Credit-g 75.40±2.67 75.40±2.67
Dermatology 98.09±1.40 98.09±1.40
Diabetes 76.56±3.00 77.99±2.93
Glass 78.04±5.55 80.84±5.27
Heart-c 83.50±4.18 87.13±3.77
Heart-h 85.37±4.04 86.39±3.92
Heart-statlog 85.19±4.24 86.67±4.05
Hepatitis 89.03±4.92 92.90±4.04
Hypothyroid 95.84±0.64 95.78±0.64
Ionosphere 94.59±2.37 94.59±2.37
Iris 94.67±3.60 94.67±3.60
Kr-vs-kp 87.92±1.13 87.92±1.13
Labor 87.72±8.52 89.47±7.97
Letter 72.32±0.62 70.54±0.63
Lymph 84.46±5.84 84.46±5.84
Mushroom 99.59±0.14 99.59±0.14
Nursery 90.32±0.51 90.32±0.51
Primary-tumor 47.79±5.32 47.79±5.32
Segment 87.66±1.34 90.00±1.22
Sick 97.80±0.47 97.83±0.47
Sonar 92.31±3.62 99.52±0.94
Soybean 94.58±1.70 94.58±1.70
Splice 95.77±0.70 95.77±0.70
Vehicle 61.82±3.27 67.85±3.15
Vote 90.11±2.80 90.11±2.80
Vowel 42.22±3.08 42.42±3.08
Waveform-5000 63.64±1.33 65.08±1.32
Zoo 96.04±3.80 96.04±3.80
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reported improved performance on learning translation rules from examples in a natural lan-

guage processing task. Slonim and Tishby (Slonim et al., 2006) described a technique (called

the agglomerative information bottleneck method) which extended the distributional clustering

approach described by Pereira et al. (Pereira et al., 1993), using Jensen-Shannon divergence for

measuring distance between document class distributions associated with words and applied

it to a text classification task. Baker and McCallum (Baker and McCallum, 1998) reported

improved performance on text classification using a technique similar to distributional cluster-

ing and a distance measure, which upon closer examination, can be shown to be equivalent to

Jensen-Shannon divergence (Slonim et al., 2005, 2006). Dimitropoulos et al. (Dimitropoulos

et al., 2006) augmented Internet Autonomous System (AS) Taxonomy to the data set for ASes

classification and successfully classified 95.3% of ASes with expected accuracy of 78.1%.

To the best of our knowledge, there has been little work on the evaluation of techniques

for generating hierarchical groupings of attribute values (AVTs) on classification tasks using

a broad range of benchmark data sets using algorithms such as AVT-DTL or AVT-NBL that

are capable of exploiting AVTs in learning classifiers from data.

2.7.4 Future Work

Some directions for future work include:

• Extending AVT-Learner described in this research to learn AVTs that correspond to

tangled hierarchies, which can be represented by directed acyclic graphs (DAG) instead

of trees, or complicated graph structure

• Learning AVT from data for a broad range of real world applications such as census

data analysis, learning classifiers from relational data (Atramentov et al., 2003), and

protein function classification (Wang and Stolfo, 2003), identification of protein-protein

interfaces (Terribilini et al., 2006; Yan et al., 2003)

• Developing algorithms for learning hierarchical ontologies based on part-whole and other

relations as opposed to ISA relations captured by an AVT
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• Developing algorithms for learning hierarchical groupings of values associated with more

than one attribute
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CHAPTER 3. HOST-BASED INTRUSION DETECTION USING A

BAG OF SYSTEM CALLS

This chapter is an extended version of the paper published in IEEE International Conference

on Intelligence and Security Informatics in 2005 (Kang et al., 2005c).

3.1 Abstract

In this study, we propose a bag of system calls representation for intrusion detection in

system call sequences and describe misuse and anomaly detection results with standard ma-

chine learning techniques on University of New Mexico (UNM) and MIT Lincoln Lab (MIT

LL) system call sequences with the proposed representation. With the feature representation

as input, we compare the performance of several machine learning techniques for misuse de-

tection and show experimental results on anomaly detection. The results show that standard

machine learning and clustering techniques on simple bag of system calls representation of

system call sequences in the operating system’s kernel is effective and often performs better

than those approaches that use foreign contiguous sequences in detecting intrusive behaviors

of compromised processes.

3.2 Introduction

Detection of attempts to compromise the integrity, confidentiality, or availability of com-

puting and communication networks is an extremely challenging problem (Denning, 1987).

Most current approaches to the design of intrusion detection systems (IDS) are based on the

premise that the actions used in an attempted intrusion can be differentiated from the actions

executed by users or processes during the normal operation of the computing and communica-
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tion networks (Axelsson, 2000; Murali and Rao, 2005). An effective IDS logs actions executed

by users or processes for investigation, alerts the system administrator when the monitored

activities are indicative of attempted intrusion, and, if appropriate, takes corrective measures

e.g., expelling the intruder.

Intrusion detection and prevention generally refers to a broad range of strategies for de-

fending against malicious attacks. Intrusion detection can be categorized into misuse detection

and anomaly detection. Misuse typically is a known attack, e.g., a hacker attempting to break

into an email server in a way that IDS has already trained. A misuse detection system tries

to model normal and abnormal behavior from known attacks. It works by comparing network

traffic, system call sequences, or other features of known attack patterns. An anomaly is some-

thing out of the ordinary, e.g., abnormal network traffic which is actually caused by unknown

attacks. An anomaly detection system models normal behavior and identifies a behavior as

abnormal (or anomalous) if it is sufficiently different from known normal behaviors.

IDS can be classified into those that focus on modeling the behavior of users and those

that focus on modeling the behavior of processes (Ghosh and Schwartzbard, 1999). System

call data are one of the most common types of data used to model the behavior of processes.

Such data can be collected by logging the system calls using operating system utilities e.g.

Linux strace or Solaris Basic Security Module (BSM).

There has been a great deal of research on how to design and implement intrusion detection

systems. For example, Mukherjee et al (Mukherjee et al., 1994) used a combination of host

monitors and network monitors with a centralized director for suspicious system activities in

the distributed intrusion detection system (DIDS) project. Because it is difficult to manually

specify activities that signal intrusive behavior, there has been much work on adaptive or

machine learning or data mining approaches for intrusion detection. Forrest et al (Forrest

et al., 1996) worked on the Computer Immunology project and explored approaches inspired by

the activities of the immune systems of animals for detecting and defending against intrusions.

Subsequently, several groups have explored data mining approaches for intrusion detection (Lee

et al., 1999; Helmer et al., 2001; Eskin et al., 2002; Campos and Milenova, 2005).
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In most IDS that model the behavior of processes, intrusions are detected by observing

fixed-length, contiguous subsequences of system calls. For example, in anomaly detection,

subsequences of input traces are matched against normal sequences in database so that foreign

sequences (Forrest et al., 1996; Hofmeyr et al., 1998) are detected. One potential drawback of

this approach is that the size of the database that contains fixed-length contiguous subsequences

increases exponentially with the length of the subsequences. For example, if the number

of system calls is 200 and the length of the subsequences is 6, the size of the database is

theoretically 2006 = 64 × 1012. In practice, only normal subsequences are stored, so actual

database size is smaller, but still considerably bigger than the hypothesis size generated by our

approach.

In this study, we explore an alternative representation of system call traces for intrusion

detection. Specifically, we use a bag of system calls representation of system call sequences. In

other words, we consider intrusion detection of system call sequence as a classification prob-

lem on a bag of system calls obtained from the system call sequences. With those problem

setting, we constructed and evaluated decision tree (Quinlan, 1993), Naive Bayes (McCal-

lum and Nigam, 1998), decision list (Rivest, 1987; Cohen, 1995), Support Vector Machines

(SVM) (Cortes and Vapnik, 1995; Platt, 1999), and Logistic Regression (with a ridge esti-

mator) (Cessie and Houwelingen, 1992) classifiers using bag of system calls representation of

system calls for misuse detection. We also explored an approach to anomaly detection using

a one class Naive Bayes classifier as well as K-means clustering (Bishop, 1996) using the same

representation of system call sequences. Bag of words model is already popular in text clas-

sification and categorization area (Mitchell, 1997), and our motivation is to investigate the

usefulness of the model in intrusion detection tasks.

The results show that the proposed approach for misuse detection yields comparable or

sometimes better performance than the methods previously reported in the literature in terms

of detection rate and false positive over widely used benchmark data sets such as University

of New Mexico (UNM) and MIT Lincoln Lab (MIT LL) system call sequences.

The rest of the chapter is organized as follows. Section 3.3 describes two different repre-
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sentations of system call sequences. Section 3.4 describes the benchmark data sets used in our

study. Section 3.5 describes the experimental setup and results. Section 3.6 concludes with a

summary and discussion.

3.3 Alternative Representations of System Call Sequences

We describe two feature representations of system call sequences that intrusion detection

algorithms deal with. The first one is a contiguous subsequence with fixed length k from

original input traces, and the second is bag of system calls, which is our approach.

One of the main questions in sequence-based intrusion detection is how to define “intrusion”

in an input sequence. Most intrusion detection algorithms such as STIDE (Warrender et al.,

1999) regard that intrusion is related with fixed-length subsequence that only happens in

intrusive traces.

In our approach, we convert the input sequence to bag of system calls. Thus, the ordering

information between system calls is lost and only the frequency of each system call is preserved

for each input sequence. Intrusion is represented according to the machine learning algorithm

applied.

Formally, the intrusion detection problem on system call or command sequences can be

defined as follows:

Let Σ = {s1, s2, s3, . . . , sm} be a set of system calls where m = |Σ| is the number of system

calls. Data set D can be defined as a set of labeled sequences {< Zi, ci > |Zi ∈ Σ∗, ci ∈ {0, 1}}
where Zi is an input sequence and ci is a corresponding class label denoting 0 for “normal”

label and 1 for “intrusion” label. Given the data set D, the goal of the learning algorithm is

to find a classifier h : Σ∗ → {0, 1} that maximizes given criteria. Such criteria are accuracy,

detection rate and false positive rate.

Since it is difficult to deal with sequences directly, each sequence Z ∈ Σ∗ is mapped into a

finite dimensional feature vector by a feature representation Φ : Σ∗ → X. Thus, the classifier

is defined as h : X → {0, 1} for data set {< Xj , cj > |X ∈ X, cj ∈ {0, 1}}.
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3.3.1 Contiguous Foreign Subsequences

In this approach, a feature is defined as Xj = x1x2x3. . .xl, a substring of Zi, where xk∈Σ

and l is a constant. The number of possible features is
∣∣Σl

∣∣ ≥ j and each feature Xj is assigned

a class label ci according to the original sequence Zi.

STIDE uses sliding windows with length l over an original input trace to generate fixed-

length substrings as features and constructs a database of the features in the training stage,

and decides a test sequence is anomalous if the number of mismatches in the user-specified

locality frame (locality frame count), which is composed of adjacent features in the frame, is

more than the user-specified threshold. Empirically, it is widely accepted that, for effective

intrusion detection, the minimal value of k is six (Tan and Maxion, 2002).

3.3.2 Bag of System Calls

“Bag of system calls” representation is an integer-frequency based method. In our approach,

a feature is defined as an ordered list Xi = 〈c1, c2, c3, . . ., cm〉 where m = |Σ| and cj is the

number of occurrence of system call sj in the input sequence Zi.

Thus, the original trace is converted to a bag of system calls, and the ordering information

of adjacent system calls in the input sequence is lost and only the frequency of each system

call in the bag is preserved. Intrusion in this feature representation is defined according to the

machine learning algorithm applied.

