Gametophytic cross-incompatibility in maize: Resequencing the Ga1 locus

by

Marianne Lynn Emery

A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

Major: Plant Breeding
Program of Study Committee:
M. Paul Scott, Co-Major Professor
Thomas Lubberstedt, Co-Major Professor
Michael Muszynski

Iowa State University
Ames, Iowa
2015

For my parents, who instilled a work ethic and tenacious nature in their daughters that bound them for success

TABLE OF CONTENTS

Page
LIST OF FIGURES v
LIST OF TABLES vi
ACKNOWLEDGEMENTS vii
ABSTRACT viii
CHAPTER ONE: INTRODUCTION1
Fertilization in Maize 1
Gametophytic Incompatibility Systems in Maize. 3
Ga1 4
Ga2 5
Tcbl 6
Gametophytic Self-Incompatibility 8
Gametophytic vs. Sporophytic Incompatibility 8
Rationale 9
Challenges 11
Role of Student Researcher 12
Thesis Organization 13
References 14
CHAPTER TWO: RESEQUENCING OF THE GAMETOPHYTIC INCOMPATIBILITY REGION IN MAIZE 18
Abstract. 18
Introduction 19
Materials and Methods 21
BAC library construction, BAC selection, and sequencing 21
Preparing sequence reads for assembly 22
Scaffold-based assembly of BAC sequences 23
De novo assembly of all high quality reads by BAC 24
Results and Discussion 26
Identification of the region of interest 26
De novo assembly by BAC 36
Conclusions 56
Significance 57
Recommendations for Future Research 58
References 60
CHAPTER THREE: ENCYCLOPEDIA OF FOOD GRAINS:
MAIZE CHAPTER 64
Abstract 64
Introduction 64
Maize Reproduction 65
Maize Kernel Composition 66
Starch. 67
Oil. 68
Protein 69
Maize in Food 71
Maize processing 71
Maize in Science 73
Maize Breeding, Genetics, and Biotechnology 74
Maize cultivar types 74
Hybrid maize breeding 75
Maize biotechnology 76
References. 79
APPENDIX: ADDITIONAL ALLIGNMENT INFORMATION 84

LIST OF FIGURES

Page
Figure 2.1 BAC assembly pipeline 25
Figure 2.2 Predicted gene model in the region of interest for B73 v3 reference genome 27
Figure 2.3 BAC 2 reads mapped to entire B73 genome 30
Figure 2.4 BAC read sequence distribution over the B73 region of interest 32
Figure 2.5 BAC reads mapped to B73 region of interest 35
Figure 2.6 Contig length distribution of assembled contigs by BAC. 38
Figure 2.7 Hypothesized arrangement of BAC sequences and presence of B73 predicted genes 44
Figure 2.8 Contig alignments to B73 predicted genes in region of interest. 47
Figure 3.1 A phylogeny of diploid grass species 65
Figure 3.2 A mature maize kernel, showing component parts 67
Figure 3.3 U.S. maize grading scale 70
Figure 3.4 Maize food processing determines maize as food ingredient 71
Figure 3.5 Types of hybrids grown commercially in North America 73
Figure 3.6 Percentage of all maize grown in the United States that is genetically engineered (GE). 75

LIST OF TABLES

Page
Table 2.1 Markers used to identify BACs 22
Table 2.2 Position, strand, and model type of predicted genes in the B73 reference genome. 27
Table 2.3 BAC2 BWA alignment to the B73 genome vs region of interest 31
Table 2.4 Summary of comparative genome assembly: Mapped reads. 34
Table 2.5 Summary of comparative genome assembly: Unmapped reads. 34
Table 2.6 Results from individual de novo assemblies of BAC files before and after contamination removal. 38
Table 2.7 Parameter optimization for de novo assembly. 40
Table 2.8 Read coverage and repeat classification. 41
Table 2.9 Genes from B73 reference genome present in BAC contigs determined by BWA alignment 42
Table 2.10 Polymorphisms between B73 and BAC de novo assembled contigs. 48
Table 2.11 Gene prediction of BAC 2 assembled contigs 5 kb and longer 49
Table 2.12 BAC 2 contigs 5 kb and longer blasted to NCBI database. 52

ACKNOWLEDGEMENTS

Special thanks are extended to Nathan Weeks, Ethy Cannon, and Michelle Graham for their bioinformatics expertise in various aspects of the project.

Abstract

Maize is an important staple crop for many countries. Culture dictates maize use, processing, and incorporation into foods. The crop has a rich history of domestication and improvement. With its relative ease of genetic manipulation, maize is considered a model crop for plant genetic experimentation. Recent biotechnological advances, as well as the completed B73 reference genome sequence, have expedited maize improvement. One such profound advance that has greatly increased profitability of maize is the use of transgenes. Despite the many benefits, transgenic plants are problematic when they contaminate transgene-free maize. Maintaining the purity of transgene-free maize is crucial, but often difficult when in close proximity to transgenic fields. Past literature suggests the use of the Gal gametophytic cross-incompatibility system to control pollen flow and minimize contamination of transgene-free maize. Yet, information about how the gametophytic cross-incompatibility system functions at the molecular level is still lacking. Our research sought to assemble BACs containing the Gal-m locus to better understand sequence variation with the B73 reference genome that may be causative of the male function in the Gal gametophytic cross-incompatibility system.

CHAPTER ONE: INTRODUCTION

Fertilization in Maize

Maize is a monoecious plant, possessing separate male and female reproductive organs on the same plant. Both organ types produce gametes, or haploid sex cells. Maize plants possess one male reproductive organ, referred to as the tassel. It is situated at the very tip of the main stem. One tassel can produce up to one billion pollen grains. These pollen grains are the male gametes. In contrast, several female reproductive organs can be present on one maize plant; the female reproductive organs are commonly known as ears. The female gametophyte, the embryo sac, is located within the ears. The ears are positioned at one or more nodes down the length of the main stem and are connected via a sheath. Fertilization occurs when gametes fuse to create a zygote; the maize fertilization process can be outlined in five main steps: (1) pollen hydration, (2) pollen tube germination and penetration of the stigma, (3) pollen tube growth in the transmitting tract and entering the embryo sac, (4) pollen tube exiting the transmitting tract, and (5) bursting of pollen tube which releases sperm nuclei and results in fertilization of the egg cell and two polar nuclei (Heslop-Harrison, 1982; Dresseslhause \& Franklin-Tong, 2013; Johnson and Preuss, 2002). Mature pollen becomes dehydrated on the tassel and is dehisced where upon it travels on the wind until it lands on silks of the same (self-pollination) or different (cross-pollination) maize plants. Via osmosis, the silks quickly hydrate the pollen grain. Once hydrated, the pollen grain produces a pollen tube that enters the transmitting tract of the silk. In the event of a successful maize fertilization, the pollen tube continues to grow down the length of the silk in oscillating bursts and pulses until it reaches the ovary (Heslop-Harrison, 1987). Here, the tip of the
pollen tube bursts releasing two sperm nuclei. One sperm cell fertilizes the egg to produce the diploid zygote while the other sperm cell fuses with two polar nuclei to develop the triploid endosperm. This process is referred to as double fertilization.

Pollen-stigma interactions in pollen tube growth are not clearly understood. Pollen tube germination is recorded at growth rates close to one centimeter (cm) per hour, commencing five minutes after the pollen grain is deposited on the silk (Barnabas \& Fridvalszky, 1984; Mascarenhas, 1993). Maize pollen tubes have been reported to grow to over 30 cm in length (Lu et al, 2014). Pollen tube growth is from the tip of the tube; the tip region is known to have intense secretory activity that is highly sensitive to Ca^{2+} gradients (Derksen et al, 1995; Feijo et al, 1995; Giampiero et al, 199; Steer and Steer, 1989). Cytoplasmic streaming and rearrangement of vesicles, membranes, and other organelles at the tip of the pollen tube are essential for germination and growth (FranklinTong, 1999; Heslop-Harrison \& Heslop-Harrison, 1990; Heslop-Harrison \& HeslopHarrison, 1991; Mascarenhas, 1993; Pierson et al, 1990).

Despite highly optimized germination media, pollen tubes in vitro reach only 30$40 \%$ of their comparative in vivo lengths (Read et al, 1993). It appears that the silk plays a crucial role in pollen tube germination and growth. Research suggests that proteins encapsulating the pollen, waxes, and certain lipids may assist in initiating signaling required for both adhesion and germination of the pollen tube (Franklin-Tong, 1999). Despite experimental observations of pollen-stigma interactions, a complete understanding of the requirements and mechanisms of a germinating pollen tube have yet to be clearly defined.

Gametophytic Incompatibility Systems in Maize

Gametophytic incompatibility was first observed by Correns in 1902. In a breeding experiment with White Rice Popcorn and a sugaryl (sul) mutant, Correns observed distorted F_{2} ratios for the sugary-starchy phenotype. Later, while researching the white maize phenotype, Demerec (1929) noted that he could only set seed with popcorn lines when they were used as a female in the cross. Demerec demonstrated that while the popcorn genotype was self-fertile, it was not fertile to non-popcorn pollen even in the absence of any competitive pollen. Demerec concluded the selective fertilizations were a result of a dominant factor linked to the sugaryl (sul) locus. Emerson (1934) later noted that the crosses in White Rice Popcorn were not controlled by the sul locus, but by an allele linked to sul.

The inability of certain genotypes to successfully pollinate other genotypes is attributed to unique components referred to as gametophyte factors. Both male and female gametophyte functions have been described (Nelson, 1994). Gametophyte factors regulate the success of pollen-stigma interactions and are credited for the aberrant Mendellian genetic ratios in certain crosses which in turn can influence gene flow. More specifically, the female function is a unique component found in silks of select genotypes that allows for discrimination against certain pollen types. The male function, on the other hand, refers to a unique component found in pollen of select genotypes that allows the pollen to overcome the silk barrier. Though the exact interaction is still unclear, results by Kermicle and Evans $(2005,2010)$ suggest that incompatibility is due to the lack of matching alleles and not active rejection. Eventual cloning of the gametophytic
cross-incompatibility genes will hopefully provide insight into the molecular and biochemical mechanisms responsible for these interactions.

Gametophytic cross-incompatibility systems have been shown to play a role in isolating sympatric Mexican maize landrances with teosinte populations (Kermicle \$ Evans, 2010). Three gametophytic incompatibility systems in maize have been described: Gametophtye factor-1 (Ga1), Gametophyte factor-2 (Ga2), and Teosinte crossing barrier (Tcb1).

Ga1

Gal has been the most well studied gametophyte factor. It was mapped to the short arm of chromosome 4 in maize (Bloom and Holland, 2011; Liu et al., 2014; Mangelsdorf \& Jones, 1926; Zhang et al., 2012). Three variants at the Gal locus have been identified: gal, Gal-s, and Gal-m. The gal locus is found in most conventional grain production fields (i.e. \#2 yellow dent). Plants with the gal locus do not contain the male or female function. The gal haplotype can be pollinated by gal, Gal-s, and Galm; gal pollen is discriminated against, however, by the Gal-s silks (Kermicle, 2006; Kermicle \& Evans, 2005; Nelson, 1952).

Ga1-s is considered the "strong" variant of Ga1. Plants with the Gal-s haplotype possess both the male and female function. Gal-s plants can be pollinated by Gal-s and Ga1-m pollen. However, gal pollen fails to successfully pollinate Gal-s, even in the absence of competing pollen (Kermicle \& Evans, 2005). When Gal-s/gal heterozygous plants are self-fertilized, gal pollen is discriminated against and virtually all seed set is by Gal-s pollen (Emerson, 1934). When only gal pollen is present, fertilization of gal/Gal-s silks will occur to varying degrees (Schwartz, 1950; Nelson, 1952). Gal-m
genotypes contain the male function only. Plants with the Gal-m haplotype can selfpollinate and can be used to a pollen parent to cross-pollinate gal and Gal-s plants. Gal-m silks can be successfully pollinated by ga1, Gal-m and Gal-s pollen (Jimenez \& Nelson, 1964; Kermicle \& Evans, 2010; Kermicle et al, 2006). In the Gal system, Kermicle and Evans (2005) demonstrated that the presence of the dominant allele (Gal-s or Gal-m) led to successful fertilization of dominant silks; the presence of the gal allele was not causative of pollen tube growth arrest. A translocation B-4Sa was introgressed into the $W 22$ inbred line, resulting in the creation of disomic pollen grains. The disomic pollen grains verified what is now referred to as the congruity model. $\underline{G a} 2$

Ga2 was mapped to the long arm of chromosome 5 in maize and teosinte populations (Longley, 1960; Kermicle \& Evans, 2010). Four alleles of the Ga2 locus have been identified: Ga2-s (strong), Ga2-w (weak), Ga2-m (male), and ga2 (null) (Longley, 1930, Kermicle \& Evans, 2010). Past experiments suggests that Ga2-s is found only in teosinte lines, Ga2-w is found only in Mexican landraces, and Ga2-m is found in both teosinte and Mexican landraces. Nonetheless, $G a 2$ was proven to be a parallel, but separate, system to that of Gal and Tcbl (Kermicle \& Evans, 2010). All three systems contain a null allele (with no female or male function), a $-m$ allele (male function only), and $-s$ allele (female and male function). Similar to the experiments done with Ga1, Kermicle and Evans (2010) created disomic pollen grain (Ga2/ga2). The disomic pollen was able to successfully pollinate dominant Ga2 silks, suggesting, as in the Gal system, a congruity model rather than an active rejection (Kermicle \& Evans, 2010).

Tcb1
Tcbl was mapped to chromosome 4, a distance of 44 centimorgans (cM) from Gal and 6 cM from sul (Evans \& Kermicle, 2001). Tcbl is found only in teosinte populations, unlike $G a 1$ and $G a 2$ which are found in both maize and teosinte populations (Kermicle and Evans, 2010). Male and female factors have been described for the Tcb1 locus. Lu et al (2014) created attenuated lineages of $T c b 1-s$, thus demonstrating that pistil function can be gradually lost via recurrent backcrossing to maize without losing pollen function.

In all three gametophytic incompatibility systems, the barrier is stronger in homozygous compared to heterozygous plants, suggesting a co-dominant effect (Kermicle \& Evans, 2005). The barriers do not always exclude 100% of the incompatible pollen, however, which leads to greater difficulty in distinguishing between active pollen rejection and gametophytic incompatibility.

The gametophyte factor has been shown to interact weakly. Attenuated Tcb1 lines were shown to be more compatible with Gal-s than with gal (Evans \& Kermicle, 2001); Gal has been shown to weakly interact with Ga2 as well resulting in successful fertilizations (Kermicle \& Evans, 2010). All systems, however, are associated with premature pollen tube termination (Lu et al, 2014; Zhao et al, 2014). Interestingly, pollen tube growth patterns vary among incompatibility systems with incompatible pollinations. In the Gal-s barrier, pollen tubes do not grow straight and demonstrate heavy accumulation of clustered callose plug deposits; the Ga2 barrier also leads to clustered callose plug deposits, with lateral kinks in the pollen tube at each callose plug site; in the Tcbl-s barrier, pollen tubes grow straight with spaced callose plugs (Lu et al, 2014).

Zhang et al (2012) performed a genetic analysis and Gal-s fine mapping study using the popcorn line SDGa 25 (Zhang et al., 2012). Four $\mathrm{BC}_{1} \mathrm{~F}_{1}$ mapping populations were created with Jing24, W22, HN287, and JKN2000F lines. SDGa25 was used a a tester to phenotype the $\mathrm{BC}_{1} \mathrm{~F}_{1}$ populations. SSR markers were used to fine map the Gals locus to a 2.2 Mbp region on the short arm of chr 4 . Pollen tube growth studies were also performed. The following pollen-pistil combinations were used: W22 pollen presented on SDGa25 pistils (incompatible reaction), SDGa25 pollen presented on SDGa25 pistils (compatible reaction), and SDGa25 pollen presented on W22 pistils (compatible reactions). Pollen tube growth was fixed and stained with aniline blue at $0.15,0.5,1,2,5,10$, and 20 hours. The experiment provided additional insight into the mechanism underlying an incompatible reaction. In both compatible and incompatible reactions, pollen tubes germinated and entered the transmitting tract in all cases, but once in the silk, significant differences in tube growth were observed. Pollen tubes in compatible reactions grew at a rate of $10 \mathrm{~mm} \mathrm{~h}^{-1}$ versus the incompatible reactions that grew only $2.8 \mathrm{~mm} \mathrm{~h}^{-1}$. Obvious significant differences in growth were seen after two hours. After 20 hours of growth, pollen tubes in compatible reactions grew the full length of the pistil and reached the ovary; in incompatible reactions pollen tube growth arrested 5.5 cm distal to the ovule and fertilization never occurred.

Despite the amount of research that has been done on the topic of pollen tube growth, a complete picture of pollen tube growth has yet to be fully realized. The mechanisms surrounding pollen-stigma interactions also remains a question not entirely answered. Both pollen tube growth and pollen-stigma interactions do, however, remain a topic of avid interest.

Gametophytic Self-Incompatibility

Similar to gametophytic cross-incompatibility, gametophytic self-incompatibility is the inability of a plant, producing both fertile male and female gametes to create zygotes after self-pollination (Nettancourt, 1977). Darwin (1877) first described selfincompatibility. He proposed that systems in which plants were unable to successfully self-pollinate were integral to the evolution of flowering plants and ultimately encouraged allogamy, also known as cross-pollination. Since the time of Darwin, selfincompatibility has been extensively researched. The genetic control of selfincompatibility varies among species. In the Solanaceae family, a single locus governs the system; in most grasses, two loci (S and Z) are responsible for the barrier (Takayama, et al., 2012); four loci control self-incompatibility in sugarbeet (Lundqvist et al, 1973).

Protein-protein interactions determine fertilization outcomes in the gametophytic self-incompatibility systems. Both the pollen and pistil produce proteins that interact during pollination. If the proteins match, as is the case in self-fertilization, pollen tube growth never occurs (active rejection); if the pollen pistil proteins do not match, the pollen tube elongates (Takayama \& Isogai, 2005). The S-locus controls specific protein expression in the pistil and pollen. The locus is made up of several tightly linked genes. There exist many alleles of the S-locus.

Gametophytic vs. Sporophytic Incompatibility

A main difference between gametophytic and sporophytic incompatibility reactions is the tissue type that exerts control over the system. Gametophytic-level control is contingent solely on the haplotype of the pollen or the egg (haploid tissue);
whereas, sporophytic-level control pertains to the pistil or stamen (diploid tissue) (Kermicle \& Evans, 2005; Franklin-Tong \& Franklin, 2003; Takayama \& Isogai, 2005). Sporophytic incompatibility, similar to gametophytic self-incompatibility is controlled by the S-locus; the proteins involved are, however, created before meiosis is complete, whereas in gametophytic incompatibility proteins are synthesized upon pollenstigma interaction after meiosis (Franklin-Tong \& Franklin, 2003; Takayama \& Isogai, 2005). Another point of dissimilarity is in pollen tube arrest. In gametophytic incompatibility, the pollen tube arrests within the stigma, while in sporophytic incompatibility, the pollen tube arrests at the surface of the stigma and penetration of the style never occurs (Pandey, 1958). Roberts et al, (1980) demonstrated sporophytic control in a self-incompatibility system in Brassica oleracea. The research demonstrated that the pollen coat carries information for plant recognition and alterations in the pollen coast can lead to incompatibility.