One of the main issues in this study is whether the bag of system calls representation, which

is already popular in text classification and categorization, can effectively represent intrusion.

We will show experimental results over University of New Mexico (UNM) and Massachusetts

Institute of Technology Lincoln Lab (MIT LL) data in later sections for this issue. It will be

shown that frequency information is effective enough to discriminate between normal sequences

and abnormal sequences. As an example for this, figure 3.1 shows a histogram of the average

frequency of selected system calls in normal sequences and abnormal sequences in UNM denial

of service (DoS) trace data set (also known as stide data set). We found a similar phenomenon

for other data sets including MIT LL data sets.
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Figure 3.1 Average frequency of selected system calls in normal traces and
intrusion traces in UNM denial of service trace data set

3.4 Data Sets

For experiments, we choose publicly available system call sequences from UNM and MIT

LL data.

3.4.1 UNM System System Call Sequences

The University of New Mexico (UNM) provides a number of system call data sets. The

data sets we tested are “live lpr”, “live lpr MIT”, “synthetic sendmail”, “synthetic sendmail

CERT”, and “denial of service”(DoS).

In UNM system call traces, each trace is an output of one program. Sometimes, one trace

has multiple processes. In such cases, we have made one sequence per process in the original

trace. Thus, multiple sequences of system calls are made from one trace if the input trace has

multiple processes in it. However, most traces have only one process and usually one sequence

is created for each trace. Table 3.1 shows the number of original traces and the number of

sequences for each program.

There are three different mapping files in UNM call traces. One is Sun (synthetic sendmail,

synthetic sendmail CERT, synthetic lpr, live lpr and live lpr.MIT) , another is Linux (live

named, login, ps, inet and DoS), and the third is new Linux (synthetic ftp and xlock). There
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Table 3.1 The number of original traces and generated sequences in UNM
data sets

Program # of original traces # of sequences
live lpr (normal) 1232 1232
live lpr (exploit) 1001 1001
live lpr MIT (normal) 2704 2704
live lpr MIT (exploit) 1001 1001
synthetic sendmail (normal) 7 346
synthetic sendmail (exploit) 10 25
synthetic sendmail CERT (normal) 2 294
synthetic sendmail CERT (exploit) 6 34
denial of service (normal) 13726 13726
denial of service (exploit) 1 105

are old and new Sun mapping files but only one system call is added to the new mapping file

so both can be easily converted. The Sun mapping file has a few duplicate system calls (e.g.

‘fstat’, ‘stat’, etc.), but we changed them so that each system call is unique.

3.4.2 MIT Lincoln Lab System Call Sequences

We used data sets provided by the MIT Lincoln Lab (Lippmann et al., 1999).

The fourth week (starting at 6/22/98) training data set of year 1998 is used for the experi-

ments in this study. This training data is comprised of a detailed set of data files representing

the state of a particular system over eight-hour daytime periods over the course of the week

beginning on 6/22/98. Of interest here is the omnibus data file containing all system calls made

during the collection period and the network traffic analysis file (distilled from raw network

data) that identifies inbound network connection attempts.

We explain the issues with cross-indexing the data files. MIT Lincoln Labs datasets in-

cluded an omnibus file containing all system call traces along with a separate, network traffic

analysis data file indicating inbound network connections to the system. Attack attempts are

logged with the network data, so labeling of the training data requires cross-indexing this file

with the system call trace file. The system call trace file identifies the source of each call using

the process ID. Therefore, cross-indexing requires tracking the argument to the ‘exec’ system
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call identifying the binary to be executed. Additionally, the timestamps from the network traf-

fic analyzer do not exactly correspond to the execution timestamps from the operating system

kernel. A tolerance of one second was arbitrarily chosen and seems to permit the matching of

a large majority of connection attempts with their corresponding server processes run on the

target system.

All processes detected that do not correspond to some network connection attempt iden-

tified in the trace are removed from consideration (since they cannot be classified), as are all

calls attributed to a process ID for which an ‘exec’ system call is not found. The resulting

data are available at

http://www.cs.iastate.edu/~dkkang/IDS_Bag/.

3.5 Experiments and Results

We use different approaches for three different types of intrusion detection experiments.

The approaches will be explained at each respective section.

The data sets we have tested are “live lpr”, “live lpr MIT”, “synthetic sendmail”, “synthetic

sendmail CERT”, and “denial of service attack” of UNM, and the fourth week training data

set of year 1998 in MIT LL.

For the evaluation of classifiers generated in the experiment, 10-fold cross validation is

used, so no training information is reused in the test stage. In ‘x’-fold cross-validation, the

data set is divided into x subsets of approximately equal size. One of the subsets is picked for

testing and the rest subsets are used for training. In other words, a classifier is generated from

‘x-1’ subsets and the classifier is tested over the rest subset. This routine is applied for each

of x different subsets, and then accuracy, detection rate and false positive rate are averaged

respectively over each of x different subsets tested. This is to ensure that no information used

for classifier generation is reused as test data.

Accuracy, detection rate, and false positive rate are defined as follows:

accuracy =
# of true positives + # of true negatives

# of input sequences
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detection rate =
# of true positives

# of true positives + # of false negatives

false positive rate =
# of false positives

# of true negatives + # of false positives

3.5.1 Experimental Results on Misuse Detection

For misuse detection, we use several machine learning techniques. We tested Naive Bayes

Multinomial (McCallum and Nigam, 1998), C4.5 (Quinlan, 1993), RIPPER (Cohen, 1995),

SVM (Cortes and Vapnik, 1995; Platt, 1999) (with two class labels), and Logistic Regression.

For SVM, Sequential Minimal Optimization (SMO) (Platt, 1999) with a linear kernel was used

for training, and for logistic regression, a multinomial logistic regression model with a ridge

estimator (Cessie and Houwelingen, 1992) was used. Table 3.2 shows the accuracy, detection

rate, and false positive rate of the data sets with 95% confidence intervals by doing t-test (Duda

et al., 2000). The detection rate is a fraction of the intrusions identified and the false positive

rate is a fraction of normal data mis-identified as intrusion.

The results in table 3.2 show that standard machine learning techniques are effective in

misuse detection with simple bag of system calls representation. For example, with SMO using

a linear kernel, an SVM can perfectly detect both normal and intrusion sequences in the “UNM

live lpr” data set.

In the MIT LL results in table 3.2, it is interesting that all machine learning algorithms

got the same results on each day tested. We did not try to detect the type of intrusion and

assign a corresponding score for the intrusion as was intended in the original evaluation in

1998. Instead we just tried to detect intrusion. Perhaps, the reason that all algorithms have

the same results for each day is that the normal sequences and intrusion sequences in the data

set are already highly different. Wednesday data set was not tested because no intrusions were

in the network traffic analysis file.

One problem is that the machine learning algorithms will not work well when data is

not quite balanced, which is common in intrusion detection practice. For example, “UNM

synthetic sendmail” and “UNM synthetic sendmail CERT” data sets in the table are such

data sets, and that’s why their detection rate or false positive rate is not quite optimal. There
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Figure 3.2 ROC Curve of “UNM live lpr” and “UNM synthetic sendmail”
data sets in misuse detection

are several ways to deal with this imbalanced data problem. Here, we use a cost matrix which

assigns different weights for each misclassification. Figure 3.2 shows the Receiver Operating

Characteristic (ROC) Curve of “UNM live lpr” and “UNM synthetic sendmail” data sets using

C4.5 and Naive Bayes Multinomial algorithms respectively.

From figure 3.2(a), we can see that the classifier generated from “UNM live lpr” data set is

very effective because it has sufficient number of intrusion data for training. The “UNM live

lpr” data set has 183 attributes, 1232 normal sequences, and 1001 intrusion sequences. From

figure 3.2(b), standard machine learning techniques have limitations in this case, because the

data sets themselves are small. The “UNM synthetic sendmail” data set has 182 attributes,

346 normal sequences, and only 25 intrusion sequences. Since we tested the algorithm with 10

fold cross-validation, in some folds, the algorithm did not have enough intrusion samples.

3.5.2 Detecting intrusion from the generated rules

One of the problems in our bag of system calls representation is that, with some machine

learning algorithms, the classification cannot be done until the end of the process (Warrender

et al., 1999). However, with the machine learning algorithms that generate comprehensive

hypotheses, we can use very simple rules to detect a process that has exhibited intrusive

behavior before it is terminated.
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Figure 3.3 C4.5 decision tree for UNM live lpr
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Figure 3.4 C4.5 decision tree for UNM live lpr MIT

Figure 3.3 is the decision tree by C4.5 for the “UNM live lpr” data set.

Though this simple rule does not have a perfect detection rate, it says that “we can guess

the input lpr program trace is an intrusion sequence if the number of occurrences of ‘fstat’

system calls is more than 5”. Therefore, a simple counter program that counts the number of

certain system calls can detect intrusion before the process ends. However, unlike the approach

that detects foreign contiguous subsequences, the counter program may not detect intrusion

just after foreign subsequences are executed.

Figure 3.4 is the decision tree produced by C4.5 for “UNM live lpr MIT” data set. Though

both the “UNM live lpr” data and the “UNM live lpr MIT” data contain intrusion snapshots

by “lprcp” scripts, the generated rule may not always be the same because of different system

environments.

The reason that this difference in frequency matters in classification is that the programs

compromised by the intruder will have more codes (intrusion codes) which will be executed
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Figure 3.5 C4.5 decision tree for multiple intrusions in Linux from UNM
data

during the routine execution of the programs, causing a change in the distribution of system

calls. In the decision trees of figure 3.3 and 3.4, it can be seen that intrusion lies under ‘greater

than (>)’ arc. It is because adding intrusion codes in the original program increases the counts

of those system calls (‘fstat’, ‘unlink’, and ‘getuid’) in the decision trees.

Figure 3.5 shows the decision tree produced by C4.5 for multiple intrusions. The intrusions

are “inted”, “denial of service attack”, “ps”, “login”, and “named” in UNM data. The figure

indicates that this kind of decision tree can be an intrusion detector for composite attacks.

3.5.3 Experimental Results on Supervised Anomaly Detection

For supervised anomaly detection, we used one class Naive Bayes algorithm. In one class

Naive Bayes, we calculate the probability distribution of the training data instead of the

class label conditional probability distribution. For test sequences, we calculated symmetric

Kullback-Liebler divergence (Kullback and Leibler, 1951; Li and Vitanyi, 1993) between the

learned distribution and the distribution of test sequence in bag of system calls representation.
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Figure 3.6 ROC Curve of One class Naive Bayes on UNM live lpr (θ =
0.43)

If the divergence is under a user-specified threshold θ, then the test sequence is considered to

be similar to the learned distribution.

In figure 3.6, we show the result of the one class Naive Bayes algorithm in a bag of system

calls representation on “UNM live lpr” data.

One class Naive Bayes performs effectively on the “UNM live lpr” data set, but does not

perform effectively on some of other data sets, especially when the data set is imbalanced.

3.5.4 Experimental Results on Unsupervised Anomaly Detection

In unsupervised anomaly detection, the learning algorithm assumes that the input data

set is composed of normal sequences and intrusion sequences. Therefore, it assumes the data

distribution is a mixture of the distribution of normal seqeunces and the intrusion seqeunces.

We use k-Means clustering with k set to 2 for clustering normal and intrusion distributions.

We evaluated the clustering based approach on “UNM live lpr” and “UNM synthetic sendmail”

data. The results are shown in table 3.3.

From the results in the table, k-means clustering is effective in unsupervised anomaly

detection on ‘UNM live lpr’ data but not on ‘UNM synthetic sendmail’ data. Hence, there is

a need for more sophisticated approaches for unsupervised anomaly detection.
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3.6 Summary and Discussion

In this study, we have explored the use of a simple bag of system calls representation

of system call sequences for intrusion detection. We constructed decision tree, Naive Bayes,

decision list, and SVM and Logistic Regression classifiers for misuse detection. We constructed

one class Naive Bayes algorithm and K-Means clustering for anomaly detection. In addition

to the fact that we can use those standard machine learning methods, the proposed ‘bag of

system calls’ representation has significant computational advantages over other approaches

that have been reported in the literature.

Results of our experiments using widely used benchmark data sets - the University of New

Mexico (UNM) and MIT Lincoln Lab (MIT LL) system call sequences show that the perfor-

mance of the proposed approach in terms of detection rate and false positive rate is comparable

or superior to that of previously reported data mining approaches to misuse detection. In par-

ticular, as shown in table 3.2, the proposed methods achieve nearly 100% detection rate with

almost 0% false positive rate on all the data sets studied with the exception of two synthetic

data sets (‘UNM synthetic sendmail’ and ‘UNM synthetic sendmail CERT’). It is important

to note that the reported performance measures were estimated using 10 fold cross-validation

which ensures no overlap between training data and test data.

3.6.1 Discussion

When compared with the widely used fixed-length contiguous subsequence models, the bag

of system calls representation explored in this study may seem somewhat simple. It may be

argued that much more sophisticated models that take into account the identity of the user or

perhaps the order in which the calls were made. But our experiments show that a much simpler

approach may be adequate in many scenarios. The results of experiments described in this

study show that it is possible to achieve nearly perfect detection rates and false positive rates

using a data representation that discards the relationship between system call and originating

process as well as the sequence structure of the calls within the traces.

Forrest et al. (Forrest et al., 1996; Warrender et al., 1999) showed that it is possible to
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achieve accurate anomaly detection using fixed-length contiguous subsequence representation

of input data. In their approach, the detector will find anomalous subsequences right after

they are executed depending on user-specified thresholds. The proposed ‘bag of system calls

representation has advantages that learning is faster, memory requirements are significantly

lower, and simple counter program can discriminate normal sequences and abnormal sequences

very quickly, before the process is terminated.

In these respects, a bag of system call representation is very suitable for protecting well

known attacks and trivially modified attacks for IDS under time and space constraints. If the

IDS needs to be built in real-time and the built system must be as light as possible to be able

to work over limited resources such as sensor networks (Akyildizy et al., 2005), our approach

will be a perfect fit because the generated IDS is simple and powerful to detect well known

attacks. However, if the attacker knows the intrusion detection mechanism, our approach can

be deceived by mimicry attacks (Wagner and Soto, 2002). Our future work will be focused on

addressing this problem.

3.6.2 Related Work

Liao and Vermuri (Liao and Vemuri, 2002) used k-Nearest Neighbor (kNN) algorithm

to classify normal and intrusive system call traces. They tested the kNN classifier on 1998

MIT Lincoln Lab BSM data and obtained effective detection rate and low false positive rate.

However, they did not perform the detailed analysis with various machine learning techniques

and multiple data sets. Their algorithm did not generate comprehensible rule sets for intrusive

programs, which is very important for intrusion detection system and analysis.

Warrender, Forrest, and Pearlmutter (Warrender et al., 1999) have presented several in-

trusion detection methods based upon system call trace data. They tested a method that

utilizes sliding windows to determine a database of normal sequences to form a database for

testing against test instances. They then used a similar method to compare windows in the

test instances against the database and classify instances according to a function of the sim-

ilarity of these sequences to those in the normal sequence database. The function requires
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sequential analysis of a window of system calls for each call made by a process. This requires

the maintenance of a large database of normal system call trace sequences.

The same authors have described a rule-based classification method that requires alterations

to the training data to learn. This model involves prediction of the next system call to be

made by a process given some number of calls made immediately before. This method requires

enumeration of all unique system call traces within a given program. This is quite demanding

on a learner, especially in a situation where the datasets are quite large indeed. Even the

space requirements are quite large relative to the input dataset. Finally, classification time is

high for such methods because (in the worst case) each rule needs to be checked for each input

instance.

Warrender et al. have presented Hidden Markov Model (HMM) methods for intrusion

detection. Although this method does not require modification of the input dataset, it does

require individual examination of each dataset to determine the optimal HMM to attempt to

learn in each case. While this requirement does not seem overly demanding, we would prefer

a method which allows classification of multiple input datasets in the same format if possible.

Additionally construction of accurate HMM models can be quite demanding in terms the

amount of training data as well as computational effort. Warrender, et al. observe that, for a

process that makes S system calls, S states (and thus 2S2 values) must be computed. Datasets

of interest in practice contain large amounts of processes (eight hours per day worth in the

case of the MIT Lincoln Labs datasets), and each process makes a large number of system calls

throughout its lifetime. Computing even polynomially many values for each instance becomes

a problem at this scale.

Normalized frequency of audit data was used in SRI NIDES (Anderson et al., 1995). In

NIDES, probability distribution of long term behavior of a program is generated and main-

tained as its profile. For detecting the anomalous behavior of the program, the profile is

compared with short term behavior of the program, which is also maintained as probability

distribution, using a statistical test similar to χ2 test. The behavior of a program is charac-

terized by its audit data such as file access, CPU usage, etc. We maintain the raw count of
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system calls that are sequentially observed from the program as its profile, but this approach

can be applied to other types of audit data. In some machine learning algorithms, raw counts

are normalized and statistically compared with new behavior of the program. The Naive Bayes

learning algorithm, which is one of the learning algorithms reported in this study, generates

class-conditional probability distributions and prior distributions of the raw counts and statis-

tically compares them with new distribution from the new behavior of the program. Moreover,

as we showed, our profile representation can be used effectively with various machine learning

algorithms.

One of the most popular rule induction techniques used in IDS is Repeated Incremental

Pruning to Produce Error Reduction (RIPPER) rule learning algorithm (Cohen, 1995). Lee

et al. (Lee and Stolfo, 1998) used RIPPER on a set of substrings of length 7 generated by

the sliding window from sendmail system call traces. The generated rules are based on the

insight that intrusion can be captured from the fixed-length substrings. For example, the rule

‘normal: p2 = 104, p7 = 112’ means ‘if p2 is 104 and p7 is 112 then the substring is normal’.

This approach, as in the case of STIDE, employs a user-supplied threshold to determine if the

input trace is normal or intrusive. We applied RIPPER on a bag of system calls representation,

and we obtained rules based on counts such as ‘(count(fcntl) ≥ 1) and (count(rename) ≤ 0)

and (count(read) ≥ 5) → class=intrusion’ where count(X) returns the number of occurrence of

system call X in the input trace. The rules generated by our method apply to the entire system

call trace (as opposed to fixed length substring of traces). In our case, the relevant thresholds

are learned directly from the training data, thereby avoiding the necessity of user-supplied

thresholds.

Supervised learning techniques like Multi Layer Perceptron (MLP) with Error Back Propa-

gation (Ghosh and Schwartzbard, 1999) have been investigated, as have unsupervised learning

techniques like Self-Organized Feature Map (SOM) (Gunes Kayacik, 2003). Kang et al. (Kang

et al., 2005a) used principal component analysis (PCA) and time-delay neural network (TDNN)

for mutated attacks. In their model, a network packet is considered as a gray level image where

each byte of a packet is represented a pixel. Chebrolua et al. (Chebrolua et al., 2005) used
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Bayesian Network and Classification and Regression Trees (CART) to detect important fea-

tures for intrusion detection. Spencer (Spencer, 2005) used artificial neural network to detect

anomalies in wireless devices. Jiang et al. (Jiang et al., 2005) combined neural network with

hidden Markov model (HMM) for efficient intrusion detection. Cha et al. (Cha et al., 2005)

designed neural network system using Soundex algorithm to find anomalous behavior patterns.

Xu and Xie (Xu and Xie, 2005) introduced Markov reward process model for the behavior of

the system call sequences and converted the intrusion detection to predicting the value func-

tion of the Markov reward process. Yang et al. (Yang et al., 2005) designed intrusion detection

system based on radial basis function (RBF) and compared the performance with back prop-

agation network. Yang (Yang, 2005) viewed intrusion detection task as a case of data mining

applied to time series. He used autoregressive moving average (ARMA) and Hopfield mod-

els to analyze the time series. Gao et al. (Gao et al., 2005) proposed a method of applying

principal component neural networks for intrusion feature extraction. The extracted features

are employed by SVM for classification. Using neural networks generally requires the spec-

ification of hidden nodes, and the generated model from learning neural network is hard to

comprehend. Sy (Sy, 2005) defined the access signature as the collection of the statistically

significant association patterns of 4th order using mutual information from the sequence of

UNIX command data and used the signature for masquerader detection. Lu et al. (Lu et al.,

2005) used several data mining techniques such as clustering, classification, and association

rules to maximize the effectiveness in identifying attacks, thereby helping the users to con-

struct more secure information systems. Jiang et al. (Jiang et al., 2006) proposed a novel

method to compute the cluster radius threshold. They perform the data classification by an

improved nearest neighbor (INN) method and presented a powerful clustering-based method

for the unsupervised intrusion detection (CBUID).

All of these approaches use n-gram representation for modeling intrusion, but our ap-

proaches uses a bag of system calls representation.

Peddabachigaria et al. (Peddabachigaria et al., 2005) modeled intrusion detection system

using decision tree and support vector machines (SVM). Their hybrid system combined clas-
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sifiers to maximize the accuracy and had more accurate results. One class support vector ma-

chines (OCSVM) which can be useful in learning unlabeled data sets, are used for supervised

anomaly detection by a few researchers. Heller et al. (Heller et al., 2003) compared OCSVM

with probabilistic anomaly detection (PAD) algorithm for Windows Registry data, and con-

cluded that well-defined kernels are important to enhance the performance of OCSVM. Lee et

al. (Lee et al., 2005) proposed Multi-step Multi-class Intrusion Detection System (MMIDS),

which alleviates some drawbacks associated with misuse detection and anomaly detection. The

MMIDS consists of a hierarchical structure of one-class SVM, novel multi-class SVM, and incre-

mental clustering algorithm: Fuzzy-ART. Yilmazel et al. (Yilmazel et al., 2005) compared bag

of words representation (BOW) and NLP based representation for both typical and one-class

classification problem using SVM algorithm. Ma et al. (Ma et al., 2005) implemented multi-

class SVMs (one-versus-rest, one-versus-rest method and a new Decision Tree (DT) SVM) for

intrusion detection. They also applied a support vector (SV) reduction algorithm and found

that it decreases the training time dramatically while improves the detection rate. Steinwart et

al. (Steinwart et al., 2005) interpreted anomaly detection as a binary classification problem of

finding level sets for the data generating density. They compared the corresponding classifica-

tion risk with the standard performance measure for the density level problem, and found that

the empirical classification risk can serve as an empirical performance measure for the anomaly

detection. According to the interpretation, they proposed a support vector machine (SVM)

for anomaly detection and compared their SVM to other commonly used methods including

the standard one-class SVM.

For protein classification, Leslie et al. introduced spectrum kernel (Leslie et al., 2002a)

and mismatch kernel (Leslie et al., 2002b). Spectrum kernel is for k-length continuous subse-

quences, and mismatch kernel is similar to spectrum kernel but mismatches are allowed. Tian

et al. (Tian et al., 2004) developed string kernel for intrusion detection. Their kernel penal-

izes non-continuous occurrences and feature map is indexed by all possible subsequences. Our

future work includes one class SVM experiment on a bag of words feature representation.