As in the case of gametophytic cross-incompatibility, the pistil barrier and the genotype of the pollen grain work together to determine if pollination is compatible or incompatible (Kermicle \& Evans, 2010).

Rationale

The cultivation and harvest of genetically modified (GM) crops have continued to increase since the release of the first GM crop, the FlvrSvr tomato, in 1994 (USDA-ERS, 2014). Since that time, additional GM maize varieties have been created and gained popularity among US farmers. USDA-ERS (2014) reported that in 2014, 76% of all planted maize acres in the United States contained stacked traits for both herbicide tolerance (Ht) and insect resistance (Bt). A parallel increase in organic maize production
has been observed. Often fueled by consumer concerns regarding GM crops safety, increasingly large populations of consumers demand organic maize for consumption in both fresh and processed foods, as well as livestock rations. From 1995 to 2008, acreage of organic maize harvested in the United States had increased by 161,987 acres (Brester, 2012). With increasing acreage of organic maize grown alongside GM maize, the potential for cross pollination has increased as well. The USDA (2015) requires that products qualified for the USDA organic seal are void of genetically modified organisms. Being a value added, specialty product, maintaining purity of organic maize fields is an economic necessity.

The implication of controlling adventitious presence, the unwanted presence of transgenes, extends beyond assisting the organic sector of maize production. Maize biotechnology companies own patents on GM varieties and monitor the production of maize under such patents. Therefore, maintaining purity of the remaining maize market classes is of utmost concern. Successful field isolation of market classes, such as white maize used in the food industry and other specialty maize crops, such as high amylose maize and sweet corn, is difficult and cross pollination with neighboring GM fields and other non-specialty maize fields often occurs.

Steps to control pollen flow between neighboring fields can be taken. Physical borders and buffer zones are planted between GM and organic fields. Additionally, delayed plantings help ensure that neighboring fields are at differing reproductive stages. A delay of three to four days between field plantings has been recorded to reduce adventitious presence by 75% (Della Porta et al, 2008). This technique is often used in the cultivation of sweet corn. Unfortunately, pollen can travel great distances on the
wind. Maize transgenes were found as high as 47% in non-GM fields residing adjacent to GM fields (Goggi et al, 2006). Della Porta et al (2008) demonstrated that a distance greater than 100 meters must be maintained between fields to maintain a crosscontamination threshold of 0.1%. Insects can also be a source of contamination. A more accurate means to protect market classes and maintain purity of value added maize is required. A naturally occurring biological reproductive barrier, such as gametophytic incompatibility, that prevents selective cross pollination may be a better solution.

The objective of this study is to assemble re-sequencing data of the Gal region in maize, seeking to further examine the region of interest and potentially expose components that would lead to a greater understanding of how the system functions.

Challenges

The availability of only one published reference maize sequence, B73 v3, was a major disadvantage. The ability to identify possible sequence variation between maize lines, in particular, that from which our BAC libraries was derived, would have been especially useful in this project. The lack of such reference sequences led to difficulties clearly identifying sequence gaps due to sequence variation from that of causative polymorphism. Additionally, not having a mate paired library severely hindered our ability to span gaps in repetitive regions.

The lack of effective alignment tools also posed a major challenge. Scaffold sequence that had a small overlap region with a contiguous scaffold sequence, but could be overlapped manually, prevented a more continuous coverage of our region of interest. Additionally, it was difficult to determine if indeed the sequences should be combined or were a result of a smaller region that was repeated in the region of interest. Inherent
challenges included processing large data files, visualizing genomic sequences of great length, and implicit error in gene prediction software's ability to correctly predict genes.

The DNA sequence of the intergenic space of the region of interest is extremely repetitive. Due to the abundance of transposons throughout the region of interest, many reads mapped to multiple positions not only in the region of interest, but also the genome as a whole. This genetic architecture led to difficulties in distinguishing overlapping regions of each BAC in comparison to the other three BACs.

Role of Student Researcher

As student researcher, my role was to use bioinformatics tools to assemble bacterial artificial chromosome (BAC) next generation sequence data. Determination of the region of interest via a mapping study was carried out in the lab of Dr. Michael Muszynski's. Construction of the BAC library was carried out in the lab of Dr. Matt Evans. Selection of the BACs for sequencing was carried out jointly in the labs of Dr. Muszynski and Evans. I processed, aligned, and assembled reads from all BAC files. Computation was performed in a Linux environment. Sequence variation between the BAC sequences and the reference genome was identified. Additionally, in the BAC assembly process, a macro in Microsoft Office Excel was created to analyze overlapping reads mapped to the reference genome. Subsequently, this allowed for the compilation of mapped reads and the determination of an overall start and stop position of contigs, in relation to the B73 v3 reference genome, derived from overlapping reads. The project contributed sequence data, a component of published literature that until recently was absent. This absence impeded understanding of gametophytic incompatibility.

Furthermore, as part of my Master's experience, I served as a coauthor for the maize introduction chapter in the Encyclopedia of Food Grains. This contribution serves not only as writing experience, but also as a source of references for those individuals seeking additional information regarding maize. Together, this research and writing experiences serve as partial requirement for the Masters in Plant Breeding degree.

Thesis Organization

This thesis is organized into four chapters. The first chapter includes an introduction to gametophytic cross-incompatibility and literature review. Chapter two describes work aimed at re-sequencing the Gal region of maize to be published in a peer reviewed journal. A chapter that has been accepted for publication in the Encyclopedia of Grains Science is presented in Chapter Three.

References

Barnabas B., Fridvalszky L. (1984) Adhesion and germination of differently treated maize pollen grains on the stigma, Acta Botanica Hungarica. pp. 329-332.

Bloom J.C., Holland J.B. (2011) Genomic localization of the maize crossincompatibility gene, Gametophyte factor 1 (ga1), Maydica. pp. 379-387.

Correns C. (1902) Scheinbare Ausnahmen von der Mendel'schen Spaltungsregel für Bastarde, Gebrüder Borntraeger.

Darwin C. (1877) The different forms of flowers on plants of the same species, London.
Della Porta G., Ederle D., Bucchini L., Prandi M., Verderio A., Pozzi C. (2008) Maize pollen mediated gene flow in the Po valley (Italy): Source-recipient distance and effect of flowering time, European Journal of Agronomy. pp. 255-265.

Demerec M. (1929) Cross sterility in maize, Molecular and General Genetics. pp. 281291.

Derksen J., Rutten T., Van Amstel T., A d., Doris F., Steer M. (1995) Regulation of pollen tube growth. Acta Bot. Neerl 44:93-119.

Dresseslhause T., Franklin-Tong N. (2013) Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization, Molecular plant. pp. 1018-1036.

Emerson R.A. (1934) Relation of the differential fertilization genes, Ga ga, to certain other genes of the su-tu linkage group of maize, Genetics. pp. 137-156.

Evans M.M.S., Kermicle J.L. (2001) Teosinte crossing barrier1, a locus governing hybridization of teosinte with maize. Theoretical and Applied Genetics 103:259265.

Feijó J., Malhó R., Obermeyer G. (1995) Ion dynamics and its possible role during in vitro pollen germination and tube growth. Protoplasma 187:155-167.

Franklin-Tong N., Franklin C.H. (2003) Gametophytic self-incompatibility inhibits pollen tube growth using different mechanisms, TRENDS in Plant Science. pp. 598-605.

Franklin-Tong V.E. (1999) Signaling and the modulation of pollen tube growth. The Plant Cell 11:727-738.

Giampiero C., Moscatelli A., Cresti M. (1997) Cytoskeletal organization and pollen tube growth. Trends in Plant Science 2:86-91.

Goggi S., Caragea P., Lopez-Sanchez H., Westgate M., Arritt R., Clark C. (2006) Statistical analysis of outcrossing between adjacent maize grain production fields, Field Crop Research. pp. 147-157.

Herrero M., Hormaza J.I. (1996) Pistil strategies controlling pollen tube growth. Sexual Plant Reproduction 9:343-347.

Heslop-Harrison J. (1982) Pollen-stigma interaction and cross-incompatibility in the grasses. Science 215:1358-1364.

Heslop-Harrison J. (1987) Pollen germination and pollen-tube growth.
Heslop-Harrison J., Heslop-Harrison Y. (1990) Dynamic aspects of apical zonation in the angiosperm pollen tube. Sexual Plant Reproduction 3:187-194.

Heslop-Harrison J., Heslop-Harrison Y. (1991) Restoration of movement and apical growth in the angiosperm pollen tube following cytochalasin-induced paralysis. Philos. Trans. R. Soc. London Ser. B331:225-235.

Jimenez J.R., Nelson O.E. (1964) A fourth chromosome gametophyte locus in maize, Journal of Heredity. pp. 259-263.

Johnson M., Preuss D. (2002) Plotting a course: Multiple signals guide pollen tubes to their targets. Developmental Cell 2:273-281.

Kermicle J. (2006) The gametophyte-1 locus and reproductive isolation among Zea mays subspecies, Maydica, Maydica. pp. 219-225.

Kermicle J.L., Evans M.M.S. (2005) Pollen-pistil barriers to crossing in maize and teosinte result from incongruity rather than active rejection. Sexual Plant Reproduction 18:187-194. DOI: 10.1007/s00497-005-0012-2.

Kermicle J.L., Evans M.M.S. (2010) The Zea mays sexual compatibility gene ga2: Naturally occurring alleles, their distribution, and role in reproductive isolation, Journal of Heredity

Knox R.B. (1984) Pollen-pistil interactions, Encyclopedia of Plant Physiology. pp. 508608.

Lausser A., Kliwer I., Srilunchang K.O., Dresselhause T. (2010) Sporophytic control of pollen tube growth and guidance, Journal of Experimental Biology. pp. 673682.

Lu Y., Kermicle J.L., Evans M.M.S. (2014) Genetic and cellular analysis of crossincompatibility in Zea mays. Plant Reproduction 27:19-29. DOI: 0.1007/s00497-013-0236-5.

Lundqvist A. (1956) Self-incompatibility in rye, Hereditas. pp. 293-348.
Mangelsdorf P.C., Jones D.F. (1926) The expression of Mendelian factors in the gametophyte of maize, Genetics. pp. 423-455.

Mascarenhas J.P. (1993) Molecular mechanisms of pollen tube growth and differentiation. The Plant Cell 5:1303-1314.

Nelson, O.E. 1952. Non-reciprocal cross-sterility in maize. Genetics. p. 101.
Nelson OE. (1994). The gametophyte factors of maize. In: Freeling M, Walbot V, editors. The maize handbook. Berlin (Germany): Springer-Verlag. p. 496-503.

Nettancourt D. (1977) Incompatibility in angiosperms, Springer, Berlin Heidelberg.
Pandey K.K. (1958) Time of the S allele action, Nature. pp. 1220-1221.
Pierson E., Lichtscheidl I., Derksen J. (1990) Structure and behavior of organelles in living pollen tubes of Lilium longiflorum. Journal of Experimental Biology 41:1461-1468.

Read S., Clarke A., Bacic A. (1993) Stimulation of growth of cultured Nicotiana tabacum W38 pollen tubes by poly (ethylene glycol) and $\mathrm{Cu}(\mathrm{II})$ salts. Protoplasma 177:1914.

Steer M., Steer J. (1989) Pollen tube tip growth. New Phytol 111:323-358.
Takayama S., Isogai A. (2005) Self-incompatibility in plants, Annual Review of Plant Biology. pp. 467-489.

USDA. (2015) Organic Agriculture.
USDA-ERS. (2014) Adoption of genetically engineered crops in the U.S.: Recent trends in GE adoption.

Zhang H., Liu X., Zhang Y.E., Jiang C., Cui D., Liu H., Li D., Wang L., Chen T., Ning L., Ma X., Chen H. (2012) Genetic analysis and fine mapping of the Ga1-s gene region conferring cross-incompatibility in maize, Theoretical and Applied Genetics. pp. 459-465.

CHAPTER TWO: RESEQUENCING OF THE GAMETOPHYTIC INCOMPATIBILITY REGION IN MAIZE

Abstract

Gametophytic cross-incompatibility is as a biological barrier to cross pollination, preventing promiscuity between neighboring transgenic maize and organic maize fields. Interest in deploying gametophytic cross-incompatibility genes in maize to reduce unwanted pollination has fueled recent research on the topic. We identified and sequenced four BACs spanning the Gamepthotype factor-1 (Gal) locus of a line carrying the Gal-m allele to better understand and characterize the male function in this gametophytic cross-incompatibility system in maize. Comparison of de novo assemblies to assemblies based on the B73 genome scaffold suggest there are extensive differences between the B 73 sequence and the genome of the line the Gal region was introgessed from. We therefore focused on de novo assemblies to characterize this region. A de novo assembly was performed for each of the four BACs. Repetitive sequences prevented unambiguous assembly of complete BAC sequences. The resulting contigs were compared to the region of interest in B73 to identify polymorphisms that may be responsible for Gal action. Clear homology was identified between BAC contigs and six predicted genes and one transposable element in the B73 version 3 (v3) reference sequence. Polymorphisms are found in each of these genes. Six additional predicted B73 genes and two transposable elements could not be found in the Gal-m region despite evidence of overlapping BAC coverage of the region in which they are found. In addition, 11 genes were predicted in our de novo assembled contigs that are not predicted

in B73. These sequence differences are candidate polymorphisms for the gametophytic cross-incompatibility function.

Introduction

There are practical applications of gametophytic cross-incompatibility as a biological barrier. It could be especially useful in specialty maize crop systems where controlling xenia effects directly influences the value of the crop. For example, if gametophytic cross-incompatibility systems are incorporated into an organic maize system, organic maize fields could be grown alongside neighboring transgenic maize fields with reduced transgene contamination.

Past studies have resulted in successful fine-mapping of the Gal crossincompatibility locus. However, to our knowledge, causative polymorphisms or causative genes have yet to be characterized. Using a mapping approach with two populations, Bloom and Holland (2012) mapped Gal-s to a region on the short arm of chromosome 4. Mapping in the population B73 x Hp301 NAM RILs localized the gal interval to 6,408,214 to 12,609,493 bp on the short arm of chromosome 4 in the B73 version 2 reference genome. Additionally, a diverse set of lines for which genotyping-bysequencing (GBS) data are available were screened at SNP loci within the Gal region for markers that co-segregate for the pollen exclusion phenotype. Two predicted genes homologous to sucrose-phosphate synthase genes in other plants: GRMZM2G068698 and GRMZM2G008507 were identified by this process. The W22 x Gal-s Su-1 mapping population delineated the Gal-s locus between 7,133,675 and 13,398,777 bp in the B73 AGP version 2 reference sequence. The identified region overlaps with the 2.2 Mbp (million base pairs) region previously identified by Zhang et al. (2012).

More recent studies have further delineated the Gal-s locus. Liu et al (2014) defined the region to $9,491,422$ to $9,591,946 \mathrm{bp}$ on the short arm of chromosome 4 . The study utilized a homogenous mapping population $\left(\right.$ Gal-s $\left.\mathrm{BC}_{1} \mathrm{~F}_{1}\right)$ derived from a popcorn line (SDGa25) and a Chinese line carrying the null alleles for gametophytic crossincompatibility (Jing66), which allowed the authors to further define the region. The need for phenotyping was eliminated by taking advantage of the gametophytic crossincompatibility system. During the creation of the population, only Gal-s pollen would successfully pollinated Ga1-s plants; therefore, the resulting progeny were Ga1-s/Ga1-s. The population was screened using 14 closely-linked markers and five tightly-linked markers derived from the B73 version 2 reference genome. The work identified gene GRMZM2G039983 in the B73 reference genome as a potential candidate gene for causation of the gametophytic cross incompatibility system. The predicted gene was found to have homology to WDL1 in Arabidopsis which controls anisotropic cell growth and was hypothesized to have an effect on pollen tube growth. The potential role of GRMZM2G039983 has not been elucidated. After identifying a narrow region of interest, the authors demonstrated an integration proof of concept. Gal-s was successfully introgressed into an elite waxy maize hybrid using marker assisted selection. These results illustrate the utility of molecular information about the locus for transfer of this trait among varieties.

Kermicle and Evans (2005) demonstrated that incongruity between pollen and silk, rather than active rejection, is responsible for the Gal function. These results suggest the need for a harmonious interaction between a female factor in the silks with a male factor in the pollen. The gal locus has been classified as a null allele (Kermicle,
2006). It is not understood if the null effect is due to the presence/absence of gene(s) conferring male and female functions or sequence variation(s) in genes in the region. In this project, we use of the Gal-m haplotype as a means to isolate the male function. Isolation and classification of the male function may bring clarity to the role of the female function and assist in better understanding pollen-pistil interaction as a whole. The goal of this study was to understand the Gal locus at the molecular level. This was accomplished by resequencing four BACs derived from a Gal-m variety. Through alignments to the gal/gal inbred line B73, we seek to identify the inserted and deleted genes, as well as polymorphisms within genes in an identified region of interest. With such information, we hope to deduce how sequence variations could contribute to the male function in gametophytic cross incompatibility.

Materials and Methods

BAC library construction, BAC selection, and sequencing

Dr. Matthew Evans at Stanford University created a BAC library from a W22 inbred line containing the Gal-m, Ga2, and Tcb1 alleles (Kermicle \& Evans, 2010). The BAC vector pIndigo-BAC5-Hind III was used in DH10B E coli cells. The CopyControl ${ }^{\text {TM }}$ BAC Cloning Kit was used to create the BAC library. The BACs had a predicted average insert size of 120 kilobases (kb). Chloramphenicol resistance was used as a selectable marker.

Primers designed to amplify gene sequences found in the B73 region of interest, namely AC184772, GRMZM5G817995, GRMZM2G419836, GRMZM2G027021, and GRMZM2G039983, were used to identify BACs near the Gal locus using PCR (Table 2.1). Primer set GRMZM2G027021 was not successful in identifying a BAC. The other
four primers identified a total of one BAC per primer pair. The four BACs will be hereafter referred to as $\mathrm{BAC} 1, \mathrm{BAC} 2, \mathrm{BAC} 3$, and BAC 4 . Each BAC was sequenced at the Iowa State University DNA facility using 300 bp single end Illumina Mi-Seq technology.

Table 2.1. Markers used to identify BACs.

BAC	Gene model	Primer sequence	Amplicon size
1	AC184772.3	F: AGCTGTGTGGGGTTCTATGCGAGT	350 bp
		R: TAGAATCCTAGCTCCTACAGCGAAGCC	
2	GRMZM5G817995	F: TCCAACTCTTTTGCTTCTTTTGATGCAC	620 bp
		R: CGCAACCTTTGAGTAACTCTTAGC	
3	GRMZM2G419836	F: CTCCCCTCGTCTGCTTCAAATGGC	640 bp
		R: AGAGAACAGAGCACCCAAATCGGC	
4	GRMZM2G039983	F: AAGCAGCGCTGCACAGTGGCAA	578 bp
		R: AAGCTGGGCAGGAGGAAGACGG	

Preparing sequence reads for assembly

Unless otherwise noted, all bioinformatics work was completed on the USDA server, Lathyrus. The server is a Linux based system with 64 central processing unit (CPU) cores. It is maintained by the Corn Insects and Crops Genetics Research Unit located on the Iowa State University campus.