Liu et al. (Liu et al., 2005a) investigated three system-call-based feature representations
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for “insider threat” and “external threat”: n-grams of system call names, histograms of system

call names, and individual system calls with associated parameters, and found that none of

these representations consistently performs as well when dealing with the internal threat as

previous results show for external threat detection.

Recently, string alignment techniques has been used for intrusion detection and worm

detection. Using string alignment techniques for intrusion detection is one of our important

future work.

Coull et al. (Coull et al., 2003) first proposed bio-informatics techniques for intrusion de-

tection. They used a semi-global alignment and unique scoring function for detecting intrusive

sequences. Takeda (Takeda, 2005) also applied bio-informatics techniques for network intrusion

detection. Tripp (Tripp, 2005) describes a finite state machine approach to string matching

for an intrusion detection system. To obtain high performance, he designed a hardware for a

parallel string matching. Newsome et al. (Newsome et al., 2005) used an adaptation of the

Smith-Waterman (Smith and Waterman, 1981) algorithm to find an alignment for generating

signatures, which are applied to match polymorphic worm payloads. Tang and Chen (Tang

and Chen, 2005) introduced position-aware distribution signature (PADS), which fits in the

gap between the traditional signatures and the anomaly-based systems, and proposed two

algorithms based on Expectation-Maximization (EM) and Gibbs Sampling for efficient compu-

tation of PADS from polymorphic worm samples. Jiang and Xu (Jiang and Xu, 2005) proposed

behavioral footprinting. They modeled each infection step as a behavior phenotype and the

entire infection session as a sequential behavioral footprint, and presented advanced sequence

analysis techniques to extract a worm’s behavioral footprint from its infection traces

3.6.3 Future Work

Some directions for future work include:

• Further formalizing intrusive behaviors of multiple processes as a multi-bag in IDS frame-

work. A process often fork child processes during the execution and intrusion can be a

cooperative work between the processes in the same group. Thus, it is a more natural
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idea than the conventional approaches to model an IDS to consider cooperative attacks.

However, the research area of a host-based IDS that monitors multiple process’ cooper-

ative behavior has not been explored. Considering this observation, we will propose a

theoretical framework for IDS that models multiple processes as a multi-bag.

• Extending the supervised anomaly detection experiments with one-class support vector

machines (Scholkopf et al., 2001; Leslie et al., 2002a,b; Tian et al., 2004) or other anomaly

detection techniques in SVM (Tax and Duin, 2004)

• Extending feature representation so that subsequences rather than system calls can be

dealt with by the existing machine learning techniques in an efficient way. We believe it

will show better performance in terms of accuracy/detection rate/false positive rate in

supervised anomaly detection

• Modeling multiple processes’ behavior in one trace. Current intrusion detection sys-

tem assumes one process produce intrusions in the intrusion model. Modeling multiple

processes that are cooperative is more probable for future intrusion detection system

• Performing experiments on different operating system such as Microsoft Windows. Anomaly

detection of spyware in Windows is a good example

• Applying generalized global alignment (Huang and Chao, 2003; Takeda, 2005; Coull et al.,

2003) of system call sequences

• Using system call arguments (Mutz et al., 2006) with abstraction (Kang et al., 2004) for

anomaly detection
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Table 3.2 Experimental results of misuse detection estimated using 10 fold
cross-validation with 95% confidence interval

Program Naive Bayes C4.5 RIPPER SVM Logistic
Multinomial Regression

UNM live lpr
accuracy 83.43±1.54 99.91±0.12 99.91±0.12 100.00±0.00 99.91±0.12
detection rate 100.00±0.00 99.80±0.19 99.80±0.19 100.00±0.00 100.00±0.00
false positive rate 30.03±1.90 0.00±0.00 0.00±0.00 0.00±0.00 0.16±0.17
UNM live lpr MIT
accuracy 54.52±1.60 99.89±0.11 99.86±0.12 99.83±0.13 99.97±0.06
detection rate 100.00±0.00 99.90±0.10 99.80±0.14 99.80±0.14 99.90±0.10
false positive rate 62.31±1.56 0.11±0.11 0.11±0.11 0.14±0.12 0.00±0.00
UNM synthetic sendmail
accuracy 20.21±4.09 94.87±2.24 94.33±2.35 95.68±2.07 95.41±2.13
detection rate 92.00±2.76 40.00±4.99 48.00±5.08 40.00±4.99 64.00±4.88
false positive rate 84.97±3.64 1.15±1.08 2.31±1.53 0.28±0.54 2.31±1.53
UNM synthetic sendmail CERT
accuracy 24.39±4.65 96.64±1.95 95.42±2.26 96.03±2.11 96.03±2.11
detection rate 100.00±0.00 85.29±3.83 82.35±4.13 64.70±5.17 82.35±4.13
false positive rate 84.35±3.93 2.04±1.53 3.06±1.86 0.34±0.63 2.38±1.65
UNM denial of service
accuracy 98.70±0.19 99.97±0.03 99.96±0.03 99.98±0.02 99.97±0.03
detection rate 44.76±0.83 99.04±0.16 98.09±0.23 100.00±0.00 99.04±0.16
false positive rate 0.88±0.16 0.02±0.02 0.02±0.02 0.01±0.02 0.01±0.02
MIT LL 1998 4th Week
Monday
accuracy 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
detection rate 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
false positive rate 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Tuesday
accuracy 99.55±0.62 99.55±0.62 99.55±0.62 99.55±0.62 99.55±0.62
detection rate 98.60±1.09 98.60±1.09 98.60±1.09 98.60±1.09 98.60±1.09
false positive rate 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Thursday
accuracy 99.73±0.53 99.73±0.53 99.73±0.53 99.73±0.53 99.73±0.53
detection rate 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
false positive rate 0.04±0.20 0.04±0.20 0.04±0.20 0.04±0.20 0.04±0.20
Friday
accuracy 98.80±1.35 98.80±1.35 98.80±1.35 98.80±1.35 98.80±1.35
detection rate 89.28±3.83 89.28±3.83 89.28±3.83 89.28±3.83 89.28±3.83
false positive rate 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Table 3.3 Results of K-means clustering for unsupervised anomaly detec-
tion, estimated using 10 fold cross-validation with 95% confi-
dence interval

Program Accuracy Detection Rate False Positive
UNM live lpr 99.28±0.35 100.00±0.00 1.29±0.47
UNM synthetic sendmail 80.32±4.05 40.00±4.99 16.76±3.80
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CHAPTER 4. RECURSIVE NAIVE BAYES LEARNER

This chapter is based on the paper published in the Tenth Pacific-Asia Conference on

Knowledge Discovery and Data Mining (Kang et al., 2006). But, there have been added

considerably more contents and experimental results in this chapter.

4.1 Abstract

Naive Bayes (NB) classifier relies on the assumption that the instances in each class can be

described by a single generative model. This assumption can be restrictive in many real world

classification tasks. We describe recursive Naive Bayes learner (RNBL), which relaxes this

assumption by constructing a tree of Naive Bayes classifiers for sequence classification, where

each individual NB classifier in the tree is based on an event model (one model for each class at

each node in the tree). In our experiments on protein sequences, Reuters newswire documents

and UC-Irvine benchmark data sets, we observe that RNBL substantially outperforms NB

classifier. Furthermore, our experiments on the protein sequences and the text documents

show that RNBL outperforms C4.5 decision tree learner (using tests on sequence composition

statistics as the splitting criterion) and yields accuracies that are comparable to those of

support vector machines (SVM) using similar information.

4.2 Introduction

Naive Bayes (NB) classifiers, due to their simplicity and modest computational and training

data requirements, are among the most widely used classifiers on many classification tasks,

including text classification tasks (McCallum and Nigam, 1998) and macromolecular sequence

classification tasks that arise in bio-informatics applications (Andorf et al., 2004). NB classifiers
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belong to the family of generative models (a model for generating data given a class) for

classification. Instances of a class are assumed to be generated by a random process which is

modeled by a generative model. The parameters of the generative model are estimated (in the

case of NB) assuming independence among the attributes given the class. New instances to be

classified are assigned to the class that is the most probable for the instance.

NB classifier relies on the assumption that the instances in each class can be described by a

single generative model (i.e., probability distribution). According to Langley (Langley, 1993),

this assumption can be restrictive in many real world classification tasks. One way to overcome

this limitation while maintaining some of the computational advantages of NB classifiers is to

construct a tree of NB classifiers. Each node in the tree (a NB classifier) corresponds to one

set of generative models (one generative model per class), with different nodes in the tree

corresponding to different generative models for a given class. Langley described a recursive

NB classifier (RBC) for classifying instances that are represented by ordered tuples of nominal

attribute values. RBC works analogous to a decision tree learner (Quinlan, 1993), recursively

partitioning the training set at each node in the tree until the NB classifier of the node simply

cannot partition the corresponding data set. Unlike in the case of the standard decision tree,

the branches out of each node correspond to the most likely class lebels assigned by the NB

classifier at that node. In cases where each class cannot be accurately modeled by a single

Naive Bayes generative model, the subset of instances routed to one or more branches belong

to more than one class. RBC models the distribution of instances in a class at each node using

a Naive Bayes generative model. However, according to Langley’s reports of experiments on

some of the UC-Irvine benchmark data sets, the recursive NB classifier did not yield significant

improvements over standard NB classifier (Langley, 1993).

In this study, we revisit the idea of recursive NB classifier in the context of text/sequence

classification tasks and most of the UC-Irvine benchmark data sets. We describe RNBL, an

algorithm for constructing a tree of Naive Bayes classifiers for sequence classification with two

different event models and two stopping criteria. For text and sequence classification, each

NB classifier in the tree is based on a multinomial event model (McCallum and Nigam, 1998)
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(one for each class at each node in the tree). Our choice of the multinomial event model is

influenced by its reported advantages over the multivariate event model of sequences (Mc-

Callum and Nigam, 1998) in text classification tasks. For UC-Irvine benchmark data sets,

RNBL uses multivariate event model. RNBL works in a manner similar to Langley’s RBC,

recursively partitioning the training set of labeled sequences at each node in the tree until a

stopping criterion is satisfied. The branches out of each node correspond to the most likely

class assigned by the NB classifier at that node. As for the stopping criterion, RNBL uses

either a conditional minimum description length (CMDL) score for the classifier (Friedman

et al., 1997) or area under the ROC curve (AUC). The CMDL score is specifically adapted to

the case of RNBL based on the CMDL score for the NB classifier using the multinomial event

model for sequences (Kang et al., 2005d). Previous reports by Langley (Langley, 1993) in the

case of a recursive NB classifier (RBC) for data sets whose the instances are represented as

tuples of nominal attribute values (such as the UC-Irvine benchmark data), suggested that the

tree of NB classifiers offered little improvement in accuracy over the standard NB classifier. In

our experiments on protein sequence and text classification tasks, we observe that RNBL sub-

stantially outperforms NB classifier. Also, contrary to Langley (Langley, 1993) report, RNBL

mostly outperforms the standard Naive Bayes learner for the UC-Irvine benchmark data sets.

Furthermore, our experiments show that, for the text and sequence classification tasks, RNBL

outperforms C4.5 decision tree learner (using tests on sequence composition statistics as the

splitting criterion) and yields accuracies that are comparable to those of SVM using similar

information.