In the first step of processing the BAC sequence files, scythe was used to remove adapter sequences from reads (Buffalo, 2014). The sickle plugin was used to trim bases with a quality score of less than 20 and reads shorter than 50 bp in length. Using the FASTX-Tookit, fastx_trimmer was used to remove the first 15 bases of each read due to low quality base calls in that region (Pearson et al., 1997). Unique identifiers replaced original reads names. The deconseq plugin was used (Schmieder et al., 2011) to remove contaminating sequences derived from Escherichia coli (E. coli). Reads that matched the E. coli genome at 95% identity or better, with greater than 5% coverage, were deleted.

The remaining sequences were considered high quality reads. High quality reads averaged 280 bp in length.

Scaffold-based assembly of BAC sequences

High quality reads were aligned to chromosome 4 of the Zea mays v3 reference genome, obtained from Ensembl Plant (Julian et al, 2014), by BAC. Processed read files were subjected to the Burrows-Wheeler Aligner (BWA) pipeline (Li \& Durbin, 2009). Post alignments, reads were divided into two groups: (1) reads that mapped to the region of interest and (2) reads that did not map to the region of interest.

Analysis of mapped reads

Positional data from mapped reads was extracted and used to identify sequences that overlap. Overlapping read sequences were formed into contigs by determination of contig start and stop positions on the reference genome; these contigs will be referred to as mapped contigs, hereafter. Mapped contigs were visualized on a custom track using the MaizeGDB Genome Browser (Figure 2.4) (Monaco et al., 2013).

Analysis of unmapped reads

The unmapped reads were subjected to de novo assembly using the MIRA 4.0.2 program (Chevreux et al., 1999) and the resulting contigs will be referred to as unmapped contigs hereafter. Parameters used in the MIRA 4 manifest file are as follows:

```
\(j o b=\) genome, denovo, accurate
parameters \(=-\) GE:not=16 (16 general number of threads)
parameters \(=\) SOLEXA_SETTINGS -CO:msr=no (tells MIRA to not merge
identical reads to backbone, thus maintaining distance and orientation
information)
technology \(=\) solexa
```

Nucleotide-Nucleotide BLAST 2.2.30+ (blastn) (Altschul et al., 1990) was used to compare unmapped contigs to the region of interest in B73. An e-value of 0.0001 was used and the default value was used for all other blastn parameters.

De novo assembly of all high quality reads by BAC

Parameters used in the MIRA manifest file are identical to those used above for assembly of the unmapped reads, except all high quality reads from each BAC were assembled separately to give four sets of contigs, one from each BAC.

Figure 2.1. BAC assembly pipeline.

Gene prediction

Assembled contigs 5 kb (thousand basepairs) and greater in length were subjected to gene prediction using Softberry website FgenesH (Salamov \& Solovyev, 2000). FgenesH ab initio gene prediction is based on monocot plant specific, trained parameters. Gene annotation

Assembled contigs 5 kb or greater in length were blasted to the NCBI nonredundant nucleotide database. The following parameters were used: expected threshold: 10; Mismatch score: 1-2; Gap cost: linear; automatically adjust parameters for short sequences allowed. (Altschul et al, 1990). Threshold values used to declare significance were an e-value of 0.0 , identity score of 15% and greater, and a query coverage of 85% and greater.

Removal of residual contamination

MIRA 4 assembly files from each BAC were blasted to the Univec database to identify residual sequence contaminates. BAC contigs that blasted to entries in the database with an e-value of .0001 or less were removed.

Results and Discussion

Identification of the region of interest

Studies completed by Bloom and Holland (2012), Zhang et al. (2012), Liu et al. (2014), and unpublished work by Dr. Michael Muszynski, identified a region likely to contain the Gal locus. In this study we used a region of interest from 9.1 to 9.6 Mbp on the short arm of chromosome 4. In the B73 v3 reference genome, there are six protein coding genes and six low confidence genes characterized, ranging from 113 bp to 9,640 bp in length. Additionally there are three transposable elements situated in the latter half
of the region that range from 556 to $56,722 \mathrm{bp}$ in length. Figure 2.2 summarizes the region of interest. Table 2.2 presents additional details of the region of interest including the model type of each gene (low confidence, protein coding, or transposable elements), as well as, the start and stop position and orientation.

Figure 2.2. Predicted gene model in the region of interest for B73 v3 reference genome. Red arrows represent genes; grey arrows represent transposable elements. Boxed genes were used in BAC marker sequences.

Table 2.2. Position, strand, and model type of predicted genes in the B73 v3 reference genome.

Gene \#	Gene	Model type	Start	Stop	Strand
1	AC184772.3_FG001	LC	$9,106,014$	$9,106,855$	Forward
2	AC201986.3_FG002	PC	$9,187,173$	$9,187,685$	Reverse
3	GRMZM2G702344	PC	$9,263,791$	$9,264,870$	Reverse
4	GRMZM2G122484	LC	$9,272,045$	$9,272,566$	Forward
5	GRMZM5G817995	PC	$9,329,468$	$9,329,770$	Forward
6	GRMZM2G419836	PC	$9,355,159$	$9,358,375$	Forward
7	AC205010.4_FG001	LC	$9,358,025$	$9,359,830$	Reverse
8	GRMZM2G535727	TE	$9,375,747$	$9,375,860$	Reverse
9	GRMZM2G027021	PC	$9,490,258$	$9,499,402$	Forward
10	GRMZM2G027368	TE	$9,517,545$	$9,574,267$	Reverse
11	AC204382.3_FG010	LC	$9,588,810$	$9,589,611$	Forward
12	GRMZM2G507805	TE	$9,589,653$	$9,590,209$	Reverse
13	GRMZM2G039983	PC	$9,594,061$	$9,597,440$	Reverse
14	GRMZM2G039971	LC	$9,597,755$	$9,598,020$	Reverse
15	GRMZM2G039928	LC	$9,598,535$	$9,599,547$	Forward

LC= low confidence; $\mathrm{PC}=$ protein coding; $\mathrm{TE}=$ transposable element

The BAC library was screened using the primers found in Table 2.1. Primer sequences originated from predicted genes in the region of interest. Marker placement is shown in Figure 2.7. We verified the presence of marker sequences in assembled contigs.

Four BACs were identified as containing molecular markers in the region of interest. Post sequencing, BAC 1 yielded 3,526,222 reads; BAC 2 yielded 4,995,350; BAC 3 yielded $1,849,985$; BAC 4 yielded 2,472,846 reads. Average read length after processing is 280 bp .

We first sought to determine what proportion of reads mapped to the entire B73 reference genome, or if they mapped to the genome at all. We used the genome alignment exercise to verify that the BACs were derived from the region of interest. Since BAC 2 generated the largest number of reads and was hypothesized to reside in the middle of the region of interest, it was selected for this analysis. Visualization of BAC 2 reads mapped to the entire B73 reference genome, using BWA, revealed that the highest density of reads is indeed within the region of interest located on chromosome 4 (Figure 2.3). Homology to BAC sequences was found outside of the region of interest as well.

Read mapping outside of the region of interest could be the result of one or more of the following: 1) reads map to repetitive regions found inside and outside of the region of interest, 2) the region of interest in the Gal-m haplotype is smaller than B73;

BAC sequences, therefore, extend out of the region of interest defined by the B73 reference genome, and/or 3) the sequences of the BACs may differ from that of B73. These variations could be the result of genome rearrangements where sequences are not
deleted from the genome, but simply moved to a new genomic location (Springer et al., 2009).

Figure 2.3. Visualization of BAC 2 reads mapped to the entire B73 genome.

Of all BAC 2 reads, less than 3\% mapped to regions outside the region of interest. 20% of total BAC 2 reads mapped to the genome. These results can be seen in Table 2.3. It was therefore concluded that BAC 2 originated from the identified region of interest. Some of the reads not mapping to the genome could be the result of sequence differences in Ga1-m and not in B73. Residual contamination may also have resulted in unmapped reads.

Table 2.3. BAC 2 BWA alignment to the B73 genome vs region of interest.

	Number of reads	Percent of total reads
Total reads	$4,995,350$	
Reads mapped to region	889,424	17.8%
Reads mapped outside of region	122,932	2.5%
Reads mapped to genome	$1,012,356$	20.3%

High quality reads per BAC were then mapped to the region of interest of B73 using BWA. The distribution of the mapped reads is shown in Figure 2.4. A small proportion of reads map to locations across the region of interest. We believe this result is once again due to the mapping of repetitive reads. The majority of the aligned reads for each BAC fall within the same genomic region as the marker sequence (and corresponding gene) used to select the BAC, verifying hypothesized BAC order. The distribution of the mapping locations of reads from each BAC suggest that BACs do originate from the region of interest and do so in an overlapping BAC arrangement. Collectively, we conclude the following BAC order: BAC 1, BAC 2 and BAC 3, and BAC 4, with BAC 3 falling within BAC 2.

Figure 2.4. BAC read sequence distribution over the B73 region of interest.

Two different approaches (Figure 2.1) were used to assemble the sequence reads. The first approach was a comparative genome assembly. Reads are first mapped to the B73 reference genome and those that did not map to the region were subjected to de novo assembly. This was accomplished as follows.

Step One: Read files from each BAC were aligned to the region of interest using BWA. The percentages of reads that map to the region are presented in Step 1 of Table 2.4. BAC $1(1.4 \%)$ and BAC $4(6.4 \%)$ have a much lower percentage of mapped reads compared to BAC 2 (17.8\%) and BAC 3 (21.1\%). A lower quantity of mapped reads from BAC 1 and BAC 4 and alignment of BAC 1 and 4 to the boundaries of the region of interest suggest that these BACs extend out of the region of interest.

Location and number of reads mapped to the reference genome are not identical across BAC sequences; however, some mapped regions are shared between BACs. These similarities and differences in coverage suggest overlap, but of four distinct BACs.

Some part of the region of interest contained no mapped reads.. We believe these gaps in coverage are the result of sequence differences between the BACs and B73.

Step Two: The reads that did not map to the region were subjected to de novo assembly (Step 2 in Table 2.5). Compared to the mapped reads, the de novo assembled reads resulted in contigs with greater overall length. The percentage of unmapped reads assembled into contigs from each BAC ranged from 16\%-28\% (ranked from lowest to highest: BAC 3, 4, 2, 1). BAC 1 and BAC 2 have slightly higher percent read usage and a substantially larger number of total contigs (1,083 and 1,249); however, average contig length is on average 1.5 fold smaller (757 bp and 755 bp). Data suggest that assembly of BAC 1 and BAC 2 unmapped reads resulted in a myriad of short contigs that cannot be assembled into longer contigs. Fewer unmapped reads were used in BAC 3 and BAC4 compared to BAC 1 and BAC 2. The number of contigs is smaller (213 and 360); however, average contig length is much higher ($1,170 \mathrm{bp}$ and $1,084 \mathrm{bp}$), possibly a result of fewer mapped reads being removed.

Overall, unmapped reads yielded a greater number of contigs that are, on average, over 2.5 fold longer than mapped contigs. Additionally, more unmapped reads are assembled in comparison to mapped reads. Interestingly, the number of reads per contig base for mapped contigs is much higher than unmapped contigs. This result may be due to mapped contigs representing reads that are derived from repetitive regions. For example, if there are two similar regions in the region of interest (repetitive region 1 and repetitive region 2), the reads derived from repetitive region 1 and reads derived from repetitive region 2 will both map to region 1 . This would cause the coverage of such repetitive regions to be artificially inflated. This may explain why the coverage of the
mapped contigs is high. This would also suggest that the unmapped contigs are unique sequences and may be also unique to the Gal-m genome.

Table 2.4. Summary of comparative genome assembly: Mapped reads.
Step 1: BWA- Identifying mapped reads

	BAC 1	BAC 2	BAC 3	BAC 4	Total
\# Rds/BAC \# Rds mapped to region of interest	51,063	889,424	390,147	159,069	$\mathbf{1 , 4 8 9 , 7 0 3}$
\% Rds mapped	1.4%	17.8%	21.1%	6.4%	11.6% (Avg)
\# Contigs	209	180	124	119	632
\# Rds used in contigs	50,508	889,361	390,083	159,000	$1,458,952$
\% Rds used	99%	$>99 \%$	$>99 \%$	$>99 \%$	$>99 \%$
Avg contig length (bp)	181	313	407	382	301
Avg \#Rds/contig	242	4,941	3,146	1,336	2,308
Total length of contigs	37,752	56,396	50,421	45,474	190,043
\# Rds/contig base	1.3	15.8	7.7	3.5	7.7

Table 2.5. Summary of comparative genome assembly: Unmapped reads.
Step 2: De novo assembly of unmapped reads

	BAC1	BAC2	BAC3	BAC4	Total
\# Rds/BAC	$3,475,159$	$4,105,926$	$1,459,838$	$2,313,777$	$11,351,131$
\# Rds in contigs	558,957	725,206	232,077	648,703	$2,164,029$
\% Rds used	16.1%	17.7%	15.9%	28.0%	19.1% (Avg)
\# Contigs	1,046	1,292	248	405	3,068
Avg contig length (bp)	764	748	1,083	1,026	811
Avg \# rds/contig	534	561	936	1,602	705
Total length of contigs	799,118	966,157	268,669	415,684	$2,487,382$
\# Rds/contig base	0.7	0.8	0.9	1.6	0.9

Visualization of the positions of the mapped reads in the region of interest, aligned with BWA, is shown in Figure 2.4. The gaps between clusters of mapped reads suggest there are many differences between the B 73 reference genome and the BAC sequences. Sequence variation among maize lines is known to exist (Fu \& Dooner, 2002). Not only organization of gene sequences, but also intergenic retrotransposon sequence can drastically differ between inbred lines (Fu \& Dooner, 2002; Springer et al.,
2009). Sequence differences between B73 and the Gal-m haplotype could explain why a limited number of reads from the BAC files successfully aligned to the reference sequence.

Figure 2.5 Visualization of reads mapped with BWA to the region of interest in the B73 genome. Red arrows represent genes; grey arrows represent transposable elements. *Mapped contigs are not drawn to scale.

Despite mapped reads from each BAC file resulting in coverage throughout the region of interest, this coverage was very sporadic and was separated by many areas of no coverage at all. The result was many small contigs and many unassembled reads. De novo assembly of unmapped reads allowed us to fill in gaps in the alignment. We therefore concluded that the extent of sequence differences between the BAC sequences and the B73 genome was too great to obtain an accurate assembly with the comparative genome assembly approach. One possible problem with
assembling the mapped and unmapped reads separately is that that neither set contains the reads necessary to assemble large contigs. Our results suggest that the BACs consist of sequences that map to the reference genome, frequently interspersed with sequences that don't map to the reference genome. We reasoned that it may be possible to obtain longer contigs by assembling all of the reads from a BAC in one de novo assembly. The use of a reference genome has been used in previous research to address such situations (Pop et al., 2003). However, as shown in the mapping results of this project, there exists too much sequence variation and possible genome rearrangements for the use of a reference genome to be of much benefit in assembly the BAC sequences. A new assembly approach was sought.

De novo assembly by BAC

Our approach was to assemble the BAC files as completely as possible without aid of the reference genome and then align the resulting contigs to homologous portions of the reference genome. Post assembly comparison of the B73 reference genome and BAC contigs should highlight sequence differences that are candidates for causative polymorphisms responsible for gametophytic cross-incompatibility. Therefore, each BAC file was subjected to individual de novo assemblies.

Compared to the data derived from the mapped and unmapped assemblies, whole BAC de novo assembly yielded contigs that were much longer with greater total contig length. Assembled contigs were blasted against the Univec database by BAC to determine the extent of residual contamination. A total of 289 assembled contigs were identified as containing contamination. A total of 459,690 bp of contaminants were
removed across all BAC files. Remaining contigs are believed to be of high quality BAC sequences.

BAC reads were screened for E coli sequence using deconseq and the E coli genome before assembly; however, residual contamination remained at the read level. It is possible that the cloning vector, $\mathrm{DH} 10 \mathrm{~B} E$ coli, contain a slightly different genome than that found in the E coli database. Genome variation could cause contamination to not be fully removed. Contig contamination was also derived from Enterobacteria. The Enterobacteria classification extends to include more genera of bacteria than Escherichia, such as Salmonella and Shigella, and could further explain why all contamination was not removed. Furthermore, if sequencing errors were present in the reads, accurately identifying E coli sequences at the 95% identity may become difficult and may lead to the reads not being removed.

Combined BAC de novo assembled contig length, after the removal of contaminated contigs, totaled $2,109,499 \mathrm{bp}$. BACs appeared to overlap substantially to cover the entire region of interest, suggesting actual length of the region is lower than combined total contig length. Individual de novo assembly results before and after sequence contamination removal can be seen in Table 2.6. The distribution of contig lengths for each BAC file demonstrates that the assembly process yielded many small contigs. Across BAC files, contigs 5 kb and greater accounted for approximately 0.4% to 2.5% of total contigs per BAC files. These results can be seen in Figure 2.6.

Table 2.6. Results from individual de novo assemblies of BAC files before and after contamination removal.

Before contaminate removal	BAC 1	BAC 2	BAC 3	BAC 4
Total number of reads	$3,526,222$	$4,995,350$	$1,849,985$	$2,472,846$
Number of reads assembled	557,271	695,794	199,820	333,466
Total length of contigs (bp)	867,582	$1,026,154$	261,723	419,774
Number of contigs	1,113	1,380	235	381
Largest contig (bp)	38,064	25,649	78,062	36,895
Average coverage	179	406	377	353
After contaminate removal				
Total number of reads	$2,968,951$	$4,299,556$	$1,650,165$	$2,139,380$
Number of reads assembled (bp)	354,926	348,137	12,676	262,507
Total length of contigs (bp)	750,013	871,928	141,782	345,776
Number of contigs	1,028	1,257	192	343
Largest contigs (bp)	17,149	25,649	6,150	36,895
Average coverage	591	700	3,265	370

Figure 2.6. Distribution of contig length of MIRA 4 assembled contigs by BAC after contamination removal.

Despite the creation of longer contigs in individual de novo assemblies, there remained a large number of reads that were not assembled, as well as, many short
contigs. Contig breaks and unassembled reads may be the result of repetitive regions (interspersed between successfully assembled regions) that were difficult to assemble. De novo assembly literature refers to repetitive reads as the biggest impediment to assembly (Phillippy \& Schatz, 2008). MIRA 4 aborts contig extension, labeling the contig with "rep", in a situation in which one or more reads could be used to extend the contig and/or the contigs contains repeative sequence. Instead of inaccurately assembling sequences, contig extension is stopped. In the BAC files (1-4), the percentage of "rep" contigs in comparison to total number of contigs are as follows: $76 \%, 79 \%, 55 \%$, and 60%. These numbers demonstrate that over half of the contigs from each BAC file was stopped due to occurrences of repetitive regions. These results likely explain why the assembly yielded many contigs.