The rest of the chapter is organized as follows: Section 4.3 briefly introduces the event

models for sequence classification; Section 4.4 presents RNBL (recursive Naive Bayes learner)

algorithm in detail; Section 4.5 presents our experimental results; Section 4.6 concludes with

summary and discussion.
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4.3 Event Models for Naive Bayes Sequence Classification

4.3.1 Multi-variate Bernoulli model

In a multi-variate Bernoulli model, a sequence dj is represented as an instance Ij by a vector

of binary values bi,j ∈ {0, 1} where bi,j denotes the presence or absence of a word wi in the

sequence. The number of occurrence of word is not preserved in the vector. The probability

of sequence dj given its class cj is as follows:

P (dj |cj) =
|Σ|∏

i=1

(bi,jpi,j + (1− bi,j)(1− pi,j)) (4.1)

4.3.2 Multinomial Event Model

Consider sequences defined over a finite alphabet Σ = {w1 · · ·wd} where d = |Σ|. For

example, in the case of protein sequences, Σ can be the 20-letter amino acid alphabet (Σ =

{A1, A2, . . . , A20}). In the case of text, Σ corresponds to the finite vocabulary of words.

Typically, a sequence Sj ∈ Σ? is mapped into a finite dimensional feature space D through a

mapping Φ : Σ? → D.

In a multinomial event model, a sequence Sj is represented by a bag of elements from Σ.

That is, Sj is represented by a vector Dj of frequencies of occurrences in Sj of each element

of Σ. Thus, Dj =< f1j , f2j , . . . , fdj , cj >, where fij ∈ Z∗ denotes the number of occurrences of

wi (the ith element of the alphabet Σ) in the sequence Sj . Thus, we can model the sequence

Sj as a sequence of random draws from a multinomial distribution over the alphabet Σ. If we

denote the probability of picking an element wi given the class cj by P (wi|cj), the probability

of sequence Sj given its class cj under the multinomial event model is defined as follows:

P (X1 = f1j , . . . , Xd = fdj |cj) =





(∑d
i fij

)
!

∏d
i (fij)!





d∏

i=1

P (wi|cj)fij (4.2)

(Note: To be fully correct, we would need to multiply the right hand side of the above

equation by P (N |cj), the probability of drawing a sequence of a specific length N = (
∑d

i fij)

given the class cj , but this is hard to do in practice.)
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Given a training set of sequences, it is straightforward to estimate the probabilities P (wi|cj)

using the Laplace estimator as P̂ (wi|cj) = pij = Countij+1
Countj+d , where Countij is the number of

occurrences of wi in sequences belonging to class cj and Countj is the total number of words

in training set sequences belonging to class cj .

4.4 Recursive Naive Bayes Learner

4.4.1 RNBL Algorithm

As noted above, RNBL, analogous to the decision tree learner, recursively partitions the

training data set using Naive Bayes classifiers at each node of the tree. The root of the tree is a

Naive Bayes classifier constructed from the entire data set. The outgoing branches correspond

to the different class labels, assigned by the Naive Bayes classifier.

For a given input training data set D0(= Dcurrent), we create a Naive Bayes classifier n0.

We compute the stopping criterion Scorecurrent for the classifier n0 (See the later sections for

details of the calculation of CMDL score and AUC score for recursive Naive Bayes classifier).

The classifier n0 partitions the data set D0 into |C| subsets based on the class labels assigned

to the instances ∈ D0 by the classifier n0. Each such subset is in turn used to train additional

Naive Bayes classifiers. At each step, the score for the resulting tree of Naive Bayes classi-

fiers is computed and compared with the score of the classifier from the previous step. This

recursive process terminates when additional refinements of the classifier yield no significant

improvement in the score. Fig. 4.1 shows the pseudo-code of RNBL algorithm.

Analogous to a decision tree, the resulting classifier predicts a class label for a new instance

as follows: starting at the root of the tree, the instance is routed along the outgoing branches

of successive Naive Bayes classifiers, at each node following the branch corresponding to the

most likely class label for the instance, until a leaf node is reached. Finally, The instance is

assigned the label predicted by the classifier at the leaf node.
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RNBL(Dcurrent) :
begin

1. Input : data set D0 = Dcurrent // data set

2. Estimate probabilities based on D0 that specify the Naive Bayes
classifier n0

3. Add n0 to the current classifier hcurrent if n0 /∈ hcurrent

4. Scorecurrent ← CMDL(hcurrent|D0) or AUC(hcurrent|D0) //
CMDL/AUC score of the current classifier.

5. Partition Dcurrent into D = {D1, D2, . . . , D|C||∀S∈Di∀j 6=i, P (ci|S) >

P (cj |S)}

6. For each Di ∈ D, estimate probabilities that specify the corre-
sponding Naive Bayes classifiers ni

7. hpotential ← refinement of hcurrent given Di with the classifiers
corresponding to each ni based on the corresponding Di in the
previous step // see Fig. 4.2 for details

8. Scorepotential ← CMDL(hpotential|
∑|C|

i=0 Di) or
AUC(hpotential|

∑|C|
i=0 Di) // CMDL/AUC score resulting from the

refined classifier

9. If Scorepotential > Scorecurrent then // accept the refinement

10. Add each ni to hcurrent

11. For each child node ni

12. RNBL(Di) // recursion

13. End For

14. End If

15. Output : hcurrent

end.

Figure 4.1 Recursive Naive Bayes Learner
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4.4.2 CMDL for a Recursive Naive Bayes Classifier

RNBL employs the conditional minimum description length (CMDL) score (Friedman et al.,

1997), specifically adapted to the case of RNBL, based on the CMDL score for NB classifier

using multivariate and multinomial event models (Kang et al., 2005d) as the stopping criterion.

Let vj be a set of attribute values of jth instance dj ∈ D, and cj ∈ C a class label associated

with dj . Then, the conditional log likelihood of the hypothesis B given data D is

CLL(B|D) = |D|
|D|∑

log{PB(c|v)} = |D|
|D|∑

log

{
PB(c)PB(v|c)∑|C|

ci
PB(ci)PB(v|ci)

}
(4.3)

For Naive Bayes classifier, this score can be efficiently calculated (Zhang and Honavar,

2004).

CLL(B|D) = |D|
|D|∑

log

{
PB(c)

∏vi∈v{PB(vi|c)}∑|C|
ci

PB(ci)
∏vj∈v{PB(vj |ci)}

}

This is the conditional log likelihood of Naive Bayes Multi-variate Bernoulli model (Zhang

and Honavar, 2004).

And the corresponding conditional minimum description length (CMDL) score is defined

as follows:

CMDL(B|D) = −CLL(B|D) +
{

log |D|
2

}
size(B)

where, size(B) is a size of the hypothesis B which corresponds to the number of entries in

conditional probability tables (CPT) of B.

In case of a Naive Bayes classifier with multi-variate Bernoulli model, size(B) is defined as

size(B) = (|C| − 1) + |C|
|v|∑

i=1

(|vi| − 1)

where |C| is the number of class labels, |v| is the number of attributes, and |vi| is the

number of attribute values for an attribute vi.

Combining the equations 4.2 and 4.3, we can obtain the conditional log likelihood of the

classifier B given data D under the Naive Bayes multinomial model.
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CLL(B|D) = |D|
|D|∑

j

log





P (cj)

{(∑|Σ|
i fi,j

)
!

∏|Σ|
i (fi,j)!

}
∏|Σ|

i {pfi,j

i,j }

∑|C|
k

{
P (ck)

{(∑|Σ|
i fi,k

)
!

∏|Σ|
i (fi,k)!

}
∏|Σ|

i {pfi,k

i,k }
}





where, |D| is the number of instances, cj ∈ C is a class label for instance dj ∈ D, fi,j is

a integer frequency of word wi ∈ Σ in instance dj , and pi,j is the estimated probability that

word wi occurred in the instances associated to class label j.

Conditional Minimum Description Length (CMDL) of a Naive Bayes Classifier for the

multinomial model is defined as follows:

CMDL(B|D) = −CLL(B|D) +
{

log |D|
2

}
size(B)

where, size(B) is a size of the hypothesis B which corresponds to the number of entries in

conditional probability tables (CPT) of B.

Therefore, size(B) is estimated as

size(B) = (|C| − 1) + |C||Σ|

where |C| is the number of class labels, and |Σ| is the cardinality of the vocabulary (i.e.

the number of all distinct words).

For more detailed description on CMDL score, please refer to section 2.4.2.3 and 2.4.2.4.

We observe that in the case of a recursive Naive Bayes classifier, CLL(h|D) can be decom-

posed in terms of the CLL scores of the individual Naive Bayes classifiers at the leaves of the

tree of classifiers. Consequently, the CMDL score for the composite tree-structured classifier

can be written as follows:

CMDL(h|D) =
∑

node∈Leaves(h)

CLL(hnode|Dnode)−
{

log |D|
2

}
size(h),

where size(h) = ((|C| − 1) + |C||Σ|)|h|, denoting |h| the number of nodes in h.

For example, Fig. 4.2 shows a Recursive Naive Bayes classifier consisting of 5 individual

Naive Bayes classifiers. ĉ+ and ĉ− are the predicted outputs of each hypothesis.
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Figure 4.2 Recursion tree of classifiers. Note that hpotential is the refine-
ment of hcurrent by adding nodes n000(D000) and n001(D001) as
children of n00(D00).

In the figure,

CLL(hcurrent|D) = CLL(n00|D00) + CLL(n01|D01)

and

CLL(hpotential|D) = CLL(n000|D000) + CLL(n001|D001) + CLL(n01|D01),

where |C|=2, |hcurrent| = 3, and |hpotential| = 5.

Using the CMDL score, we can choose the hypothesis h that effectively trades off the

complexity, measured by the number of parameters, against the accuracy of classification. As

is described in Fig. 4.1, the algorithm terminates when none of the refinements of the classifier

(splits of the tree nodes) yields statistically significant improvement in the overall CMDL score.

4.4.3 Area Under the Curve (AUC) score for Naive Bayes Classifier

The receiver operating characteristics (ROC) curve was originally used in signal detection

theory (Mason and Graham, 2002). ROC curve is usually drawn for soft binary classifiers on

two dimension of true positive rate and false positive rate. A binary classifier is not soft if it

assigns score ∈ {0, 1} for each class label when it classify an instance. Thus, a soft classifier
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can assign score ∈ [0..1] for each class label, and the scores assigned to one instance can be

different from those to other instances. From a binary classifier, we can easily draw ROC curve

with the following definition of true positive rate and false positive rate.

True positive rate =
# of True positives

# of True positives + # of False negatives

False positive rate =
# of False positives

# of True negatives + # of False positives

ROC analysis (Provost and Fawcett, 1997) has been used in machine learning because it

can deals with skew sensitivity when cost parameters are not known.

Area under the ROC curve (AUC) (Hand and Till, 2001) is a calculated area under the ROC

curve. According to (Hand and Till, 2001), AUC, Â, is equivalent to Mann-Whitney-Wilcoxon

sum of ranks test which is described as follows:

Â =
S(+) − Pos×(Pos+1)

2

Pos×Neg

where S(+) is the sum of the ranks of the positive class points, Pos is the number of instances

with positive class, and Neg is the number of instances with negative class.

4.5 Experiments

To evaluate RNBL, recursive Naive Bayes learner, we conducted experiments using three

classification tasks: (a) assigning Reuters newswire articles to categories, (b) classifying pro-

tein sequences in terms of their cellular localization, (c) and classification tasks on UC-Irvine

benchmark data sets. The results of the experiments described in this section show that the

classifiers generated by RNBL are typically more accurate than Naive Bayes classifiers, and

that RNBL sometimes yields more accurate classifiers than C4.5 decision tree learner (using

tests on sequence composition statistics as the splitting criterion). Especially for text/sequence

classification, RNBL yields accuracies that are comparable to those of linear kernel based SVM

trained with the SMO algorithm (Platt, 1999) on a bag of letters (words) representation of

sequences (text).
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4.5.1 Reuters 21587 Text Categorization Test Collection

Reuters 21587 distribution 1.0 data set1 consists of 12902 newswire articles in 135 overlap-

ping topic categories. We followed the ModApte split (Apté et al., 1994) in which 9603 stories

are used to train the classifier and 3299 stories to test the accuracy of the resulting classifier.

We eliminated the stories that do not have any topic associated with them (i.e., no class label).

As a result, 7775 stories were used for training and 3019 stories for testing the classifier.

Because each story has multiple topics (class labels), we built binary classifiers for the top

ten most populous categories following the setup used in previous studies by other authors (Du-

mais et al., 1998; Joachims, 1998; McCallum and Nigam, 1998; Sandler, 2005; Keerthi, 2005;

Joachims, 2005; Gabrilovich and Markovitch, 2005; Carvalho and Cohen, 2005; Rooney et al.,

2006; Zhang and Lee, 2006).

In our experiments, stop words were not eliminated, and title words were not distinguished

from body words. Following the widely used procedure for text classification tasks with large

vocabularies, we selected top 300 features based on mutual information with class labels. The

mutual information MI(x, c) between a feature x and a category c is defined as follows:

MI(x, c) =
x∑ {

c∑{
P (x, c)log

P (x, c)
P (x)P (c)

}}

For evaluation of the classifiers, following the standard practice in text classification liter-

ature, we report the break-even points, which is the average of precision and recall when the

difference between the two is minimum. Precision and recall are defined as follows:

Precision =
|detected documents in the category|

|documents in the category| =
TP

TP+FN

Recall =
|detected documents in the category|

|detected documents| =
TP

TP+FP

Table 4.1 shows the break-even points of precision and recall as a performance measure for

the ten most frequent categories. The results in the table show that, RNBL outperforms the
1This collection is publicly available at

http://www.daviddlewis.com/resources/testcollections/reuters21578/.
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Table 4.1 Break-even point of precision and recall (a standard accuracy
measure for ModApte split of Reuters 21587 data set) on the 10
largest categories of Reuters 21587 data set.

Data NBL RNBL C4.5 SVM
name # train (+/−) # test (+/−) point point point point

earn 2877 / 4898 1087 / 1932 94.94 96.50 95.58 97.24
acq 1650 / 6125 719 / 2300 89.43 93.32 89.29 92.91
money-fx 538 / 7237 179 / 2840 64.80 69.83 69.27 72.07
grain 433 / 7342 149 / 2870 74.50 89.26 85.23 89.26
crude 389 / 7386 189 / 2830 79.89 77.78 76.19 86.77
trade 369 / 7406 117 / 2902 59.83 70.09 61.54 71.79
interest 347 / 7428 131 / 2888 61.07 70.99 64.89 73.28
ship 197 / 7578 89 / 2930 82.02 82.02 65.17 80.90
wheat 212 / 7563 71 / 2948 57.75 73.24 87.32 80.28
corn 181 / 7594 56 / 2963 57.14 67.85 92.86 76.79

other algorithms, except SVM, in terms of classification accuracy for Reuters 21587 text data

set.

Figure 4.3 shows Precision-Recall curve (Fawcett, 2003, 2006) for the “Earn” category.

It can also be seen that RNBL compares favorably with Naive Bayes and C4.5 decision tree

learner.

4.5.2 Protein Subcellular Localization Prediction

We applied RNBL to two protein sequence data sets, where the goal is to predict the

subcellular localization of the proteins (Reinhardt and Hubbard, 1998; Andorf et al., 2006).

The first data set consists of 997 prokaryotic protein sequences derived from SWISS-PROT

database (release 33.0) (Bairoch and Apweiler, 2000). This data set includes proteins from

three different subcellular locations: cytoplasmic (688 proteins), periplasmic (202 proteins),

and extracellular (107 proteins).

The second data set contains 2427 eukaryotic protein sequences derived from SWISS-PROT

database (release 33.0) (Bairoch and Apweiler, 2000). This data set includes proteins from

the following four different subcellular locations: nuclear (1097 proteins), cytoplasmic (684
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Figure 4.3 Precision-Recall Curves of “Earn” Category

proteins), mitochondrial (321 proteins), extracellular (325 proteins).

The accuracy, sensitivity, and specificity of the classifiers (estimated using 10-fold cross-

validation) on the two data sets 2 are shown in Table 4.2. Each measure is defined as follows:

Accuracy =
TP + TN

TP+TN+FP+FN

Sensitivity =
TP

TP+FN

Specificity =
TP

TP+FP

where, TP is the number of true positives, FP is the number of false positives, TN is the

number of true negatives, and FN is the number of false negatives.

The results show that RNBL generally outperforms C4.5, and compares favorably with

SVM. Specificity of SVM for ‘Mitochondrial’ is “N/A”, because the SVM classifier always out-

puts negative when most of the instances in the data set have negative class label (imbalanced),

which leads its specificity to be undefined.
2These two datasets are available to download at

http://www.doe-mbi.ucla.edu/˜astrid/astrid.html.
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Figure 4.4 shows receiver operating characteristic (ROC) curves of Naive Bayes, recursive

Naive Bayes, C4.5, and SVM classifiers applied to ‘Peripalsmic Prokaryotic’ and ‘Cytoplas-

mic Eukaryotic’ protein sequences for the same task (predicting localization) described in the

table 4.2. The areas under the curve (AUC) for Naive Bayes, recursive Naive Bayes, C4.5,

and SVM classifiers for ‘Peripalsmic Prokaryotic’ protein sequences are 0.8494, 0.9311, 0.7379,

and 0.8708 respectively (shown in figure 4.4(a)), and for ‘Cytoplasmic Eukaryotic’ protein se-

quences, 0.7985, 0.9689, 0.7320, and 0.7949 respectively (shown in figure 4.4(b)). The graphs in

the figure 4.4 show that AUC for recursive Naive Bayes classifier is higher than other classifiers,

which means that RNBL is a promising algorithm for the task.

The third data set3 comprises a total of 7589 eukaryotic proteins derived from SWISS-

PROT data base (realease 39.0) (Bairoch and Apweiler, 2000). The data set includes proteins

from the following twelve different subcellular locations (number of proteins in parentheses):

chloroplast (671), cytoplasmic (1245), cytoskeleton (41), endoplasmic reticulum (114), ex-

tracellular (862), golgi apparatus (48), lysosomal (93), mitochondrial (727), nuclear (1932),

peroxisomal (125), plasma membrane (1677), and vacuolar(54). This dataset is adapted from

the protein localization prediction studies of (Cai et al., 2002; Park and Kanehisa, 2003).

Table 4.3 indicates that, in most cases, RNBL generates classifiers that have higher accuracy

than those of C4.5 decision tree learner, and are comparable to those of SVM.

‘Vacuolar’ localization entry of C4.5 is “N/A” because both TP and FP are zero, which

leads to undefined Specificity. The reason is that the classifier always outputs negative because

the data set is imbalanced. Most Specificity entries for SVM in the table are also “N/A” for

the same reason.

Figure 4.5 shows ROC curves of Naive Bayes, recursive Naive Bayes, C4.5, and SVM

classifiers applied to ‘Extracellular’ and ‘Nuclear’ protein sequences for the same task (pre-

dicting localization) described in the table 4.3. The areas under the curve (AUC) for Naive

Bayes, recursive Naive Bayes, C4.5, and SVM classifiers for ‘Extracellular’ protein sequences

are 0.7600, 0.8228, 0.7673, and 0.8139 respectively (shown in figure 4.5(a)), and for ‘Nuclear’
3These datasets are available to download at

http://web.kuicr.kyoto-u.ac.jp/˜park/Seqdata/.
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protein sequences, 0.8494, 0.9532, 0.7727, and 0.9027 respectively (shown in figure 4.5(b)).

Similarly to the second data set, the results shown in the table 4.3 and figure 4.5 indi-

cate that RNBL generally outperforms or at least shows comparable performance over other

algorithms we have compared on protein sequence classification.

4.5.3 UC Irvine Benchmark Data Sets

For the benchmark data sets, we chose 35 data sets from UCI data repository4 (Blake and

Merz, 1998). The data sets in the repository are widely used to evaluate machine learning

algorithms.

Table 4.4 shows the accuracy of Naive Bayes Classifier (NBC), C4.5 decision tree, support

vector machines (SVM), and recursive Naive Bayes Classifier (RNBC) regularized with condi-

tional minimum description length (CMDL) and area under the ROC curve (AUC) respectively

on UC-Irvine benchmark data sets, calculated by 10-fold cross validation with 95% confidence

interval.

From the table 4.4, it is not easy to find one superior learning algorithm that dominates the

other algorithms for most data sets. Overall, there is no one superior algorithm that dominates

others. However, as for the comparison between NBC and RNBC, RNBC are more or equally

accurate than NBC for 26 out of 35 data sets. Thus, we can see that RNBC mostly yields

higher accuracy over NBC.

4.6 Related Work and Summary

4.6.1 Related Work

As noted earlier, Langley (Langley, 1993) investigated recursive Bayesian classifiers for the

instances described by tuples of nominal attribute values. RNBL reported in this study applies

to not only the data of such kind, but also text/sequence data with multivariate/multinomial

event models.
4This collection is publicly available at

http://www.ics.uci.edu/˜mlearn/MLRepository.html.
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There have been research work on relaxing the independence assumption of a Naive Bayes

learning algorithm. Kohavi (Kohavi, 1996) introduced NBTree algorithm, a hybrid of a decision

tree and Naive Bayes classifiers for instances represented using tuples of nominal attributes.

NBTree evaluates the attributes available at each node to decide whether to continue building

a decision tree or to terminate with a Naive Bayes classifier. In contrast, RNBL algorithm,

like Langley’s RBC, builds a decision tree, whose nodes are all Naive Bayes Classifiers.

Webb et al. (Webb et al., 2005) proposed an approach to improve the accuracy of Naive

Bayes by weakening its attribute independence assumption by averaging all of a constrained

class of classifiers. Langseth and Nielsen (Langseth and Nielsen, 2006) focus on a relatively

new set of models, termed Hierarchical Naive Bayes models. Hierarchical Naive Bayes models

extend the modeling flexibility of Naive Bayes models by introducing latent variables to relax

some of the independence statements in these models. Liu et al. (Liu et al., 2005b) propose an

algorithm named Graph-NB, which upgrades Naive Bayesian classifier to deal with multiple

tables directly. In order to take advantage of linkage relationships among tables, and treat

different tables linked to the target table differently, a semantic relationship graph is developed

to describe the relationship and to avoid unnecessary joins.

Gama and Brazdil (Gama and Brazdil, 2000) proposed an algorithm that generates a

cascade of classifiers. Their algorithm combines Naive Bayes, C4.5 decision tree and linear dis-

criminants, and introduces a new attribute at each stage of the cascade. Gama (Gama, 2001)

proposed an algorithm for multivariate tree learning that combines a univariate decision tree

with a discriminant function by means of constructive induction. The algorithm uses Linear

Bayes classifier for constructing new attributes. For growing trees, the algorithm builds multi-

variate decision nodes, and for pruning, the algorithm builds functional decision nodes. In both

approaches, they performed experiments on several UC-Irvine benchmark data sets (Blake and

Merz, 1998) for classifying instances represented as tuples of nominal attribute values. RNBL

also recursively applies only the Naive Bayes classifier based on the multivariate/multinomial

event models for text and sequences.