Several MIRA4 parameters were altered in attempt to optimize the assembly and utilize more reads to create longer contigs. These results can be seen in Table 2.7. The altered parameters did change the MIRA 4 output; however, no substantial effects were observed. Because of the lack of significant improvements, we went forward with the more stringent parameters from the initial assembly.

Table 2.7. Parameter optimization for de novo assembly.

Denovo assembly	Parameters altered	Total reads	Longest contig	Number of contigs	Total length	N50 contig size	Total avg coverage	Notes
1		694,468	25,773	1,404	1,043,218	656	1651.83	
2	AS:ard=no	693,875	31,448	1,412	1,044,318	669	1690.50	automatic read detection
3	AS:urd=no	692,255	31,448	1,434	1,058,057	664	1596.03	uniform read distribution
4	AL:mo=10	746,108	30,602	2,048	1,420,361	636	1765.04	minimum overlap
5	HS:Idn=no	693,488	42,262	1,442	1,064,815	673	1599.73	mask repeats in reads; small reads will not span repeats and will be put in debris file
6	SK:percent_ required=50	691,900	26,740	1,460	1,079,847	668	1649.28	controls relative \% of exact matches for overlap (typically in sync with - AL:mrs)
7	SK:percent_ required=30	694,184	28,900	1,408	1,046,836	671	1635.38	compare to above
8	HS:mnr=yes	692,672	26,741	1,447	1,071,580	670	1637.84	mask nasty repeats
9	AL:mrs=75	662,567	32,662	2,365	1,641,010	655	1601.24	minimum relative score (typically set at 95)
10	AL:mo=10	710,363	22,257	3,380	2,300,261	657	1593.06	
Hs:Idn=no								
AL:mrs=75								

Contigs that cannot be increased in length and remaining unassembled reads could be the result of several situations. Sequencing errors in the read files may exist. Despite trimming reads to increase read quality, the files may remain error prone. Sequencing errors would prevent overlapping reads from being assembled. If overlapping reads have especially high coverage, or are repetitive in nature, MIRA4 would not assemble these regions either. Classification or repetitive reads shown in Table 2.8 suggests that many reads have been indeed tagged as "crazy" repeats and "nasty" repeats. Most reads assembled had average coverage; however, some reads did have above average coverage. Small contigs of low coverage could also be problematic and lead to a higher number of contigs. Our data, however, does not suggest that low coverage is a problem in the assembly.

Table 2.8. Read coverage and repeat classification.

BAC	Coverage classification			Repeat classification			
	HAF2	HAF3	HAF4	HAF5	HAF6	HAF7	MNRr
1	0	479,061	41,440	0	1,342	3,527,253	3,554,658
2	0	619,285	62,513	0	1,771	4,968,939	1,435,064
3	0	210,861	0	0	278	1,925,053	1,926,413
4	0	337,760	28,398	0	671	2,585,096	2,590,338

Furthermore, contamination at a different molar concentration than the BAC DNA, as well, chemical-physical properties of the genome (such as GC rich regions) could lead to erroneous, biased coverage and lead to assembly challenges. Additionally contig alignments to the B73 genome reveal that overlapping contigs marked as "rep" are not assembled into a consensus sequence during the de novo assembly. Because of this, and the high number of "rep" contigs present, many overlapping contigs are not
combined. This may explain the high number of contigs present in the assembly and why total contig length exceeds the length of the region of interest.

We next sought to compare differences in the de novo assembled contigs and the B73 reference genome in an effort to identify candidate gene polymorphisms responsible for gametophytic cross-incompatibility. We first used BWA to align genes predicted in B73 to our BAC contigs (Table 2.9).

Table 2.9. Genes from B73 reference genome present in BAC contigs determined by BWA alignment.

Gene \#	Predicted genes in reference genome		BAC 1	BAC 2	BAC 3	BAC 4
1	AC84772.3	LC	X	X		X
2	AC201986.3	PC				
3	GRMZM2G702344	PC				
4	GRMZM2G122484	LC				
5	GRMZM5G817995	PC	X	X	X	X
6	GRMZM2G419836	PC	X	X	X	X
7	AC205010.4	LC				
8	GRMZM2G535727	TE				X
9	GRMZM2G027021	PC				X
10	GRMZMG027368	TE	X	X	X	X
11	AC204382.3	LC				
12	GRMZM2G507805	TE				X
13	GRMZM2G039983	PC		X		X
14	GRMZM2G039971	LC		X		
15	GRMZM2G0339928	LC				

LC: low confidence; PC: protein coding; TE: transposable element *Shaded cell indicates a previously identified putative gene by Liu et al. (2014).

Alignments of predicted gene sequences from the region of interest and assembled contigs from each BAC reveal sequence homology with genes 5 (GRMZM5G817995) and 6 (GRMZM2G419836) to all BACs. Predicted gene 1 (AC184772.3), 9 (GRMZM2G027021), 10 (GRMZM2G027368), 13 (GRMZM2G039983), and 14 (GRMZM2G039971) also clearly align to assembled contigs from at least one BAC. The functions of these genes have yet to be determined;
however, 3 of the genes we found in the BAC sequences do contain characterized conservative domains. Predicted gene 1 (AC184772.3) contains a thioredoxin-like fold conserved domain; predicted gene 9 (GRMZM2G027021) has a GTP-binding protein hgIX domain; and predicted gene 13 (GRMZM2G039983) has an XKlp2 targeting protein conserved domain.

Genes 2 (PC), 3 (PC), 4(LC), 8(TE), 11(LC), 12(TE), and 15(LC) have no recognizable homology to any BAC contigs. If the BACs overlap, as the data suggests, these genes may be absent from the Gal-m haplotype and may be contributors to the gametophytic incompatibility phenotype. Alternatively, they may be found elsewhere in the genome.

Alignment information was used to predict a BAC order as seen in Figure 2.7. Our data suggests that BACs overlap to cover the entire region of interest. We hypothesize the following BAC arrangement: BAC 1, 2, 3, and 4 and BAC 3 falls within BAC 2.

BAC 1

BAC 3

$$
\text { BAC } 4
$$

Markers used to select BACs
Figure 2.7. Hypothesized arrangement of BAC sequences and presence of B73 predicted genes in the Gal-m haplotype. Boxed arrows indicate genes where BAC markers originated.

Figure 2.7 illustrates the contig alignment data with the predicted genes in the B73 genome. Interestingly, gene 9 (GRMZM2G027021) aligns to only BAC 4. This result suggests the gene is found in the right most boundary of the region of interest, possibly due to reorganization of the Gal-m haplotype. Furthermore, marker sequence 1 and gene $1(\mathrm{AC} 184772.3)$ are found in $\mathrm{BAC} 1,2$, and 4 . If the predicted BAC order is correct, this result suggests that gene AC 184772.3 is either duplicated within the region or the gene is found downstream of its predicted location in B73. Gene 13 (GRMZM2G039983), previously annotated as a putative causative gene by Liu et al. (2014), was also identified in our BAC sequences. It is highlighted in Table 2.9.

The region of interest originally identified by Liu et al. (2014) was determined using the B73 version 2 reference genome. We sought to determine if the region remained identical in the current, B73 version 3 genome. The region identified in the version 2 genome was between markers dCS1 and ID7 from
$9,491,422$ to $9,591,946 \mathrm{bp}$. The version 2 region contained genes
GRMZM2G027021, AC204382.3_FG010, and GRMZM2G039983. We could not find marker dCS1 (as published: TCTGTGGAGCTTTGATAAGC) in either version 2 or version 3; however, we could find the following sequence:

TCTGTGGAGCTTTGATTGC. Using the identified sequence and the ID7 marker sequence, we identified the region of interest in the $B 73$ version 3 genome to be from $9,496,453$ to $9,596,169 \mathrm{bp}$ on chromosome 4 . The region contains genes GRMZM2G027021, GRMZM2G027368, and AC204382.3_FG010. The putative gene identified by Liu et al. (2014) is no longer present in the region of interest.

BAC 2 assembled contigs from our research appeared to span the approximately 100 kb region of interest. To identify sequence differences between the BAC sequences and the B73 reference genome, BAC 2 assembled contigs were aligned to the region. A total of 664 contigs aligned to the 100 kb region. A total of 32 contigs covered the region with a total length of $26,696 \mathrm{bp}$. The alignment suggests no coverage in some parts of the region. Lack of coverage could be due to 1) large sequence deletions in the BAC sequences resulting in a region that is smaller than that found in B73 or 2) reads that remained unassembled could fill in regions with no coverage.

We next determined the presence of polymorphisms in each gene alignment. Table 2.10 describes insertions and deletions found within the gene alignments (see appendix for additional information on alignments). Polymorphisms led to missense mutations, frameshift mutations, and premature stop codons in the protein sequences. Closer observation of GRMZM2G027021 alignment with BAC
sequence reveals possible transposon activity. A deletion starting at bp 13,125
flanked by inverted terminal repeats are suggestive structures of the $\mathrm{Ac} / \mathrm{Ds}$ transposon system. Such observed changes in predicted protein structure may lead to altered function which may underlie the causative polymorphisms of the gametophytic cross-incompatibility system. The gene is also protein coding found both in the version 2 and version 3100 kb B73 region of interest. Genes within the identified region in B73 have yet to be annotated. Therefore, we can conclude that we did find sequence polymorphism in the BAC sequences; however the extent of those polymorphisms cannot yet be determined.

AC184772.3

BAC 1	BAC 2	

GRMZM5G817995

BAC 1
BAC 2
BAC 3
BAC 4

GRMZM2G419836

BAC 1	
BAC 2	
BAC 3	
BAC 4	

GRMZM2G027021
BAC 4

GRMZM2G039983

	BAC 2
BAC 4	

GRMZM2G039971

BAC 2
BAC 4

Figure 2.8. Contig alignment to predicted genes in region of interest.

Table 2.10. Polymorphisms between B73 and BAC de novo assembled contigs.

Gene \#	Gene ID	Total bp inserted	Total bp deleted	Change in protein length (aa)	Impact on translated product
1	AC184772.3	8	13	-1	Missense Frameshift
5	GRMZM5G817995	0	0	0	Missense
6	GRMZM2G419836	7	278	+165	Missense Nonsense
9	GRMZM2G027021	176	7,791	+869	Frameshift Missense Nonsense
13	GRMZM2G039983	2,227	13	+737	Frameshift Missense
14					Nonsense GRMZM2G039971
	1	1	0	Frameshift Missense	

We next determined if the assembled contigs contained predicted genes not present in the B73 genome. Based on previous observations that BAC 2 falls within the region of interest and overlaps with the other BACs, and that BAC 1 and 4 likely extend out of the region of interest, it was concluded that BAC 2 would be the best BAC to analyze in order to find predicted genes not present in B73. BAC gene prediction was performed only on contigs 5 kb and larger due to the large number of small contigs. BAC 2 was assembled into 984 contigs shorter than 5 kb . Predicted genes found in BAC2 can be seen in Table 2.11.

Gene prediction on BAC 2 contigs yielded 12 predicted genes. Predicted gene 1 from contig AP2_c38 is found to overlap with the B73 predicted gene 6 (GRMZM2G419836). The predicted gene from AP2_c38 is 3,011 bp smaller than the gene model found in B73. Mutations within AP2_c38 alters the protein sequence.

Therefore, the protein structure found in BAC2 is not identical to the gene in B73. The remaining eleven out of the 12 predicted genes in BAC 2 contigs 5 kb and longer, were not present in B73, suggesting that the Gal-m haplotype contains unique genes not found in the reference genome.

The six remaining genes shared between B73 and the Gal-m haplotype are identified in contigs of approximately 500 to $5,000 \mathrm{bp}$ in length. The predicted genes from the BAC 2 contigs 5 kb and greater were then blasted to the non-redundant nucleotide database using the NCBI web browser. Top blast outcomes can be seen in Table 2.12.

Table 2.11. Gene prediction of BAC 2 assembled contigs 5 kb and longer.

Predicted	Predicted	Genes previously annotated	
Contig	genes	exons	in B73

Results suggest that the BAC 2 contigs share homology with regions of chromosome 5 . Interestingly, Ga2, an independent gametophytic cross-incompatibility system, is found on the long arm of chromosome 5. It may be possible that the Ga1-m haplotype shares sequence similarities to the Ga2 system. Similar to Ga1, Ga2 possesses
both a $-s$ (strong) and $-m$ (male) allele and has been shown to be analogous to Gal (Kermicle \& Evans, 2010). It is possible that during the domestication processes, an ancestral gametophytic incompatibility locus was duplicated and the duplicates diverged to become the functionally distinct $G a 1$ and $G a 2$ loci.

Several of the predicted genes found on BAC 2 contigs 5 kb and greater have homology to genes with functions that could play a role in pollen cross-incompatibility. Blast results for AP2_c53 and AP2_rep_c137 suggest sequence homology to transcription factors. AP2_rep_c142 shows similarity to a zinc finger. If truly present in the region of interest, transcription factors/zinc fingers could be responsible for regulating the transcription of genes necessary for pollen tube growth or hormone secretion. Altered gene expression could lead to unsuccessful pollinations. Additionally, our data suggests gene AC 184772.3 is potentially duplicated in the region. The presence of a zinc finger domain could result in a dimer of the two proteins with function that contribute to the incompatibility system.

AP2_rep_c134 shows sequence similarities to an Etr2-like ethylene-receptor protein. Ethylene receptors have been shown to be responsible for plant growth and development. Disrupted hormone levels could potentially result in arrested pollen tube growth as well as other imbalances in the silks.

AP2_rep_c142 also shows sequence homology to a repressor of a protein kinaselike protein. The roles of kinases in gametophytic self-incompatibility systems in Brassica have been well documented. Proteins expressed by the male and female tissues interact, leading to phosphorylation of a kinase domain that ultimately inhibits pollen
tube growth (Takasaki et al., 2000). It could be possible that kinases play a similar role in the inhibition of pollen tube growth in the gametophytic cross-incompatibility system.

Assembled contig AP2_rep_c126 demonstrated no homology to any known nucleotide sequences in the non-redundant database, despite gene prediction revealing two predicted genes in the contig sequence. It is possible that we discovered novel genes that have not been previously annotated in the maize genome. It could also be possible that we discovered genes unique to maize. Genes that are unique to a particular species are referred to as orphan genes. Orphan genes are thought to make up 0.5% to 8% of eukaryotic genomes (Li \& Wurtele, 2015). It is hypothesized that the creation of orphan genes may be driven by genome duplication and rearrangements (Tautz \& Domazet_loso, 2011), both of which our results suggest may have occurred in the Gal-m haplotype. Only through further experimentation did Li and Wurtele (2015) determine the function of the orphan gene Qua-Quine-Starch (QQS) after primary sequence comparison identified no sequence homolog. It may be possible that an orphan gene is responsible for the male function in the gametophytic cross-incompatibility system. This may account for some of the difficulties in identifying the causative gene.

Table 2.12 BAC 2 contigs 5 kb and longer blasted to non-redundant nucleotide database.

Table 2.12 continued

			11805-14615	87	Zea mays m19 gene for putative MADS-domain transcription factor allele ZMM19	AJ850298.1		
AP2_rep_c138	12,648				Blast hits did not meet criteria			
AP2_rep_c134	12,298	0.0	8317-12186	83	Zea mays clone BACs ZMMBBb0345O22, ZMMBBc0294D02, ZMMBBb0103L15, ZMMBBb0622H01, and ZMMBBb0335C07	EF517600.2		
			1519-4106	88	Zea mays clone FS2 19 chr B	EF190061.1		
			1518-4119	88	Zea mays BAC clone from chr 6	AC226723.4		
			2666-4121	89	Zea mays B73 Etr2-like ethylene receptor (ETR61) pseudogene	AY359583.1		
			2666-4121	89	Zea mays full-length cDNA clone ZM BFb0095N09 mRNA	BT084267.2		
AP1_c1	8,315	0.0	1-2098	93	Zea mays BAC clone form chr 10	$\begin{aligned} & \text { AC226721.2 } \\ & \text { GQ845080.1 } \end{aligned}$		
			17-2087	91	Zea mays chromosome 4 seq AGI. 478 genomic sequence			
			2986-4472	96	PREDICTED: Zea mays uncharacterized protein Zea mays hypothetical protein mRNA Zea mays full-length CDNA clone Zea mays full-length cDNA clone Zea mays chloroplast phytoene synthase gene Zea mays clone hypothetical protein mRNA Zea mays cultivar inbred line B73 teosinte glume architecture 1	XM_008654301.1EU956244.1	yes yes	w
			2976-4472	95				
			720-1984	97		BT069767.1		
			720-1982	96		BT083566.2		
			1360-3070	89		AY455286.1		
			720-2002	94		EU973310.1		
			1360-2096	94		AY883559.2		
AP2_c5	8,239	0.0	7240-7861	100	Zea mays uncharacterized LOC100501595	NM_001196280.1 EU966398.1	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	
			6849-7936	99	Zea mays clone mRNA sequence			

Table 2.12 continued

AP2_c23	7,451	0.0	1861-7268	98	Zea mays putative pol protein	AF466202.2	yes
			1861-7268	98	Zea mays clone ZMMBBb-136N21	AC165175.2	yes
			1861-7268	97	Zea mays genomic clone ZM15C05 sequence	AC116033.3	yes
			3334-7268	96	Zea mays clone from chr 5	AC210260.5	yes
			3538-5384	99	PREDICTED: Charadrius vociferous uncharacterized	XM_009883513.1	yes
			1859-3547	97	Zea mays BAC clone from chr 5	AC203430.5	
			1861-3547	95	Zea mays BAC clone from chr 2	AC229873.2	
			1860-3547	88	Zea mays BAC clone from chr 10	AC225944.3	
			20-1454	88	Zea mays BAC clone from chr 5	AC207417.4	
			135-1454	88	Zea mays BAC clone from chr 5	AC216353.5	
			50-1454	86	Zea mays cultivar Mo17 locus 9008	AY664418.1	
			50-1414	86	Zea mays cultivar B73 locus 9008	AY664414.1	
			228-1454	88	Zea mays BAC clone from chr 1	AC226722.2	
			297-1454	89	Zea mays BAC clone from chr 10	AC226721.2	
			77-1431	85	Zea mays clone mRNA	EU942949.1	
AP2_c53	5,767	0.0	1023-5730	89	Zea mays BAC clone from chr 5	AC204225.4	yes
			1023-5730	89	Zea mays BAC clone from chr 5	AC202177.4	yes
			1023-5761	85	Zea mays unknown putative heme oxygenase, anthocyanin biosynthesis regulatory protein, putative growth-regulating factor 1 , and putative aminoalcoholphosphotransferase genes	AY530952.1	yes
			1023-5767	85	Zea mays clone ZMMBBb/125019	AC165173.2	yes
			1023-5763	85	Zea mays BAC clone from chr 5	AC216070.4	yes
						AC201762.5	
						AC215174.5	
						AC202076.4	
						AC197049.5	
			1023-5762	85	Zea mays BAC clones from chr 6	AC231746.2	yes
			1032-5720	85	Zea mays BAC clone from chr 5	AC196774.5	yes

Table 2.12 continued

			1023-5645	85	Zea mays cultivar B73 locus 9009	AY664415.1	yes
			1023-5645	85	Zea mays cultivar Mo17 locus 9009	AY664419.1	yes
			1015-4909	85	Zea mays BAC clone from chr 5	AC204937.4	yes
AP2_rep_c142	5,430	0.0	1361-3575	88	PREDICTED: Zea mays zinc finger	XM_008676910.1	
			1361-3578	88	PREDICTED: Zea mays 52 kDa repressor for the inhibitor of the protein kinase-like	XM_008679685.1	
			1566-3575	88	PREDICTED: Zea mays zinc finger MYM-type protein 1like	XM_008676911.1	
			1361-2842	88	PREDICTED: Chrysemys picta bellii zinc finger MYMtype protein 6-like	XM_008178212.1	
			2183-3413	89	PREDICTED: Caprimulqua carolinensis zinc finger MYMtype protein 1-like	XM_010163805.1	
			1361-2478	85	Zea mays CYP71C1 gene for cytochrome P-450	X81828.1	

Conclusions

The BAC assembly project concluded with assembled contigs from each BAC file. We were successful in our attempt to compare assembled sequence with the B73 reference genome to characterize entire gene insertions and deletions and gene polymorphisms. In this research, we present two assembly methods and resulting conclusions from each.

Maize has many repetitive regions. Our BAC assembly data are consistent with this. We believe the repetitive nature of the region of interest, as well as substantial sequence variation between our BAC sequences and the B73 reference genome, resulted in an inefficient comparative genome assembly method. Because of this genomic structure, a de novo assembly of the region of interest worked better than first assembling reads that mapped to the B 73 reference genome. De novo assembly of individual BACs and removal of residual contaminants resulted in the creation of 2,820 contigs. Contig breaks are suggestive of repetitive regions that remained unassembled. Additional arrangement and connection of contigs is required.

The de novo assembly of BAC sequences in our research successfully identified six predicted genes and one transposable element from the B73 genome. Gene model alignments showed polymorphisms that could lead to altered protein structure in BAC 2 contigs. The lack of annotated genes in the region and significant sequence variation made the identification of causative polymorphisms in the region challenging. Our results do suggest noncolinearity between the BAC sequences and the B73 reference genome. Six predicted genes and two transposable elements from the region of interest in B73 were not found within the Gal-m haplotype and therefore appear to be absent
from the region. Gene alignments support both theories that gene insertion/deletions and/or gene polymorphisms may underlie the male function in this system. At this point, we cannot definitively rule out either hypothesis.

We demonstrate clear BAC alignment with the gene GRMZM2G039983, predicted by Liu et al. (2014) to have a possible role in gametophytic crossincompatibility. This gene has five gene insertion sites and multiple polymorphisms that resulted in a modified protein structure. Our results of a modified GRMZM2G039983 gene sequence are consistent with past conclusions that the gene may play a role in the incompatibility system. Using the current B73 v3 genome, we determine that the region of interest identified by Liu et al. (2004) is smaller than originally documented. Furthermore, we found that the putative gene identified (GRMZM2G039983) is no longer in the region. Published markers were used to identify genes 9,10 , and 11 to now be putative genes in the region of interest. Gene GRMZM2G027021 is a protein coding gene found in both the version 2 and version 3 region of interest. We also found possible transposable element activity in the gene sequence in our BAC sequences. We identify GRMZM2G027021 as a gene of high interest for causation of the male factor.

Gene prediction on BAC 2 assembled contigs of 5 kb and longer from the Gal-m haplotype yielded a total of 11 predicted genes not present in B73. BLAST results from the same BAC 2 contigs of 5 kb and longer suggest sequence homology on chromosome 5 and other conserved domains.

Significance

The mechanism underlying gametophytic cross-incompatibility in maize has remained a mystery since it was first identification in 1902 by Correns. Numerous
research studies have been performed and much knowledge has been contributed to the field; however, many integral questions about the system remain unresolved. Interest in using the gametophytic cross-incompatibility system as a biological barrier to prevent unwanted pollination of maize has increased. Increased knowledge of the system has economic advantages. The utilization of the gametophytic cross-incompatibility system may have benefits in organic and specialty maize production. Effective isolation of transgenes from certain maize systems would benefit producers of both market types. The use of the gametophytic cross-incompatibility system as a means to control the flow of transgenes could possibly prevent future allegations between farmers and biotechnology companies producing transgenic maize. Increased efficiency and ease of isolation could also result in a decreased maize price for consumers.

The ability to easily sequence DNA, has allowed for characterization of the region on the basepair level. This project marks the first attempt, to our knowledge, to sequence and annotate the 9.1 to 9.6 Mbp region from a Gal-m haplotype.

Recommendation for Future Research

The next step required to move this project forward is to determine overlap of contigs across BAC files. Contigs must be correctly ordered and assembled into a scaffold sequence spanning the region of interest. PCR primers can be created with the aim of linking assembled contigs. Purified PCR product can be sequenced and used to fill in sequence gaps between contigs. Upon completion of a consensus sequence, gene prediction and gene annotation can be performed on the entire consensus sequence. Gene prediction on a sequence that covers the entire region of interest will give a more accurate estimation of novel genes. A better understanding of the sequence homology between the
region of interest and chromosome 5 (potentially Ga2) might shed light on genome arrangement and interaction.

PacBio sequencing may also greatly assist the assembly process. PacBio reads are much longer than reads from any other current sequencing technology, with a median length of 2,200 bp. PacBio reads could successfully span repetitive regions that are challenging to assembly with shorter reads. Additionally, PacBio reads and the Miseq reads used in this experiment could be used in a hybrid assembly with the PacBio reads. The presence of the shorter Miseq reads coupled with longer reads have been shown to offset the inherent sequencing error present with longer sequence reads and could potentially lead to a much improved assembly (Koren et al., 2012).

Further experiments could be done to assess involvement of predicted genes in the gametophytic cross-incompatibility region. The CRISPR-Cas 9 system could be used to knock out genes of interest and determine their role. Additionally, candidate genes could be transformed into a gal haplotype and the outcome observed. Due to the smaller, simpler genome of Arabidopsis, incorporating the genes into Arabidopsis might be a valuable experiment.

RNA-seq work could also bring a greater understanding to the gametophytic cross-incompatibility system. Expression data of compatible versus incompatible reactions at different time points in pollen tube growth could be collected. The RNA-seq reads could then be aligned to the region of interest and differentially expressed genes in the region (including the predicted novel genes) could be determined. Mapping RNA-seq reads to the genome could also be beneficial in annotating genes found in the region.

References

Altschul, S., Gish, W., Miller, W., Myers, E., \& Llipman, D. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403-410.

Ashman RB. (1975). Modification of cross sterility in maize. J Hered. 66:5-9.
Birnboim, H., \& Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA.Nucleic Acids Research, 7(9), 1513-1523.

Bloom, J. C., \& Holland, J. B. (2011). Genomic localization of the maize crossincompatibility gene, Gametophyte factor 1 (ga1) (Vol. 56, pp. 379-387): Maydica.

Chaisson, M., Brinza, D., \& Pevzner, P. (2009). De novo fragment assembly with short mate-paired reads: Does the read length matter? Cold Spring Harbor Laboratory Press, 19, 336-346.

Chevreux, B., Wetter, T., \& Suhai, S. (1999). Genome sequence assembly using trace signals and additional sequence information. Computer Science and Biology: Proceedings of the German Conference on Bioinformatics, 99, 45-56.

Core, N. J. I. B. SICKLE. UC Davis Genome Center Institution: GitHub.
Hall, T. (1997). BioEdit (Version 7.2.5).
Julian, P., Allen, J., Christensen, M., Davis, P., Falin, L., Grabmueller, C., et al. (2014). Ensembl genomes 2013: Scaling up access to genome-wide data. Nucleic Acids Research, 42(D1), D546-D552.

Koren, S., Schatz, M., Walenz, B., Martin, J., Howard, J., Ganapathy, G., E, et al. (2013). Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nature Biotechnology 30(7), 693-700.

Li, H., \& Durbin, R. (2009). Fast and accurate short read alignment with burrowwheeler transform. Bioinformatics, 25, 1754-1760.

Li, L., \& Wurtele, E. (2014). The QQS orphan gene of Arabidopsis modulates carbon and nitrogen allocation in soybean. Plant Biotechnology, 13(2), 177-187.

Liu, X., Sun, H., Wu, P., Tian, Y., Cui, D., Xu, C., et al. (2014). Fine mapping of maize cross-incompatibility locus gametophytic factor 1 (gal) using a homogeneous population. Crop Science, 54, 1-9.

Mi, H., Muruganujan, A., Gaudet, P., Lewis, S., \& Thomas, P. (2010). PANTHER version 7: Improved phylogenetic trees, orthologs, and collaboration with the gene ontology consortium. Nucleic Acids Research, 38, 204-210.

Microsoft. (2010). Microsoft Excel. Redmond, Washington: Microsoft.
Monaco, M., Sen, T., Dharmawardhana, P., Ren, L., Schaeffer, M., Naithani, S., et al. (2012). Maize metabolic network construction and transcriptome analysis. Plant Genome, 9.

Monaco, M., Sen, T., Dharmawardhana, P., Ren, L., Schaeffer, M., Naithani, S., et al. (2013). Maize Metabolic Network Construction and Transcriptome Analysis. MaizeGDB.

Nelson OE. (1994). The gametophyte factors of maize. In: Freeling M, Walbot V, editors. The maize handbook. Berlin (Germany): Springer-Verlag. p. 496-503.

Pearson, W., Wood, T., Zhang, Z., \& Miller, W. (1997). Comparison of DNA sequences with protein sequences. Genomics, 46(1), 24-36.

Phillippy, A., Schatz, M., \& Pop, M. (2008). Genome assembly forensics: finding the elusive mis-assembly.Genomics Biology, 9(3), R55.

Pop, M., Phillippy, A., Delcher, A., \& Salzberg, S. (2004). Comparative genome assembly. Briefings in Bioinformatics, 5(3), 234-248.

Robert, I., Stead, A., Ockendon, D., \& Dickinson, H. (1980). Pollen stigma interactions in Brassica oleracea. Theoretical and Applied Genetics, 58, 241-246.

Salamov, A., \& Solovyev, V. (2000). Ab initio gene finding in Drosophila genomic DNA. Genome Research, 10(5), 16-522.

Schmieder, R., \& Edwards, R. (2011). Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS ONE, 6(3), el7288.

Springer, N., Yin, J., Fu, Y., Ji, T., Yeh, C., Jia, Y., et al. (2009). Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLOS Genetics, 5(11), e1000734-e1000734.

Takasaki, T., K. Hatakeyama, G. Suzuki, M. Watanabe, A. Isogai, and K. Hinata (2000). The S receptor kinase determines self-incompatibility in Brassica stigma. Nature 403 (6772): 913-6.

Tautz, D., \& Domazet-Loso, T. (2011). The evolutionary origin of orphan genes. Nature Reviews. Genetics, 12(10), 692-702.

Thompson, J., Higgins, D., \& Gibson, T. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680.

Thomas, P., Campbell, M., Kejariwal, A., Mi, H., Karlak, B., Daverman, R., et al. (2003). PANTHER: A library of protein families and subfamilies indexed by function. Genome Research, 13, 2129-2141.

Zhang, H., Liu, X., Zhang, Y. e., Jiang, C., Cui, D., Liu, H., et al. (2012). Genetic analysis and fine mapping of the Ga1-s gene region conferring crossincompatibility in maize (Vol. 124, pp. 459-465): Theoretical and Applied Genetics.

CHAPTER THREE: ENCYCLOPEDIA OF FOOD GRAINS: MAIZE CHAPTER

A chapter published in the Encyclopedia of Food Grains
Marianne Emery and M. Paul Scott
Publication status: Pending

Abstract

Maize grain in an important source of food around the world. Maize variety, processing, and cultural tradition dictate use of maize in food. The maize plant is regarded as a model system in the scientific world. Due to relative ease of working with maize, a large body of research has been compiled by the maize community, most notably the assembly of the maize genome. Further, maize is continually being improved for a variety of marketable traits. This chapter gives an overview of breeding techniques and concerns that arise in regards to such maize plant modifications.

Introduction

Zea mays, more commonly referred to as maize, is a member of the grass family Poaceae, or true grasses. Maize is thought to have originated 55-70 million years ago in what is now Central or South America and has since diversified into nearly 10,000 nondomestic relatives. Figure 3.1 shows a phylogenetic tree of grass species related to maize. There exists no direct ancestor for maize, however to date the closest relative to maize are the teosintes (Kiesselbach, 1949; Strable and Scanlon, 2013; Wilkes, 2004). Prehistoric selection has resulted in ears lacking seed cases called glumes and seeds that

Figure 3.1. A phylogeny of diploid grass species. (Adapted from Gaut B S et al., 2000)
adhere to the cob until manual removal. These alterations limit the ability of maize to survive without human intervention. Maize is an annual plant with C4 metabolism making it very efficient at carbon fixation. It has the
greatest global production of any crop species. Nearly eight million tons were produced worldwide in 2013 , accounting for 32% of total cereal production (FAO, 2014). The top three producers include the United States, China, and Brazil. Maize is grown on more area of the planet than any other crop and is grown on every continent except Antarctica. Over 300 countries in the world rely on maize for their food supply on a daily basis (FAO, 2014). The grain of maize is used for food, feed, and industrial products including biodegradable foams, plastics, and adhesives. Additionally, maize stover, the leaves and stalk of the maize plant, is used for forage, biofuel production, and chemical production.

Maize Reproduction

Maize is a monecious plant, meaning it has both male and female reproductive organs on the same plant. Flowers mature after approximately 60-70 days of vegetative plant growth. Male staminate flowers develop into tassels and are found on the
uppermost tip of the main stem. Female pistillate flowers are found in one or more ears located at nodes along of the stem. Typical maize varieties are diploid, containing two sets of 10 chromosomes. Copious amounts of pollen (up to one billion grains per plant) are shed from anthers and dispersed by air currents. While the majority of the pollen falls close to the plant, a small portion of the pollen can be carried great distances on air currents. Industry standards typically consider plants separated by a distance of 660 feet to be reproductively isolated. Fertilization occurs by the process of "double fertilization" common to angiosperm species. A pollen grain carrying two nuclei lands on a silk and germinates to produce a pollen tube. The pollen tube grows down the length of the silk until it reaches the embryo sac where it ruptures releasing the two sperm nuclei. The first sperm cell fuses with the egg cell, to produce the embryo, the organ that ultimately develops into the next generation plant. The second sperm cell fuses with the central cell of the embryo sac giving rise to the endosperm, the storage tissue that nourishes the developing seedling until it is capable of living independently. Grain fill to maturity takes about 40 days (Kiesselbach, 1949; Strable and Scanlon, 2013).

Maize Kernel Composition

The mature maize kernel is referred to as a caryopsis and is not a true seed but rather a one-seeded fruit (Keisselbach, 1949; Rooney et al, 2004). Kernels are composed of four organs: the pericarp, embryo, endosperm, and pedicel (Keisselbach, 1949). Physical properties, such as hardness, shape, size, color and composition vary among maize varieties.

The main organs of a maize kernel are shown in Figure 3.2. The outer layer of the kernel is the pericarp and encloses the kernel for protection. The endosperm
comprises the majority of the kernel's inner contents. The endosperm itself is composed of four tissue types: the aleurone (outer) layer, the starchy endosperm, the basal endosperm transfer layer (BETL), and the embryo-surrounding region (ESR) (Scanlon and Takacs, 2009). The endosperm provides nutrients in the form of sugars and amino acids to the growing embryo. The embryo is composed of the following: the scutellum (the monocotyledon that absorbs nutrients during germination), the coleoptile (protective sheath of the emerging shoot), the plumule (young plant), the radicle (primary root), and the coleorhizae (protective sheath of emerging root) (Scanlon and Takacs, 2009; Rooney et al., 2004). The tip cap serves to attach the kernel to the cob and protect the kernel.

Figure 3.2. The mature maize kernel, showing component parts. (Encyclopedia of Grain Science)

In terms of nutritive composition, the kernel can be further classified into five main components. The typical Number 2 Yellow Dent maize kernel contains approximately 72% starch, 9.5% protein, 4.3% oil, 1.4% ash and 2.6\% sugar (Watson, 2003).

Starch

Starch is the most abundant component in maize kernels and serves as an efficient storage molecule for glucose. Starch accumulates in the form dense insoluble granules. It is composed of two main components: amylose and amylopectin. Amylose is predominantly a linear polymer composed of 1,4 linked alpha D-glucan chains. In contrast, amylopectin is highly branched by alpha-1, 6 glycosidic bonds. Starch
biosynthesis requires the coordinated activities of a myriad of enzymes, including starch synthases, starch branching enzymes, and starch debranching enzymes. Enzymatic activity within the kernel alters starch content and properties. Degree of branching and branch chain length are starch properties that can vary considerably among maize varieties (Campbell et al, 1994; Ji et al, 2003). Maturity also affects starch quality (Jennings et al, 2002; Pollak and Scott, 2005). Traits sought in a commercial setting include gel strength, viscosity, and thermal properties such as gelatinization. Maize starch provides four calories per gram.

Genetic mutations can confer altered starch phenotypes. Mutant alleles of waxyl (wxl) produce 100% amylopectin starch, which is useful as a thickening agent in foods. Mutation of the amylose extender gene (ae) leads to high amylose starch (HAS) (Vineyard and Bear, 1952) with a range of amylose values from 25-80\%. HAS is known for its slow digestion in vivo. The sugary-1 (su1) and shrunken-2 (sh2) lead to kernel phenotypes that are sweeter than field corn, and are used to produce sweet corn varieties for canning and fresh consumption.

Oil
Oil is the second most abundant component of maize kernels. Oil from a kernel of typical Corn Belt Maize, Number 2 Yellow Dent, contains approximately 62\% linoleic, 25% oleic, 10% palmitic, 2% stearic and 1% linolenic acid; saturated fatty acids equate to approximately 12% of total lipid content (Pollak and Scott, 2005; Poneleit and Davis, 1972). The oil within the maize kernel provides nine calories per gram. Linoleic, linolenic, eicosapentaenoic, and docosahexaenoic fatty acids are shown to have a positive
correlation with cardiovascular health. A ratio of $6: 1$, linoleic to linolenic, is recommended (Wijendran and Hayes, 2004).

Similar to starch content and quality, studies demonstrate that exotic germplasm possesses extensive ranges of fatty acid composition (Jellum, 1970). Exotic lines are crossed to yield varieties with increased oil content. Oil content varies across inbred maize lines (Poneleit and Davis, 1972) and across varied environments. Total fatty acid composition varies throughout kernel development and ultimately increases as the kernel matures (Poneleit and Davis, 1972). Oil content is believed to be affected by a large number of loci (Dudley and Lambert, 1992) and is a highly heritable trait. Certain breeding schemes aim solely at increasing lipid content and/or quality (Hallauer, 2004). Duvick (2003) altered fatty acid content by introducing Tripascum genes, a wild relative of maize, into various maize lines.