Area under the curve (AUC) has been used for the evaluation of prediction ability of the
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learning algorithms. Huang and Ling (Huang and Ling, 2005) established formal criteria for

comparing AUC and accuracy for learning algorithms and showed theoretically and empirically

that AUC is a better measure (defined precisely) than accuracy. Brefeld and Scheffer (Brefeld

and Scheffer, 2005) presented a rigorous derivation of an AUC maximizing Support Vector

Machine (SVM). In our research, we maximize AUC for recursive Naive Bayes learner.

4.6.2 Summary

RNBL algorithm described in this study relaxes the single generative model per class as-

sumption of NB classifiers, while maintaining some of their computational advantages. RNBL

constructs a tree of Naive Bayes classifiers for UC Irvine benchmark data, text documents

and biological sequences. It works in a manner similar to Langley’s RBC (Langley, 1993),

recursively partitioning the training set of labeled sequences at each node in the tree until

a stopping criterion is satisfied. RNBL employs both the conditional minimum description

length (CMDL) score (Friedman et al., 1997) and AUC score for the classifier. The CMDL

score for RNBL is specifically adapted to the case of RNBL classifier based on the CMDL

score for the Naive Bayes classifier using the multivariate (Zhang and Honavar, 2004) and

multinomial (Kang et al., 2005d) event model as its stopping criterion. Previous reports by

Langley (Langley, 1993) in the case of a recursive NB classifier (RBC) on selected UC-Irvine

benchmark data sets whose instances were represented by tuples of nominal attribute values

(such as the UC-Irvine benchmark data) had suggested that the tree of NB classifiers offered

little improvement in accuracy over the standard NB classifier. In contrast, we observe that on

protein sequence and text classification tasks, RNBL substantially outperforms the NB clas-

sifier. Furthermore, our experiments show that RNBL outperforms C4.5 decision tree learner

(using tests on sequence composition statistics as the splitting criterion) and yields accuracies

that are comparable to those of SVM using similar information. As for UC-Irvine benchmark

data, the classifiers from RNBL still mostly outperforms Naive Bayes classifiers, as shown in

table 4.4.

Given the relatively modest computational requirements of RNBL relative to SVM, RNBL
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is an attractive alternative to SVM in training classifiers on extremely large data sets of protein

sequences or text documents, and works favorably over Naive Bayes learner on multivariate

data sets such as UC-Irvine benchmark data.

4.6.3 Future Work

Some directions for future work include the following:

• Exploration of the use of abstraction hierarchies (discussed in chapter 2) over letters of

the alphabet (or words of the vocabulary) (Kang et al., 2005d; Zhang and Honavar, 2004)

with RNBL

• Investigation of alternative model selection measures as split stopping criteria for RNBL-

MN rather than conditional minimum description length (CMDL) and Area Under the

ROC Curve (AUC)

• Formal analysis and comparison of information gains obtained by selecting one attribute

and obtained by choosing the predicted label of Naive Bayes classifier over the attributes

• Experimental analysis of the independence among the attributes affects the accuracy of

decision tree induction algorithms and RNBL, using artificially created data sets
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Table 4.2 Localization prediction results of RNBL and other learning algorithms
on Prokaryotic and Eukaryotic protein sequences, calculated by 10-fold
cross validation with 95% confidence interval.

(a) Prokaryotic protein sequences

Algorithm Measure Cytoplasmic Extracellular Peripalsmic
NBL-MN accuracy 88.26±2.00 93.58±1.52 81.85±2.39

specificity 89.60±1.89 65.93±2.94 53.85±3.09
sensitivity 93.90±1.49 83.18±2.32 72.77±2.76

RNBL (CMDL) accuracy 90.67±1.81 94.58±1.41 87.76±2.03
specificity 91.61±1.72 75.73±2.66 73.53±2.74
sensitivity 95.20±1.33 72.90±2.76 61.88±3.01

RNBL (AUC) accuracy 90.67±1.81 93.78±1.50 87.96±2.02
specificity 91.73±1.71 69.91±2.85 73.84±2.73
sensitivity 95.06±1.35 73.83±2.73 62.87±3.00

C4.5 accuracy 84.15±2.27 91.98±1.69 84.65±2.24
specificity 88.58±1.97 63.37±2.99 64.00±2.98
sensitivity 88.32±1.99 59.81±3.04 55.45±3.09

SVM accuracy 87.26±2.07 93.78±1.50 79.74±2.49
specificity 84.67±2.24 89.47±1.91 50.00±3.10
sensitivity 99.56±0.41 47.66±3.1 0.50±0.44

(b) Eukaryotic protein sequences

Algorithm Measure Cytoplasmic Extracellular Mitochondrial Nuclear
NBL-MN accuracy 71.41±1.80 83.11±1.49 71.69±1.79 80.72±1.57

specificity 49.55±1.99 40.23±1.95 25.86±1.74 82.06±1.53
sensitivity 81.29±1.55 53.85±1.98 61.06±1.94 73.38±1.76

RNBL (CMDL) accuracy 78.12±1.64 92.13±1.07 87.72±1.31 83.48±1.48
specificity 60.24±1.95 75.97±1.70 54.44±1.98 84.30±1.45
sensitivity 65.79±1.89 60.31±1.95 43.93±1.97 78.09±1.65

RNBL (AUC) accuracy 77.13±1.67 90.73±1.15 86.53±1.36 83.40±1.48
specificity 58.57±1.96 67.12±1.87 48.93±1.99 84.29±1.45
sensitivity 64.47±1.90 60.31±1.95 42.68±1.97 77.76±1.65

C4.5 accuracy 78.99±1.62 91.18±1.13 86.57±1.36 79.85±1.60
specificity 63.51±1.92 69.89±1.83 49.03±1.99 77.94±1.65
sensitivity 59.80±1.95 60.00±1.95 39.25±1.94 77.30±1.67

SVM accuracy 71.98±1.79 86.69±1.35 86.77±1.35 79.36±1.61
specificity 83.33±1.48 100.00±0.00 N/A 87.53±1.31
sensitivity 0.73±0.34 0.62±0.31 0.00±0.00 63.35±1.92
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Table 4.3 Localization prediction results on 7589 Eukaryotic protein sequences, calcu-
lated by 10-fold cross validation with 95% confidence interval.

Algorithm Measure Chloroplast Cytoplasmic Cytoskeleton ER

NBL-MN accuracy 78.11±0.93 77.58±0.94 95.08±0.49 91.44±0.63
specificity 17.11±0.85 38.62±1.10 6.30±0.55 9.65±0.66
sensitivity 38.30±1.09 62.61±1.09 60.00±1.10 56.14±1.12

Recursive accuracy 90.71±0.65 84.64±0.81 99.50±0.16 98.56±0.27
NBL-MN specificity 44.59±1.12 53.79±1.12 51.92±1.12 53.42±1.12
(CMDL) sensitivity 20.27±0.91 44.00±1.12 67.50±1.05 34.21±1.07

Recursive accuracy 90.26±0.67 83.55±0.83 97.95±0.32 97.99±0.32
NBL-MN specificity 39.76±1.10 49.71±1.13 15.98±0.82 33.62±1.06
(AUC) sensitivity 19.37±0.89 41.10±1.11 67.50±1.05 34.21±1.07

C4.5 accuracy 90.12±0.67 83.39±0.84 99.56±0.15 98.44±0.28
specificity 42.86±1.11 49.15±1.13 66.67±1.06 45.45±1.12
sensitivity 34.87±1.07 41.90±1.11 35.00±1.07 17.54±0.86

SVM accuracy 91.15±0.64 83.63±0.83 99.47±0.16 98.50±0.27
specificity N/A N/A N/A N/A
sensitivity 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Algorithm Measure Extracellular Golgi Lysosomal Mitochondrial

NBL-MN accuracy 81.59±0.87 94.29±0.52 90.88±0.65 78.28±0.93
specificity 30.31±1.03 2.70±0.36 7.53±0.59 15.43±0.81
sensitivity 47.74±1.12 23.40±0.95 56.99±1.11 28.20±1.01

Recursive accuracy 91.36±0.63 99.18±0.20 98.54±0.27 89.09±0.70
NBL-MN specificity 71.73±1.01 25.81±0.99 40.63±1.11 31.48±1.05
(CMDL) sensitivity 39.49±1.10 17.02±0.85 41.94±1.11 11.69±0.72

Recursive accuracy 90.26±0.67 98.88±0.24 97.94±0.32 88.82±0.71
NBL-MN specificity 62.84±1.09 16.07±0.83 27.97±1.01 30.13±1.03
(AUC) sensitivity 34.96±1.07 19.15±0.89 43.01±1.11 12.52±0.75

C4.5 accuracy 90.46±0.66 99.37±0.18 98.59±0.27 87.83±0.74
specificity 58.98±1.11 0.00±0.00 36.54±1.08 31.29±1.04
sensitivity 52.61±1.12 0.00±0.00 20.43±0.91 22.42±0.94

SVM accuracy 88.64±0.71 99.38±0.18 98.77±0.25 90.41±0.66
specificity N/A N/A N/A N/A
sensitivity 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Algorithm Measure Nuclear Peroxisomal Plasma Vacuolar

NBL-MN accuracy 85.88±0.78 92.15±0.61 92.43±0.60 94.92±0.49
specificity 70.70±1.02 4.46±0.46 78.86±0.92 6.56±0.56
sensitivity 76.19±0.96 18.40±0.87 89.78±0.68 46.30±1.12

Recursive accuracy 86.74±0.76 98.03±0.31 93.88±0.54 98.92±0.23
NBL-MN specificity 74.91±0.98 12.50±0.74 85.50±0.79 20.83±0.91
(CMDL) sensitivity 72.15±1.01 3.20±0.40 87.04±0.76 18.52±0.87

Recursive accuracy 86.00±0.78 97.59±0.35 93.76±0.54 98.47±0.28
NBL-MN specificity 73.33±1.00 7.35±0.59 85.26±0.80 11.25±0.71
(AUC) sensitivity 70.86±1.02 4.00±0.44 86.74±0.76 16.67±0.84

C4.5 accuracy 83.45±0.84 98.26±0.29 90.74±0.65 99.29±0.19
specificity 68.85±1.04 34.78±1.07 80.11±0.90 N/A
sensitivity 64.08±1.08 6.40±0.55 77.24±0.94 0.00±0.00

SVM accuracy 82.32±0.86 98.35±0.29 93.47±0.56 99.29±0.19
specificity 83.87±0.83 N/A 95.66±0.46 N/A
sensitivity 37.94±1.09 0.00±0.00 73.78± 0.00±0.00
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Table 4.4 Accuracy of Naive Bayes Classifier (NBC), Recursive Naive Bayes Classifier
(RNBC) regularized with conditional minimum description length (CMDL)
and area under the ROC curve (AUC), C4.5 decision tree, and support vector
machines (SVM) respectively on UC-Irvine benchmark data sets, calculated
by 10-fold cross validation with 95% confidence interval.