Fatty acid stability is directly correlated to saturation level. Linolenic is the least stable fatty acid, containing three points of unsaturation. Oleic fatty acids are much more stable and less prone to oxidation. Oleic fatty acids are mono-unsaturated. Once oxidation begins, it cannot be stopped or reversed and ultimately leads to rancidity. Protein

Protein is another vital component to the maize kernel. Seed proteins are divided into four classes: albumin, globulin, prolamin, and glutelins (Rooney et al, 2004). The major storage proteins in maize are prolamins, also referred to as zeins. Eighty percent of the stored protein in maize is found in the endosperm (Flint-Garcia et al., 2009). Because of the amino acid balance of zeins and their abundance in the endosperm, lysine, tryptophan, and methionine are typically at low levels in maize (Flint-Garcia et al., 2009).

Maize is therefore not a complete protein source and must be eaten with complementary protein sources to ensure requirements for the essential amino acids are met. Many countries rely on maize as their main food source; in turn essential amino acid deficiencies such as Kwashiorkor and pellagra frequently occur (Krivanek, 1949). Maize protein provides 4 calories per gram.

Research aims to increase the quality of protein in maize. First observed in 1920, the opaque-2 (o2) mutation causes a decrease in the amount of zein content and thus a
higher ratio of nonzein proteins with increased levels of essential amino acids. (Krivanek, 1949;

Mertz et al., 1964).

Unfortunately, this
mutation results in reduced

U.S. Grades and Grade Requirements for Maize				
Grade	Minimum Test, Weight/Bushel (lb)	Maximum Percent Allowed		
		Damaged Kernels		Broken Kernels and
		Heat-Damaged	Total	Foreign Material
U.S. 1	56.0	0.1	3.0	2.0
U.S. 2	54.0	0.2	5.0	3.0
U.S. 3	52.0	0.5	7.0	4.0
U.S. 4	49.0	1.0	10.0	5.0
U.S. 5	46.0	3.0	15.0	7.0
	(a) Does not meet th ains stones which have ight, 2 or more pleces caster beans (Ricinu substance(s) or a com ockleburs (Xanthium s (c) Has a musty, so (d) Is heat	U.S. Sample Grad requirements for gra an aggregate weight f glass, 3 or more crota communis L.), 4 or m monly recognized har .) or similar seeds sin excess of 0.20 percent or commercially ob g or otherwise of dis	U.S. No excess laria seed e particle ul or tox y or in c ,000 gra tionable ctly low	$2,3,4$ or 5 ; or 1 percent of the sample Crotalaria spp.), 2 or more fan unknown foreign substance(s), 8 or more ination, or animal filth in or eign odor; or lity.

Figure 3.3. U.S. maize grading scale.
(USDA, 2013)
fungal and pest resistance (Krivnek, 1949; Vasal, 2000). To overcome this deficiency, modifier genes have been introduced into $o 2$ varieties that increase kernel hardness. The resulting maize is called Quality Protein Maize (QPM) and grown in many parts of the world where it has contributed to improved nutrition (Prasanna et al., 2001). In addition to $o 2$ mutants, floury2 (fl2) mutants have shown to have improved amino acid balance (Nelson et al., 1965).

Less abundant components of the maize kernel include: fiber, minerals, vitamins, anthocyanins, and anti-nutrients.

Maize in Food

Maize is a food ingredient that brings commonality to culinary cultures across the world. Cultural traditions and corn varieties dictate how maize is incorporated into a wide variety of foods. Main kernel components can be separated and processed into products such as corn starch for thickening and binding agents and corn oil for frying and baking; whole grain kernels are used in popped popcorn or ground into corn meal and used in breads, biscuits, and cereals. From enchiladas, tamales, totopos, tostaditas, and tortillas, virtually every Mexican dish uses maize. Maize porridges are seen across the world: referred to as puliszka and malderash in Hungary, posho in Africa, polenta in Europe, grits in the United States, and kpekple in Ghana. Maize meal can be ground and fermented into sora, a maize beer in Peru, or used to make hard alcohols such as whiskey and bourbon. Maize is truly a cross cultural food.

Figure 3.4. Maize food processing determines maize as food ingredient.
(Adapted from Encyclopedia of Grain Science)

Maize processing

Maize kernel quality and physical attributes determine its end use. The U.S. recognizes 5 grades of maize and three classes: yellow, white, and mixed maize (USDA, 2013). Food maize typically specifies number 1 grade yellow or
white dent corn (Figure 3.3). Additionally, the manner in which maize is processed is a vital component in its incorporation into foods (Figure 3.4).

Harder kernels are desirable for storage, shipping and handling; dry-milling calls for a kernel with a harder endosperm void of cracks (Rooney et al, 2004). Dry-milling is often used to produce baked goods, breakfast cereals, and ethanol (Orthoefer and Eastman, 2004). In the dry-milling process, tempering the grain is a vital first step. A hammer mill is then used to coarsely grind the maize kernels. Several steps of size and weight separation, in addition to regrinding, yield maize grits, flour, and fiber. The quality, content, and end use of the maize must be considered before entering the wet or dry milling process.

Maize kernels with a softer endosperm perform better in the wet-milling process (Orthoefer and Eastman, 2004). The wet-milling process includes steeping maize in a dilute sulfur dioxide solution to soften the kernel and separate it into its smaller components. The germ can be first removed and later processed for oil. The remaining components are ground and separated further into grits, flour, and fiber. Further processing yields corn gluten, meal, and starch. Maize starch and high fructose corn syrup are a main end-product of the wet milling process in the United States.

Nixamalization, dating back from 1200-1500 BC, is an ancient type of maize processing that includes rendering kernels into a paste to increase the bioavailable nutrients such as calcium and digestible iron(Orthoeffer and Eastman, 2004; Rooney et al, 2004). Kernels are steeped in a water/lime solution over heat and ground into masa, also known as maize dough that is used to produce tortillas, corn chips and other food products.

Maize in Science

Maize is an important model organism in genetic research. It has several attributes that make it attractive for this purpose. It is a large plant and phenotypic analyses are easily done. Each plant produces an ear typically containing 100-400 kernels. It is broadly adapted and has tremendous genetic diversity. Maize has a moderately sized genome of approximately 2.5 gigabase pairs (Strable and Scanlon, 2013). A vast collection of mutant stocks have also been developed that assist in research; this has allowed for many genes to first be characterized molecularly in maize. Being a diploid species, genetic manipulation and analysis is less complex than in species with a higher ploidy level. Additionally, the large physical size of the maize chromosomes is a great benefit to cytogenetic researchers.

Research on maize has led to several key discoveries. Perhaps most notable is the discovery of transposons by Barbara McClintock (McClintock, 1950), for which she was awarded the Nobel Prize in Physiology or Medicine in 1983.

Cytogenetic studies in maize resulted in an understanding of genetic recombination and

Single cross	Inbred line A	\times Inbred line B
$\begin{array}{l}\text { Modified single } \\ \text { cross }\end{array}\left[\begin{array}{c}\text { Inbred line } \times \text { Inbred line } \\ \text { A1 }\end{array}\right] \times$ In $\left.\begin{array}{c}\text { A2 }\end{array}\right] \begin{gathered}\text { B line }\end{gathered}$		
Three-way cross $\left[\begin{array}{c}\text { Inbred line } \times \text { Inbred line } \\ \text { A }\end{array}\right] \times$ Inbred line		
Double cross		
$\left(\begin{array}{cc} \text { Inbred line } \times \text { Inbred line } \\ \text { A } & \text { B } \end{array}\right] \times\left[\begin{array}{cc} \text { Inbred line } \times \text { Inbred line } \\ \text { C } & \text { D } \end{array}\right)$		

Figure 3.5. Types of hybrids grown commercially in North America.
(Encyclopedia of Grain Science)
enabled genetic mapping. The role of telomeres was determined in maize. Through collaborative efforts, it was one of the first crops to have its genome completely sequenced (Schnable et al., 2009).

Maize Breeding, Genetics, and Biotechnology

Maize cultivar types

A cultivar is a plant variety has been developed for a specific use. Several types of maize cultivars are grown including inbred lines, single-cross hybrids, double cross hybrids, and open pollinated varieties (Figure 3.5). Inbred lines are created by successive generations of self-pollination. The resulting plants are genetically homozygous and phenotypically homogeneous. Due to inbreeding depression, inbred lines have low yield and are not used for grain production. Their main purpose is in the production of hybrid seed. When two inbreds are cross pollinated, a single-cross hybrid results. Single-cross hybrids are genetically heterozygous and phenotypically uniform. Because of the difficulties of producing seed on inbred lines, several types of hybrids have been developed. An open pollinated variety is a population of plants that is genetically heterozygous and phenotypically non-uniform. As the name implies, seed of open pollinated varieties is produced by allowing natural pollination to occur in the population. Synthetic populations are derived from inter-mating several varieties are frequently used in breeding programs to produce inbred lines.

Mechanized agriculture has led to a preferece for hybrids because of their uniformity and high yields. The process of hybrid improvement and seed production has become highly industrialized. Industrial maize breeding has led to greatly increased
yields. Open pollinated varieties require much less infrastructure for seed production and genetic improvement and are often grown in developing countries.

Hybrid maize breeding

Hybrid maize breeding allows breeders to capture and fix extremely productive genotypes by taking advantage of hybrid vigor. Productivity and vigor in maize plants is generally proportional to the degree of heterozygosity. Thus, inbred lines, although uniform and reproducible are usually poor agronomic purposes. Heterozygosity and performance can be restored by crossing unrelated inbred lines to make hybrids. Inbred lines are classified into heterotic groups according to their ability to form productive hybrids in combination with other groups and their suitability as a male or female parent. For example, nearly all

Figure 3.6. Percentage of all maize grown in the United States that is genetically engineered (GE). (USDA, 2014) inbreds used as females in North American hybrids are in the Stiff Stalk heterotic group. Development and maintenance of inbred lines and testing hybrid combinations requires a great deal of infrastructure and expertise that is not available to most farmers or even small seed companies and is therefore largely done by large seed companies.

Uniformity is essential in efficient and profitable production of maize. Superior technology and machinery has assisted with such uniformity. Improved accuracy in the evaluation of cultivars has allowed for large genetic gains and the overall creation and advancement of superior maize inbreds. Superior farm equipment equipped with GPS and computer monitoring systems has led to optimal planting depth, density, and spacing and precise measurements of grain yield during harvest. In the future, precision agriculture will continue to increase productivity by optimizing inputs, such as corn variety and fertilizer amount, on a per land area basis.

Maize biotechnology

Biotechnology is the ability to introduce genes from any source into the maize genome. Two types of traits derived from biotechnology methods are currently in commercial production: insect resistance and herbicide tolerance.

Insect resistant maize decreases the need of pesticide applications directly to the plant. The use of pesticides in the United States has been reduced 6\% since 1996, a total of 172 million kilograms per year (Brookes and Barfoot, 2005). Fewer pounds of chemical are applied, benefiting the health of the environment and proving economically beneficial for the farmer. From 1996-2010, the income of US farmers increased a total of $\$ 21.7$ billion dollars; 23 percent of that profit was derived from 2010 alone (Brookes and Barfoot, 2005). The percentage of GE maize has increased almost 4 fold in 12 years (Figure 3.6.). The United States Department of Agriculture (USDA) Economic Research Service reports that $B t$ maize decreased the amount of insecticides per planted acres of $B t$ maize by 8% in the United States (Fernandez-Cornejo and Caswell, 2006). Herbicide tolerant maize is agreeable in environments of low to no-till agriculture. Minimal to no
tillage results in decreased fuel usage and reduction of greenhouse gas emissions, as well as less soil compaction and erosion. Additionally, crop residue left on top of the soil increases levels of organic carbon sequestration. Soil and water quality are increased due to decreasing soil erosion and nutrient loss (Committee on the impact of biotechnology on farm-level economic and sustainability and national research council, 2010; National Research Council, 2010).

Of the 159 million hectares of maize grown globally in 2012, 55.1 million hectares (35\%) were biotech maize (Clive, 2012). Legislation regulating such crops varies among countries. The United States regulates genetically modified organisms (GMOs) based on the end product. Three groups with differing perspectives and expertise regulate genetically modified (GM) crops in the US: the US Environmental Protection Agency (EPA), the Food and Drug Administration (FDA), and the US Department of Agriculture (USDA). GM crops must be verified free from environmental and human toxins as well as foreign proteins deemed allergenic. The FDA policy established in 1992, considers the currently approved GM crops to be "substantially equivalent" to non-GM crops and deemed "Generally Recognized as Safe" under the Federal Food, Drug, and Cosmetic Act (FFDCA); therefore, foods made with approved GM varieties do not require pre-market approval (Tucker, 2011). Acceptance of GM maize by the consumer varies by country. The European Union (EU) regulates GM crops based on the process in which they are produced. The EU tends to be cautious of GM crop consumption. The British Press often refers to such crops as "Frankenstein Foods." Protestors of third world countries have been known to destroy entire fields of GM crop despite starvation in the country. The major concerns over production of GM maize are
pollination of weedy species or non-GM maize by GM pollen resulting in undesirable transfer of the transgene (Snow, 2002) and the impact of transgenes on non-target species, particularly beneficial insects, and the development of insects resistant to the mode of action of the insecticidal transgenes in use. Researchers and regulatory agencies continue to develop new deployment strategies in an effort to minimize these risks.

References

Brookes, G., \& Barfoot, P. (2005). GM crops: The global economic and environmental impact-the first nine years 1996-2004. AgBioForum, 8, 187-196.

Campbell, M. R., White, P. J., \& Pollak, L. M. (1994). Dosage effect at the sugary-2 locus on maize starch structure and function (Vol. 71, pp. 464-468): Cereal Chemistry.

Corn Breeding: Types of Cultivars. (2014, April 9). from http://passel.unl.edu/pages/informationmodule.php?idinformationmodule=1 099683867\&topicorder=8\&maxto=9\&minto=1(2014, April 9).

Crawley, M. J., Brown, S. L., Hails, R. S., Kohn, D. D., \& Rees, M. (2001). Transgenic Crops in Natural Habitats.Nature,409.

Dudley, J. W., \& Lambert, R. J. (1992). Ninety generations of selection for oil and protein in maize (Vol. 37, pp. 1-7). Maydica.

Duvick, D. (1996). Plant Breeding, an Evolutionary Concept (Vol. 36, pp. 539-548): Crop Science.

Eckhoff, S. R. (2004). Wet Milling. In C. Wrigley, Encyclopedia of Grain Science (pp. 225-241): Elsevier.

FAO. (2014). from http://faostat3.fao.org/download/Q/QC/E (2014, April 9).
Flint-Garcia, S. A., Bodnar, A. L., \& Scott, M. P. (2009). Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte (Vol. 119, pp. 1129-1142): Theoretical and Applied Genetics.

Gaut, B. S., Le Thierry D'Ennequin, M., Peek, A. S., \& Sawkins, M. C. (2000). Maize as a model for the evolution of plant nuclear genomes. $P N A S(97), 7008-7015$.

Hallauer, A. R. (2004). Specialty Corns. In Corn: Origin, History, Technology, and Production (pp. 897-933). Hoboken, New Jersey: John Wiley \& Sons.

Hannah, L. C. (2005). Starch synthesis in the maize endosperm. Maydica, 50, 497-506.
Jellum, M. D. (1970). Plant introductions of maize as a sourced of oil with unusual fatty acid composition (Vol. 18, pp. 365-370): Journal of Agricultural and Food Chemistry.

Jennings, S., Myers, D., Johnson, L., \& Pollak, L. M. (2002). Effects of maturity on corn starch properties (Vol. 79, pp. 703-706): Cereal Chemistry.

Jeon, J., Ryoo, N., Hahn, T., Walia, H., \& Nakamura, Y. (2010). Starch biosynthesis in cereal endosperm. Plant Physiology and Biochemistry, 48, 383-392.

Kiesselbach, T. A. (1949). The structure and reproduction of corn. Lincoln, Nebraska: University of Nebraska.

Lorenz, A., Scott, P., \& Lamkey, K. (2008). Genetic Variation and Breeding Potential of Phytate and Inorganic Phosphorus in a Maize Population (Vol. 48, pp. 79-84): Crop Science Society of America.

McClintock, B. (1950). The origin and behavior of mutable loci in maize. Genetics, 36, 344-355.

Mertz, E. T., Bates, L. S., \& Nelson, O. E. (1964). Mutant gene that changes protein composition and increases lysine content of maize endosperm (Vol. 145, pp. 279280): Science.

Nelson, O. E., Mertz, E. T., \& Bates, L. S. (1965). Second mutant gene affecting the amino acid pattern of maize endosperm proteins. Science, 150, 1469-1470.

Orthoefer, F. T., \& Eastman, J. (2004). Corn Processing and Products. In Corn: Origin, History, Technology, and Production (pp. 867-896). Hoboken, New Jersey: John Wiley \& Sons.

Pollak, L. M., \& Scott, M. P. (2005). Breeding for Grain Quality Traits (Vol. 50, pp. 247-257): Maydica.

Poneleit, C. G., \& Davis, D. L. (1972). Fatty acid composition of oil during maize kernel development (Vol. 11, pp. 3421-3426).

Prasanna S.K.V., B. M., Kassahun, B., \& Singh, N. N. (2001). Quality protein maize. Current Science, 81, 1308-1319.

Rooney, L. W., McDonough, C. M., \& Waniska, R. D. (2004). The Corn Kernel. In C. W. Smith, J. Betran \& E. C. A. Runge (Eds.), Corn: Origin, History, Technology, and Production (pp. 273-303). Hoboken, New Jersey: John Wiley \& Sons.

Scanlon, M. J., \& Takacs, E. M. (2009). Kernel Biology. In J. L. Bennetzen \& S. C. Hake (Eds.), Handbook of Maize. New York, NY: Springer Science+Business Media.

Serna-Saldivar, S. O. (2004). Foods from Maize. In C. Wrigley (Ed.), Encyclopedia of Grain Science (pp. 242-253): Elsevier.

Snow, A. A. (2002). Transgenic crops: Why Gene Flow Matters. Nature Biotechnology, 20, 542.

Strable, J., \& Scanion, M. (2013). Maize (Zea mays): A Model Organism for Basic and Applied Research in Plant Biology (pp. 1-9). Cold Spring Harbor Protocols: Cold Spring Harbor Laboratory Press.

Tucker, J. (2011). U.S. Regulation of Genetically Modified Crops, 2014, from http://www.fas.org/biosecurity/education/dualuse-agriculture/2.-agricultural-biotechnology/us-regulation-of-genetically-engineered-crops.html (2014, April 10).

USDA. (2014). Adoption of genetically engineered crops in the U.S., 2014
Vasal, S. K. (2000). High quality protein corn. In A. R. Hallauer (Ed.), Specialty corns (2 ed.). Boca Raton: CRC Press.