Data NBC RNBC (CMDL) RNBC (AUC) C4.5 SVM

Anneal 86.30±2.25 98.00±0.92 98.00±0.92 98.44±0.81 97.44±1.03
Audiology 73.45±5.76 73.45±5.76 73.45±5.76 77.88±5.41 81.86±5.02
Autos 56.10±6.79 72.20±6.13 72.20±6.13 81.95±5.26 71.22±6.20
Balance-scale 90.40±2.31 90.40±2.31 90.40±2.31 76.64±3.32 87.68±2.58
Breast-cancer 71.68±5.22 69.93±5.31 69.93±5.31 75.52±4.98 69.58±5.33
Breast-w 95.99±1.45 95.28±1.57 95.28±1.57 94.56±1.68 97.00±1.27
Colic 77.99±4.23 82.34±3.90 82.34±3.90 85.33±3.62 82.61±3.87
Credit-a 77.68±3.11 81.45±2.90 81.59±2.89 86.09±2.58 84.93±2.67
Credit-g 75.40±2.67 74.60±2.70 74.70±2.69 70.50±2.83 75.10±2.68
Dermatology 97.81±1.50 97.81±1.50 97.81±1.50 93.99±2.44 94.81±2.27
Diabetes 76.30±3.01 74.35±3.09 73.96±3.10 73.83±3.11 77.34±2.96
Glass 48.60±6.70 66.82±6.31 66.82±6.31 66.82±6.31 56.07±6.65
Heart-c 83.50±4.18 80.86±4.43 81.19±4.40 77.56±4.70 84.16±4.11
Heart-h 83.67±4.23 82.99±4.29 82.99±4.29 80.95±4.49 82.65±4.33
Heart-statlog 83.70±4.41 82.59±4.52 82.59±4.52 76.67±5.05 84.07±4.36
Hepatitis 84.52±5.70 84.52±5.70 84.52±5.70 83.87±5.79 85.16±5.60
Hypothyroid 95.28±0.68 98.17±0.43 98.17±0.43 99.58±0.21 93.61±0.78
Ionosphere 82.62±3.96 93.45±2.59 93.45±2.59 91.45±2.92 88.60±3.51
Iris 96.00±3.14 92.67±4.17 92.67±4.17 96.00±3.14 96.00±3.14
Kr-vs-kp 87.89±1.13 92.37±0.92 92.30±0.92 99.44±0.26 95.43±0.72
Labor 89.47±7.97 89.47±7.97 89.47±7.97 73.68±11.43 89.47±7.97
Letter 64.12±0.66 89.53±0.42 85.41±0.49 87.98±0.45 82.34±0.53
Lymph 83.11±6.04 79.05±6.56 78.38±6.63 77.03±6.78 86.49±5.51
Mushroom 95.83±0.43 99.94±0.05 99.94±0.05 100.00±0.00 100.00±0.00
Primary-tumor 50.15±5.32 50.15±5.32 50.15±5.32 39.82±5.21 46.90±5.31
Segment 80.22±1.62 95.84±0.81 92.77±1.06 96.93±0.70 93.07±1.04
Sick 92.60±0.84 97.38±0.51 97.24±0.52 98.81±0.35 93.85±0.77
Sonar 67.79±6.35 79.33±5.50 79.33±5.50 71.15±6.16 75.96±5.81
Soybean 92.97±1.92 92.97±1.92 92.97±1.92 91.51±2.09 93.85±1.80
Splice 95.30±0.73 95.55±0.72 95.55±0.72 94.08±0.82 93.45±0.86
Vehicle 44.80±3.35 71.75±3.03 71.51±3.04 72.46±3.01 74.35±2.94
Vote 90.11±2.81 96.09±1.82 96.32±1.77 96.32±1.77 96.09±1.82
Vowel 63.74±2.99 87.37±2.07 85.96±2.16 81.52±2.42 71.41±2.81
Waveform-5000 80.00±1.11 83.16±1.04 83.12±1.04 75.08±1.20 86.68±0.94
Zoo 95.05±4.23 96.04±3.80 96.04±3.80 92.08±5.27 96.04±3.80

# of wins 7 11 10 13 14
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CHAPTER 5. SUMMARY AND DISCUSSION

5.1 Summary

An important goal of inductive learning is to generate accurate and compact classifiers from

data. In a typical inductive learning scenario, instances in a data set are simply represented

as ordered tuples of attribute values. There are many possibilities for the improvement of

the machine learning algorithm. In our research, we explore three methods (abstraction,

aggregation, and recursion) to improve the accuracy and compactness of the classifiers.

• Abstraction method in our research is aimed at the design and analysis of algorithms

that generate and deal with taxonomies for construction of compact and robust clas-

sifiers. We introduce algorithms for automated construction of taxonomies inductively

from both structured (such as UCI Repository) and unstructured (such as text and

biological sequences) data. We invented AVT-Learner, an algorithm for automated con-

struction of attribute value taxonomies (AVT) from data, and Word Taxonomy Learner

(WTL) for automated construction of word taxonomy from text and sequence data. The

experimental results show that the AVTs generated by AVT-Learner are competitive

with human-generated AVTs (in cases where such AVTs are available). AVT-NBL using

AVTs generated by AVT-Learner achieves classification accuracies that are comparable

to or higher than those obtained by NBL; and the resulting classifiers are significantly

more compact than those generated by NBL. Similarly, our experimental results of WTL

and WTNBL on protein localization sequences and Reuters text show that the pro-

posed algorithms can generate Naive Bayes classifiers that are more compact and often

more accurate than those produced by standard Naive Bayes learner for the Multinomial
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Model.

• We apply aggregation method to construct features as a multiset of values for intrusion

detection task. More precisely, we propose a bag of system calls representation for system

call traces for the intrusion detection task and describe misuse and anomaly detection

results with standard machine learning techniques on University of New Mexico (UNM)

and MIT Lincoln Lab (MIT LL) system call sequences with the proposed representation.

With the feature representation as input, we compare the performance of several ma-

chine learning techniques for misuse detection and show experimental results on anomaly

detection. The results show that standard machine learning and clustering techniques

on simple bag of system calls representation of system call sequences in the operating

system’s kernel is effective and often performs better than those approaches that use

foreign contiguous sequences in detecting intrusive behaviors of compromised processes.

• We describe recursive Naive Bayes learner (RNBL), which relaxes this assumption by

constructing a tree of Naive Bayes classifiers for sequence classification, where each in-

dividual NB classifier in the tree is based on an event model (one model for each class

at each node in the tree). In our experiments on protein sequences, Reuters newswire

documents and UC-Irvine benchmark data sets, we observe that RNBL substantially

outperforms NB classifier. Furthermore, our experiments on the protein sequences and

the text documents show that RNBL outperforms C4.5 decision tree learner (using tests

on sequence composition statistics as the splitting criterion) and yields accuracies that

are comparable to those of support vector machines (SVM) using similar information.

5.2 Contributions

The main contributions of this dissertation include:

1. AVT-Learner and WTL is effective in generating taxonomies that when used by AVT-

NBL and WTNBL-MN, a principled extension of the standard algorithm for learning

Naive Bayes classifiers, result in classifiers that are substantially more compact (and
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often more accurate) than those obtained by the standard Naive Bayes Learner (that

does not use taxonomies).

2. The taxonomies generated by AVT-Learner and WTL are competitive with human sup-

plied taxonomies (in the case of benchmark data sets where human-generated taxonomies

were available) in terms of both the error rate and size of the resulting classifiers.

3. From the experiments on UNM and MIT Lincoln Lab data sets for the evaluation of

intrusion detection systems, we show that a simple approach like a bag of system calls

may be more adequate than k-gram in many scenarios. The results of experiments

described in this paper show that it is possible to achieve nearly perfect detection rates

and false positive rates using a data representation that discards the relationship between

system call and originating process as well as the sequence structure of the calls within

the traces.

4. Contrary to the previous report by Langley (Langley, 1993) in the case of a recursive

NB classifier (RBC) on selected UC-Irvine benchmark data sets whose instances were

represented by tuples of nominal attribute values (such as the UC-Irvine benchmark

data), we observe that on protein sequence and text classification tasks, RNBL substan-

tially outperforms the NB classifier, and our experiments show that RNBL outperforms

C4.5 decision tree learner (using tests on sequence composition statistics as the split-

ting criterion) and yields accuracies that are comparable to those of SVM using similar

information. As for UC-Irvine benchmark data, the classifiers from RNBL still mostly

outperforms Naive Bayes classifiers, as shown in table 4.4.

5.3 Future Work

Some promising directions of the future work include:

1. Learning Taxonomies
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(a) Extending AVT-Learner described in this research to learn AVTs that correspond

to tangled hierarchies, which can be represented by directed acyclic graphs (DAG)

instead of trees, or complicated graph structure

(b) Learning AVT from data for a broad range of real world applications such as census

data analysis, learning classifiers from relational data (Atramentov et al., 2003), and

protein function classification (Wang and Stolfo, 2003), identification of protein-

protein interfaces (Terribilini et al., 2006; Yan et al., 2003)

(c) Developing algorithms for learning hierarchical ontologies based on part-whole and

other relations as opposed to ISA relations captured by an AVT

(d) Developing algorithms for learning hierarchical groupings of values associated with

more than one attribute

2. Intrusion Detection Using a Bag of System Calls

(a) Further formalizing intrusive behaviors of multiple processes as a multi-bag in IDS

framework. A process often fork child processes during the execution and intrusion

can be a cooperative work between the processes in the same group. Thus, it is a

more natural idea than the conventional approaches to model an IDS to consider

cooperative attacks. However, the research area of a host-based IDS that monitors

multiple process’ cooperative behavior has not been explored. Considering this

observation, we will propose a theoretical framework for IDS that models multiple

processes as a multi-bag.

(b) Extending the supervised anomaly detection experiments with one-class support

vector machines (Scholkopf et al., 2001; Leslie et al., 2002a,b; Tian et al., 2004) or

other anomaly detection techniques in SVM (Tax and Duin, 2004)

(c) Extending feature representation so that subsequences rather than system calls can

be dealt with by the existing machine learning techniques in an efficient way. We

believe it will show better performance in terms of accuracy/detection rate/false

positive rate in supervised anomaly detection
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(d) Modeling multiple processes’ behavior in one trace. Current intrusion detection

system assumes one process produce intrusions in the intrusion model. Modeling

multiple processes that are cooperative is more probable for future intrusion detec-

tion system

(e) Performing experiments on different operating system such as Microsoft Windows.

Anomaly detection of spyware in Windows is a good example

(f) Applying generalized global alignment (Huang and Chao, 2003; Takeda, 2005; Coull

et al., 2003) of system call sequences

(g) Using system call arguments (Mutz et al., 2006) with abstraction (Kang et al., 2004)

for anomaly detection

3. Recursive Naive Bayes Learner

(a) Exploration of the use of abstraction hierarchies (discussed in chapter 2) over let-

ters of the alphabet (or words of the vocabulary) (Kang et al., 2005d; Zhang and

Honavar, 2004) with RNBL

(b) Investigation of alternative model selection measures as split stopping criteria for

RNBL-MN rather than conditional minimum description length (CMDL) and Area

Under the ROC Curve (AUC)

(c) Formal analysis and comparison of information gains obtained by selecting one

attribute and obtained by choosing the predicted label of Naive Bayes classifier over

the attributes

(d) Experimental analysis of the independence among the attributes affects the accuracy

of decision tree induction algorithms and RNBL, using artificially created data sets
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Apté, C., Damerau, F., and Weiss, S. M. (1994). Towards language independent automated

learning of text categorization models. In SIGIR ’94: Proceedings of the 17th annual in-

ternational ACM SIGIR conference on research and development in information retrieval,

pages 23–30, New York, NY, USA. Springer-Verlag New York, Inc.

Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H., Cherry, J., Davis, A., Dolinski, K.,

Dwight, S., Eppig, J., Harris, M., Hill, D., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese,

J., Richardson, J., Ringwald, M., Rubin, G., and Sherlock, G. (2000). Gene ontology: tool

for the unification of biology. The Gene Ontology Consortium. Nature Genetics, 25(1):25–29.



107

Atramentov, A., Leiva, H., and Honavar, V. (2003). A multi-relational decision tree learning

algorithm - implementation and experiments. In Horváth, T. and Yamamoto, A., editors,
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