Velu, V., Nagender, A., Prabhakara Rao, P. G., \& Rao, D. G. (2006). Dry milling characteristics of microwave dried maize grains (Vol. 74, pp. 30-36): Journal of Food Engineering.

Vineyard, M. L., \& Bear, R. P. (1952). Amylose content (Vol. 26, pp. 5): Maize Gen. Coop. Newsletter.

Vogel, K., \& Burson, B. (2004). Chapter 3: Breeding and Genetics (pp. 51-94): American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.

Wijendran, V., \& Hayes, K. C. (2004). Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annual Review of Nutrition, 24, 597-615.

Wilkes, G. (2004). Corn, strange and marvelous: But is a definitive origin known? In W. C. Smith, J. Betran \& E. C. A. Runge (Eds.), Corn: Origin, History,

Technology, and Production (pp. 3-64). Hoboken, New Jersey: John Wiley \& Sons.

Wu, R., Lou, X.-Y., Ma, C.-X., Wang, X., Larkins, B. A., \& Casella, G. (2002). An improved genetic model generates high-resolution mapping of QTL for protein quality in maize endosperm (Vol. 99, pp. 11281-11286): National Academy of Sciences of the United States of America

APPENDIX: ADDITIONAL ALIGNMENT INFORMATION

AC184772. 3

1
AC184772.3 ATGCCTCCGC CCTTGCCCTC CCCCCC-GGC AATCTCGCAT CGGCGCCCGC CCCAGCCCCG TAGAGGTCGC -----TCCGC CCTCGCCCTC CCCCCCCAGC AATCTCGCCT CGGCGCCCCC CCCAGCCCCG CAGAGGTCGC

AC184772.3 ATCCGTCAGC CTCTTCCCCA CCACGGTCCC CCCTTCCCCA CCCACCGGAG ACCGCGCCCT TCCCCTCTTC GTCCGTCGGC CTCTTCCCCA CCGTGGTCCC GCCTTCCCCA CCCACCGGAG ACCGCGCCCT TCCCCCCTTC

141210
AC184772.3 CCCACCGCGG CATGGCGTCG GCTTACCCAC CAGAGACTGA TTCCTCCAAC --------CC CATCTCAACC CCCACCGTGG CATGGCGTCG GCTTACCCAC CAGAGACCGC TTCCTCCAAC GGTCCAACCC CATCTCGACC

AC184772.3 ATCTGCCCTC CTCAAGTTCC TCGAGCACAG GAGCAGGGGA GGGTTCCACC AGGCCGAGGC GCCATACCAG ATCTGCCCTC CTCAGGTTCC TCGAGCACAG GAGCAGGGGA GGGTTCCACC AGGCCGAGGC GCCATACCAG
 281350
TGCGCTCTCG CTGCACGTGT CGTCGCGTGG GCCTTTGACT TCAGCTTCTC CTTCCTCCCC AGCCACCACC TGCGCTCTCG CTGCACGTGT CGTCGCGTGG GCCGTTGACT TCAGCTTCTC CTTCCTCCCC AGCCGCCACC
 351 420
AC184772.3 GTGTTCGTGG ACCTCGCACC ACGCGATCCC TTGCATCGCC GGTATGTCCA GATCCCCACC ATCCCCAATG GCGTTCGTGG ACCTCGCACC ATGCGATCCC TTGCACCGCC GGTACGTCCA GATCCCCACC ATCCCCAGCG

AC184772.3 AGCTCTTGTC CTCCTCCGTC GTGTCGTACC AAGACGGTGT AGATCTAGAG CATTTCCTAG CACCGGATCT AGCTCTTGTC CTCCTCCGTC GTGTCGTACC AAGACGGTGT AGATCTGGAG CATTTCCTAG CGCCGGATCT

491
560
AC184772.3 CAGAGAGGCA AAGGACAAGT CGGTGTTCTA GATGATCTGT AGCCCTCCCG ATCGCCCCTC GCTCTTGCCC CGGAGAGGCG AAGGACGAGT CGGTGTTCTA GAGGATATGT AGCCCTCCCG ATCGCCCCTC GCTCTCGCCC

AC184772.3 CCACGACGCG CCCGTGCCCA CACCCGGATA CAGCTGTGTG GGGTTCTATG CGAGTGCGGG GCTGGTGCGC CCACGACACG CCCGCGCCC- -----GGAGA TAGCTGCATG GGGTTCTACG CGGGCACGGG GCCGACGCGC

> 631
> 700

AC184772.3 GAGGTGTGGG CGTCCGTCGA GGAGTTTGAG GCCGTGGGCG ACGGCGCCAC GCCCAACGCC GCGGTGTTCC GAGGTGTGGG CATCCGTCGA GGAGTTCGGG GCCGTGGGCG ACGGTGCCAC GCCCAACACT GCGGCGTTCC

AC184772.3 GGCACGCCGT CATAGAGCTG GGCGTGAGGT CCCCCAGTGG GGGAGGGGCC AGGCTCGACG TGCCCCCAAG GGCGCGCCGT CGCGGAGCTG GGCGCGAGGG CCGCCGGTGG GGGAGGGGCC AGGCTCGACG TGCCCCCG-G
 771

840
AC184772.3 GAGGTGGCTC ACGGGCAGCT TCAACCTCAC TAGCCGCTTC ACCCTCTTCC TGCACCACGG CGCGGTCATC GAGGTGGCTC ACGGGCAGCT TCAACCTCAC TAGCCGCTTC ACCCTCTTCC TGCATCGCGA CGCGGTCATC $\ldots|\ldots| \ldots$ 841
AC184772.3 ATCGGCTCCT AG ATCGGCTCCC AG

GRMZM5G817995

GRMZM5G817995 ATGGTTTATT TGCTTCTCAA ATTGGTATTG CTTTTGCCAG TAGGGGCGGA GGGCCTGTTA ATGGTTTATT TGCTTCTCAA ATTGGTATTG CTTTTGCCAG TAGGGGCGGA GGGCCCGTTA

GRMZM5G817995 TGGCCAAGTA TAGCCCACGC CATACCTCAA CTCAGCCCAG TCGCAGCCTC CCTGCTAGTG TGGCCAAGTA TGGCCCGCGC CATACCTCAA CTCGGCCCAG TCGCAGCCTC CCTGCTAGTG

GRMZM5G817995 CTTCCCCTCT GTGGCCGCGC AACAGGCACA ACTGTAGTAT CGCAGGCGCA CAAGCGAGCC CTTCCCCTCT GTGGCCACGC AACAGGCACA ACCGTAGTAC AGCAGGCACA CAAGCGAGCC

GRMZM5G817995 ATCTGCTCAT CGTTCCGTTC GCGACCGCCT CTGCCTGGCC GGCCGCCAGC TGCCCGAGCA GCCTGCTCAT CGTTCCGTTC GCGACCGCCT CCGCCTGGCT GGTCGCCAGC TGCCCGAGCA
 241300
GRMZM5G817995 CGGCCGCGCG CCTGTGCCTT ACTGAGTCGC CGCCTCTCTG AAAGTTGCCT AAAGGGGGGG CGGCCACGCG CCCGTGCCTT ACTAAGTCGC CGCCTCTCTG AAAGTCGCCT AAAGGGGGGA

301
GRMZM5G817995 TGA

GRMZM2G419836

GCCGTGCGCC TCACATCTTC CCTCCGCCAG TCCGTTGACA CCCCCCCCCC CCCCCCCCCC

GRMZM2G419836
CTCGGCCATC CACCGGAGAT GGGCGCCGCC GGCAAGCCTC CTCCCCTCGT CTGCTTCAAA CACCGGAGAT GGGCGCCGCC GGCAAGCCTC CTCCCCTCGT CTGCTTCAAA

GRMZM2G419836

GRMZM2G419836
TGGCCGTGGG GCCCTAATCC TATCCCATCG GCGAGCTCCA GCCCCAGCCC CTGCGGCGAC TGGCCGTGGG GCCCTAATCC TATCCCATCG GCGAGCTCCA GC------CC CTGCGGCGAC
$\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|.$. CTCGAGCTCC CCTGGCTCTT CAAGTCCATC CGCACCCTCG CGCAGGGCCT CCTCATCGCC CTCGAGCTCC CCTGGCTCTT CAAGTCCATC CGCACCCTCG CGCAGGGCCT CCTCATCGCC
 GGCGACATCC CCTCCCCCGC CTCTTCTCCC AGCGGAGGAG TAAGGGGCGT TCAGAGGCGC GGCGACATCC CCTCCCCCGC CTCTTCTCCC AGCGGAGGAG TAAGGGGCGT TCAGAGGCGC
$\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|. . . \ldots|$ $\begin{array}{lllllll}305 & 315 & 325 & 335 & 345 & 355\end{array}$
GRMZM2G419836
ACGGGIGCCG CGGIGGIGGA GGTGGACCGC GGGGACGCIG AACAGCGCGC CCTGGCGGCA ACGGGTGCCG CGGTGGTGGA GGTGGACCGC GGGGACGCTG AACAGCGCGC CCTGGCGGCA

GRMZM2G419836

GRMZM2G419836
TCGCTCGCGA GCGGGAGGCC CGCCACGGTG CTGGAGTTCT ACTCCCCGCG CTGCCGCCTG TCGCTCGCGA GCGGGAGGCC CGCCACGGTG CTGGAGTTCT ACTCCCCGCG CTGCCGCCTG
$\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| . . . \ldots \mid$ 4254354455465 TGCGCCTCTT TGCAGGGCCT CGTTCGCGAG CTCCAAGACG GTGCCAGTGG CTCCGCCAGT TGCGCCTCTC TGCAGGGCCT CGTTCGCGAG CTCCAAGACG GTGCCAGTGG CTCCGCCAGT

GRMZM2G419836 TTCGTGCTCG CTGACGCCGA GGACGACCGG TGGCTCCCCG AGGTATGTCG CCCCTTGCCA TTCGTGCTCG CTGACGCCGA GGACGACCGG TGGCTCCCCG AGGTATGTCG CCCCTTGCCA
$\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \mid$ $\begin{array}{llllll}545 & 555 & 565 & 575 & 585 & 595\end{array}$
GRMZM2G419836
ICIICTGGGA AAATTCAGAC AATTTGICAG ATTTGTGATG CCGATTIGGG TGCTCTGTTC TCTTCTGGGA AAATTCAGAC AATTTGTCAG ATTTGTGATG CCGATTTGGG TGCTCTGTTC

GRMZM2G419836

GRMZM2G419836

GRMZM2G419836

TCTACAGAGG AAAGATAAAC CTTTGCAATA GTGATTTAGC CACATAGGTC TTCTTCTGTT TCTACAGAGG AAAGATAAAC CTTTGCAATA GTGATTTAGC CACATAGGTC TTCTTCTGTT
 AATTGCCTTT GCTATGGTAA TTTAGCCATA TTGGTCATGT TCTGATCAAT TTATGATGAC AATTGCCTTT GCTATGGTAA TTTAGCCATA TTGGTCATGT TCTGATCAAT TTATGATGAC
 $\begin{array}{ccccc}725 & 735 & 745 & 755 & 765 \\ \text { TAGATGCTAT } & \text { GTTGCACTTT } & \text { GATGATGAGA AATTGATGAT } & \text { TAGAAAATCA } & \text { GTAGGTTCCA }\end{array}$ TAGATGCTAT GTTGCACTTT GATGATGAGA AATTGATGAT TAGAAAATCA GTAGGTTCCA
 $\begin{array}{cccccc}785 & 795 & 805 & 815 & 825 & 835 \\ \text { GGTAAATGA } & \text { TCCTCCCCTT } & \text { TTCTTTTAAG } & \text { GGGTGTTTGG } & \text { ATCCCTCCAT } & \text { TTTAAAGAAA }\end{array}$ TGGTAAATGA TCCTCCCCCT TTCTTTTAAG GGGTGTTTGG ATCCCTCCAT TTTAAATAAA
$\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \mid$ $845855 \quad 865 \quad 875 \quad 885 \quad 895$

GRMZM2G419836

GRMZM2G419836
TTGGAATCTA CTTGATAAAG TATGCTATTT GTTTGGAATT TGACATTTTA CCACTTTCCA TTGGAATCTA CTTGATAAAG TATGCTATTT GTTTGGAATT TGACATTCTA CCACTTTCCA

AAGTTTAGAT ATAAGACTCA AATTCATAGG ATGAGAGAGT TGAAATTGAT TTTATATATC CAGTTTAGAT ATAAGACTCA AATTCATAGG ATGAGAGAGT TGAAATTGAT TTTATATATC
 96597598510051015
ACTAGTCTAT GTTTCTACTC TGCAACTTAT AACACGCTCT TCAACTTAGT CCCCTATGAT ACTAGTCTAT GTTTCTACTC TTCAACTTAT AACACGCTCT TCAGCTCAGT CCCCTATGAT

$10251035 \quad 1045 \quad 1055 \quad 1065 \quad 1075$

AGAAATGTAG CACATAAATA TCTCTCTCAT ATGGTTAGCA ATAATATACA AATACTTTCT AGAAATTTAG CACATAAATA TCTCTTTCAT ATGGTTAGCA ATAATATACA AATAC-----
$\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \mid$ $108510951105 \quad 1115 \quad 1125 \quad 1135$ ATAAAAATCA TATTAGCTTA ATTGATTTAT GTCTAAATCA CGATTATTAG AATGAAATTG ---------A TATTAGCTTA ATTGATTTAT GTCTAAATTA CGATTATTAG AATGAAATTG
 AATTCCAAGG ATCCAAACGA GGCGCAAGGT TATCATGTTT CATTTGTCTT ATTTACCTCG AATTCCAAGG ATCCAAACTA GGCGCAAGGT TATTATGTTT CATTTGTCCT ATTTACCTCG
 $120512151225 \quad 1235 \quad 1245 \quad 1255$ TACAGTGTCA GTTTGAAAAC TTAAGTTCGG TCATCACACC ATTTAGACCA AACATTGCAT TACAGTGTCA GTTTGAAAAC TTAAGTTCGG TCATCACACC ATTTAGACCA AACATTGCAT
 $12651275 \quad 1285 \quad 1295 \quad 1305 \quad 1315$ TCAGTTATGT GACTTGCGCA GCTTGAGGGA CAATGCCATG AAAATGGAAA AAAAATTTGG

Gene Deletion
 CCCATGAAAA TACCCAGGCG TTTGTTTTGA TTCTTGGACA TTGTGAAGAT TGTCACCTTA ---------- -ACCCAGGCG TTTGTTTTGA TTCTTGGACA TTGTGAAGAT TGTCACCTTA
 $\begin{array}{ccccc}1565 & 1575 & 1585 & 1595 & 1605 \\ \text { GTATTAATT ACTTTGCACA ACAATGAAAG GGTGAGAAGG AGCTTCATAC GGTATATATG }\end{array}$ GTATTTAATT ACTTTGCACA ACAATGAAAG GGTGAGAAGG AGCTTCATAC GGTATATATG
$\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \mid$
$16251635 \quad 1645 \quad 1655 \quad 1665 \quad 1675$
CTATCACTCT TATTACTTAG TTCCACGAGT AGATATGATT TCTAAAGGTT TGCCAGACCA CTATCACTCT TATTACTTAG TTCCACGAGT AGATATGATT TCTAAAGGTT TGTCAGACCA

ACGCCAACGG TGGTGACATC AAGTGGGCAT TGGTTCCACA TTAGTATGAC TGGTTGAAGA ACGCCAACGG TGGTGACATC AAGTGGGCAT TGGTTCCACA TTAGTATGAC TGGTTGAAGA

GRMZM2G419836

TATGTGAATA TGTCAGATGG TTGAACATTC ATCCTTGGTG ATGGAAGCAG TGATTTGTTG TATGTGAATA TGTCAGATGG TTGAACATTC ATCCTTGGTG ATGGAAGCAG TGATTTGTTG
 $\begin{array}{llllll}1805 & 1815 & 1825 & 1835 & 1845 & 1855\end{array}$
AATTGCATCA TGCCTGGCCA TCAAGGGTGT TAAGTTACAA CCAGGGACTT CGGTGCGATA AATTGCATCA TGCCTGGCCA TCAAGGGTGT TAAGTTACAA CCAGGGACTT CGGTGCGATA

TCTACTTTCT TCACCAGTT- --CACTAATG GAGCATTATA TCAGTTGTTG CTGATGCATA TCTACTTTTT TCACCAGTTG GTCACTAATG GAGCATTATA TCAGTTGTTG CTGATGCATA
 19251935194519551965 CGGTTTACTT AACTGTTCAA GTAATTAATT GATTATGATA CAGTCGTCAA TTGGTGTCCA CGGTTTACTT AACTGTTCAA GTAATTAATT GATTATGATA CAGTCGTCAA TTGGTGTCCA
 $19851995 \quad 2005 \quad 2015 \quad 2025 \quad 2035$
TGCATAAGTA CTTCCTCTGT TCTCAAATTA TTGTTTACTT TGTCTTTGTC CTAAGTCAAA TGCAGAAGTA CTTCCTCTGT TCTCAAATTA TTGTTTACTT TGTCTTTGTC CTAAGTCAAA
$\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| . . . \ldots \mid$ 2045 2055 2065 2075 2085 2095
CTATTTTACT CTGACTAAGT TTATAGAAAA A-TGTACTAA CATCTACAAC ATCAAATTAG CTATTTTACT CTGACTAAGT TTATAGAAAA AATGTACTAA CATCTACAAC ATCAAATTAG
 $2105 \quad 2115 \quad 2125 \quad 2135 \quad 2145 \quad 2155$
TTTCATTAAA TTATTCATGA AATATATTTT GATATAACTC TTATTCGAAA TTGTAGGTGT TTTCATTAAA TTATTCATGA AATATATTTT GATATAACTC TTATTCGAAA TTGTAGGTGT
 $2165 \quad 2175 \quad 2185 \quad 2195 \quad 2205 \quad 2215$ TGATACATTT TTCGAAAAAA AAAAACTGTC AAAGCTAGTG AAATTTGGCT TAATACAAAG TGATACATTT TTCGAAAAAA AAAAACTGTC AAAGCTAGTG AAGTTTGGCT TAATACAAAG
 $2225 \quad 2235 \quad 2245 \quad 2255$ 2275 CCAAAGTAAA TTATGATTCA GAGTAGAATG AGTACTATCG TTTTTAATTG GCCAATAGGT CCAAAGTAAA TTATGATTCA GAGTAGAATG AGTACTATCG TTTTTAATTG GCCAATAGGT
$\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \mid$ $2285 \quad 2295 \quad 2305$ 2315 2325 2335 TAGTTTACAT TTTAGAAGAA GAATGTGAAT AGAGAGCTCA ACATAGGTTT ACTTGAGGGT TAGTTTACTT TTTAGAAGAA GAAAGTGAAT AGAGAGCTCA ACATAGGTTT ACTTGAGGGT
 TGATGGAAAA CCTGCTCTGA CAATTTTGCA TGTGTACGGA TATGTGATAG TTCTGGTGGG tGATGGAAAA CCTGCTCTGA CAATTTTGCA TGTGTACGGA TGTGTGATAG TTCTGGTGGG
 $2405 \quad 2415 \quad 2425 \quad 2435 \quad 2445 \quad 2455$ GCTGCTAGTT TTTTAAAACA TGGACTTGTG CGACT--GTG TATTAACTGT GCACGTAAGC GCTGCTAGTT TTTTAAAACA TGGACTTGTG CGACTTTGTG TATTAACTGT GCACGTAAGC

$\begin{array}{ccccc}2465 & 2475 & 2485 & 2495 & 2505\end{array}$ TATAGGCTGA TATCTCTTCC TTTTACAGGT ATTGGCAAAT GCCAAGTTTA AAATTACGAA
 $2525 \quad 2535 \quad 2545 \quad 2555 \quad 2575$
ATTTCCCATT CGGATGAGCT GAGGCAGTTA GAATTTATAT TATCGCGTTA AGGTGCTGAA ATTTCCCATT CGGATGAGCT GAGGCAGTTA GAATTTATAT TATCGCGTTA AGGTGCTGAA
 GRMZM2G419836 GCGACCACAG GTTTCAGCAT CATAATAGTT CTTGATGATT GAAGCTAATC CACATAGAAC GCGACCACAG GTTTCAGCAT CATAATAGTT CTTGATGATT GAAGCTAATC CACATAGAAC

GRMZM2G419836

GRMZM2G419836

GRMZM2G419836

GRMZM2G419836

GRMZM2G419836

GRMZM2G419836

GRMZM2G419836

GRMZM2G419836

GRMZM2G419836

AACCAATAAG CACTGTGGGT TGTGCTTCTG CTGCCATAAA ATGACAGTCC TTGTTTACCA AACCAATAAG CACTGTGGGT TGTGCTTCTG CTGCCATAAA ATGACAGTCC TTGTTTACCA
 GCCTAGTTTG GATTATGACC TTATTATTTC TTGAATGTAC ATCTGCAACT CTGCACCGGA GCCTAGTTTG GATTATGACC TTATTATTTC TTGAATGTAC ATCTGCAACT CTGCACCGGA
 $2765 \quad 2775 \quad 2785 \quad 2805 \quad 2815$ GCATCATACC ACTGCTCCAA GCATATATCA TTTATGTAAA AACTGAAATG AAAATTCAAT GCATCATACC ACTGCTCCAA GCATCTATCA TTTATGTAAA AACTGAAATG AAAATTCAAT
 $\begin{array}{cccccc}2825 & 2835 & 2845 & 2855 & 2865 & 2875 \\ T T C T G A C A G & \text { TCAATTTGTT } & \text { TTTTAACCGC } & \text { TTGCAGCTTC } & \text { TGCATTATGA } & \text { TATCAGATAC }\end{array}$ ATTCTGACAG TCAATTTATT TTTTAACCGC TTGCAGCTTC TGCATTATGA TATCAGATAC
$\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \mid$ $2885289529052915 \quad 2935$ GTCCCTTGCT TCGTGCTCCT GGACAAGCAC GGTAGAGCTC TAGCGAAGAC TGGAGTACCA GTCCCTTGCT TCGTGCTCCT GGACAAGCAC GGTAGAGCTC TAGCGAAGAC TGGAGTACCA
 ACCAGCCGGC AGCACGTTGT CGCCGGTCTC CATCACCTCC TGAGGATGCA GCAGCCATCC ACCAGCCGGC AGCACGTTGT CGCCGGTCTC CATCACCTCC TGAGGATGCA GCAGCCATCC
 $30053015 \quad 3025 \quad 3035 \quad 3045 \quad 3055$ GGACTGGAAG GAAACCAGAA TGCGCCTCCG TCATGAAGCC CAAATACCTG AGCAAGGCCT GGACTGGAAG GAAACCAGAA TGCGCCTCCG TCATGAAGCC CAAATACCTG AGCAAGGCCT
 $\begin{array}{cccccc}3065 & 3075 & 3085 & 3095 & 3105 & 3115 \\ \text { GTATTGACAA } & \text { AGAAAAATT- } & \text { TTCAGAATGT } & \text { GCCTTTTGTT } & \text { TTTGCAAGCA } & \text { TGAACAATGG }\end{array}$ GTATTGACAG AGAAAAAAAA TTCAGAATGT GCCTTTTGTT TTTGCAAGCA TGAACAATGG
$\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|.$. $\begin{array}{llllll}3125 & 3135 & 3145 & 3155 & 3165 & 3175\end{array}$ aical GCAAACATTG ATGCGTTAAT TCTTTAGCTT TTTAGTACAG ATTGAAGTTG GTGCAAAAGC

AAAAGGCAGG TGGTATTTTT TTTATGATAT CCGCCTTGAA ATAA
AAAAGGCAGT TGGTATTTTT TTGGTTAGTA CAGCGTGAAG ACCA

GRMZM2G027021

GRMZM2G027021
ACCAATCGAA CTGAATGGAC CAGTCGACGT CATCGCCTCC CTCGCCTATC CGCTCGGCCG ACCAATCGAA CCGAATGGAC CAGTCGACGT CATCGCCTCC CCCGCCTATC CGCTCGGCCG

TTGGCGCTCA CCAAAACCAC CCAGAAGCCT CCGCTTGACC GCTTCACTCG CTTTCCGCCC TTGGCGCTCA CCAAAACCAC CCAGAAGCCT CCGCTTGACC GCTTCACTCG CTTTCCGCCC
 $125135145155 \quad 165 \quad 175$ GCCGCGCCAT GAGCGCCGCC GCCTGCCTGT TCGCTGCCGC CGTCTCCCTA TCATTCCCGT GCCGCGCCAT GAGCGCCGCC GCCTGCATGT TCGCTGCCGC CGTCTCCCTA TCATTCCCGT
 $\begin{array}{cccccc}185 & 195 & 205 & 215 & 225 & 235 \\ C G A C C T C C G C & A C C C T C T T C C & \text { GCAAGACGCC } & \text { GCCGCCTCCG } & \text { GAGCCCCACC } & \text { ACCCTCCTCC }\end{array}$ CGACCTCCGC ACCCTCTTCC GCAAGTCGCC GCCGCCTCCG GAGCCCCACC ACCCTCCTCC
 GCTGCTCCCC GACTCGCCGC CGTGGGCCGG TCCGGCGGAC ACTCGACGAG CGGCTGCTCG GCTGCTCCCC GACTCGCCGC CGTGGGCCGG TCCGGCGGAC ACTCGACGAG CAGCTGCTCG

AGGCCGCGCC GGCGGAGACC GAAGACGTCC AAACCGCTGT TGATGTAGAG GATGGAGGAG AgGCCGCGCC GGCGGAGACC GAAGACGTAC AACCCGCTCT TGATGTAGAG GATGGAGGAG $\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|.$. $\begin{array}{ccccc}365 & 375 & 385 & 395 & 405\end{array}$ GGAtCGCTGA GGGCGATGAA GTGGGAACAG AGGAGATGGA GGAGCTGGAG CAGCGCCCGC

CGACGAGGGC TTTCGTGAAG AGCAGGCGGC AGCGGCAGGA AGAGGAGGAA GCCGCGGCGG CGCCGAGGGC TTTCGTGAAG AGCAGGCGGC AGCGGCAGGA AGAGGAGGAA GCCGCGGCGT
 GGCAAGACCG GTTCAAGCTC ATCAATGGCA AAGAGGTAGC GGATTGCGTA GCTTCAGCTG GGCAAGACCG GTTCAAGCTC ATCAATGGCA AAGAGGTAGC GGATTGCGTA GCTTCAGCTG
 CTTGCTTTTG TTGCTCCGAC AGGCCCGCTT GGCGCCGGCC TGTTTGACAG ATTGGGCGGT CTTGCTTTTG TTGCTTCGAC AGGCCCGCCT GGCGCCGGCC TGTTTGACAG ATTGGGCGGT

TTCTACTCAG CGTGTGGAGA ATATGATAAC CTGCAGCGAT CCATCAAATT CACCGGAGAG TTCTACTCAG CGTGTGGAGA ATATGATAAC CTGCAGCGAT CCATCAAATT CACCGGAGAG
$\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \mid$ $665 \quad 675 \quad 685 \quad 695 \quad 705 \quad 715$
GRMZM2G027021
AACTTTTGAT TGTTACATCC CCGCTAGATA TTTTGGGCCG TGACATGAAC AATAGAGCTG AACTTTTGAT TGTTACATCC CCGCTAGATA TTTTGGGCCG TGACATGAAC ATTAGAGCTG

TGAGTTGGTG TTACCTGCCA GTTTCATCAT GTCTGATTTC TG~~~~AACC TGTGGACCTG TGAGTTGGTG TTGCCTGCCA GTTTCATCAT GTCTGATTTC TGTCTGAACC TGTGTACCTG

GCTACCTGCA GATATTTCAA GAGAAGGCTT ATCTGGTTGG TGTTGAGTGC AAACGGACAG GCTACCTGCA GATATTTCAA GAGAAGGCTT ATCTGGTTGG TGTTGAGTGC AAACGGACAG

GRMZM2G027021

GAGGGAACCT GTTCGGCATA GAGGAGTCCC TTAAGGAGCT GGAGCAGTTG GCTGATACGG GAGGGAACCT GTTCGGCATA GAGGAGTCCC TTAAGGAGCT GGAGCAGTTG GCTGATACGG

CGGGCCTTCT GGTAGTCGGC TCAACCTATC AGAAGTAAGC TTCTGTTTGA CGGGAACATC CGGGCCTTCT GGTAGTCGGC TCAACCTATC AGAAGTAAGC TTCAGTTTGA CTGGAACATC

TCGACTGAGC CTGCACTGTG CTCTACTAGC AATCGTGGTT ACACGTTCTC ACCATAGATA TCGACTGAGC CTGCGCTGTG CTCTACTAGC AATCATGGTT ACACGTTTTC ACCATAGATA
$\ldots .|\ldots .|\ldots| \ldots .|\ldots| \ldots| \ldots|\ldots .|\ldots|$. $1025 \quad 1035 \quad 1045 \quad 1055 \quad 1065 \quad 1075$
AGATGGGACA CCACGGAAAA ACTGAGATGC CTGGTCAATC TAATTCGTGG TCCACAGAAA AGATGGGACA CCACGGAAAA ACTGAGATGC CTGGTCAATC TAATTCGTGG TCCACAGAAA
 CTTCACGGGC AACTTGGATA GATGAAATGA TACTGTTAGT TCAGATTTTC AAAATGTACT CTTCACGGGC AACTTGGATA GATGAAATGC TACTGTTAGT TCAGATTTTC AAAATGTACT

CTGCAGCTGT TAGGGCCTAA GAAGGCCCAC GGAGGACTGC AGCAGCAGCA ACGATGGGCC
CTGCAGC
$\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \mid$ Gene Deletion
 $3245 \quad 3255 \quad 3265 \quad 3275 \quad 3285 \quad 3295$
ATTGCCACAA TCTGAAATAA ATATAGCTCA AATTTTCCTC TTAATTTTCT GTATAAGTTG ATTGCCACAA TCTGAAATAA ATATAGCTCA AATTTCCCTC TTAATTTCCT GTATAAGCTG

$$
\begin{array}{llllll}
3305 & 3315 & 3325 & 3335 & 3345 & 3355
\end{array}
$$

[ATTGTTATG TTCTTATGTA AGATTGTAAG ACTATGG~~~ ~~~~~CATGA CATACATACC
TATTGTTATG TTCTTATGTA AGATTGTAAG ACTATGCCAG TATGGCATGA CATACAAACC

ACATGGCTTG CCTTTTCTTA TTTCTACAGA GTACAGTGGT TCTCATGCTT TCTATTTTTC ACTTGGCTTG CCTTTTCTTA TTTCTACAGA GTACAGTGGT TCTCATGCTT TCTATTTTCC

$\begin{array}{cccccc}3425 & 3435 & 3445 & 3455 & 3465 & 3475 \\ \text { AATAGGCTTT } & \text { CTACCCCAAA } & \text { TCCAAGGACT } & \text { TACATTGGTT } & \text { CAGGAAAGGT } & \text { TTCTGAAATC }\end{array}$ AATAGGCTTT CTACCCCAAA TCCAAGGACT TACATTGGTT CAGGAAAGGT TTCTGAAATC

AGGACTGCAA TCCAAGCACT TGATGTTGAG ACTGTAATTT TAGACGATGA GTTATCCCCT AGGACTGCAA TCCAAGCACT TGATGTTGAG ACTGTAATTT TGGACGATGA GTTATCCCCT

GGGTAAGATT CTCACTTATT ACTCTGCTTG TTAGAGTACC CGTTTAGGGT TTGGGGTTTA GGGTAAGATT CTCACTTATT ACTCTGCTTG TTAGAGTACC CATTTAGGGT TTGGGGTTTA

CCCCGTGTAT TTACCTTCTC ACCCCTATGT AAAGGGCCAA GCCTATCTAA CTTAGTCTAT CCCCGTGTAT TTACCTTCTC TCCCCTGTGT AAAGGGCCAA ATCCATCTAA CTTAGTCTAT

GRMZM2G027021

TAATATATCA CCCAACCCCT TGTTAGGGTT AGGGTTTTCC ACATGGTATA GAGTTAGGTT TAATATATCA CCCAACCCCT TGTTAGGG~~ ~~~~TTTTCC ACATGGTATA GAGATAGGTT

$\begin{array}{llllll}3725 & 3735 & 3745 & 3755 & 3765 & 3775\end{array}$
TCTTTTTTTC CTCTTCTACT CCCACCCACC CGCCTCCACT TTCCTGCTAG CAAG~~~~~~
TCTTTTTT~C CTCTTCTCCT CCCACCCACC CGCCTCCACT TCCCTGCCAG CAAGCCCCAG
$\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \mid$
Gene Insertion
$\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| . \ldots \mid$ 89458955896589758995

~~~~~~~~~~ ~~~~~~TCCA TCTAACTCAG TCTATTAATA CATAACCCAA CCCCTTGTTA TATGTAATGG GCCAGACCCA TCTAACTAAG TTTATTAATA CATCACCCAA CCTCTTGTTA

GGGTTAGAGT TTCCCACACT GCTTATGTGA TTCCATTTGA TTTCCGTGTT TGTCATATCT GGGTTAGGGT TTCCCACACT GCTTATGTGA TTCGATCTGA TTTCCGTGTT TGTCATATCT
 \(\begin{array}{cccccc}9065 & 9075 & 9085 & 9095 & 9105 & 9115 \\ \text { AGACCCGTC } & \text { AAATGAACCC } & \text { AACTGTATGA } & \text { TCTTTGCCTT } & \text { GTACTAATCG } & \text { TTAACTATTA }\end{array}\) AAGACCCGTC AAATGAACCC AACTGTATGA TCTTTGCCTT GTACTAATCG TTAACTATTA
 \(\begin{array}{llllll}9125 & 9135 & 9145 & 9155 & 9165 & 9175\end{array}\)
TGCTCAAAAT ATTGGTCAGT CATCATACTT GTTATCTTCA GTTCAGAGAA TACCTGAAAG TGCTCAAAAT ATTGGTCAGT CATCATACTT GTTATCTTCA GTTCAGAGAA TACCTGAAAG
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|. . . . . . . . . .\). 9185 9195 9205 9215 \(\quad 9225\)
AGTGTTATTT GTTAATCTCA TAAATGGATG CCGGTATGTA ATCAAATTTT TATTCTTCCT AGTGTTATTT GTTAATCTCA TAAACGGATG CCAGTATGTA ATCAAATTTT TATTCTTCCT

    CTATACATAA CCAGGATATA TTTGAAGAAT TTATCTTATG ATTTCGACAC CATGTATTGT
    CTATACATAA CCAGGATATA TTTGAAGAAT TTATCTTATG ATTTCGAAAA CATGTATTGT

    93059315932593359345
    GTCGACCATA CATTGTTTTC AACTTCTTCC TAATCATATT TTAAACTGCT AACCACCTCA
    GTCGACCATA CATTGTTTTC AACTTCTTCC TAATCATATT TTAAACTGCT AACCACCTCA

    93659375938594959415
GATTGGCCTA ATAGTTACTC TGGTAGCTCA TATTCCCAAC AATGATTTCA GACAACTACG
GATTGGCCTA ATAGTTACTC TGGTTGCTCA TATTCCCAAC AATGATTTCA GACAACTACG

    TAACTTGGAA AAGTCATTTG GTGGGAGTGT CCGAGTCTGT GATCGAACTG CTCTTATTCT
    TAACTTGGAA AAGTCATTTG GTGGGAGTGT CCGAGTCTGT GATCGAACTG CTCTTATTCT

    TGATATTTTT AATCAAAGGG CAGCAACACA TGAAGCTTCT TTACAGGTAA AAATCACATA
    TGATATTTTT AATCAAAGGG CAGCAACACA TGAAGCTTCT TTACAGGTAA AAATCACATA

    CAGTAGCTTT ACCAACAGTA GTATCTTGTG GCATCATTTC TTGACATGAA GTTTGCAGCT
    CAGTAGCTTC ACCAACAGTA GTATCTTGTG GCATCATTTC TTGACATGAA GTTTGCAGCT

TAGGTTACTT TGGCACAGAT GGAATATCAA CTTCCTAGGT TGACGAAAAT GTGGAGTCAC
TAGGTTACTT TGGCACAGAT GGAATATCAA CTTCCTAGGT TGACGAAAAT GTGGAGTCAC

CTGGAACGGC AGGCTGGAGG TCAAGTTAAG GGTATGGGTG AGAAGCAAAT TGAAGTTGAC CTGGAACGGC AGGCTGGAGG TCAAGTTAAG GGTATGGGTG AGAAGCAAAT TGAAGTTGAC
 AGGCGCATCT TGAGAACTCA AGTATTACTC TTTCTGGAAG TCATAGATTT TTTTTGCTCA AAGCGCATCT TGAGAACTCA AGTATTACTC TTTCTGGAAG TCAGAGATAT TTTTTGCTCA
 98459855986598759895
GRMZM2G027021

GRMZM2G027021

GRMZM2G027021

GRMZM2G027021

GRMZM2G027021

GRMZM2G027021
\(1014510155 \quad 10165 \quad 10175 \quad 10185 \quad 10195\)
AACCGTCGCC AATCAGTTCC TATTCCTGTT GTTTCTCTGG TATAACCATG TACATTTCTT AACCGTCGCC AATCAGTTCC TATTCCTGTT GTTTCTCTGG TATAACCATG TACATTTCCT
 TACAATAATA AAAAACTATC ATGCTTTCTA TTCTACAAAT ATGTTCAGCT CCAAATAATT TACAATAATA GAAAACTATC ATGCTTTCTA TTCTACAAAT ATGTTCAGCT CCAAATAATT
 TTCAGGTAGG ATATACAAAT GCTGGAAAAA GTACACTCCT GAACCGCTTA ACTGGAGCTG TTCAGGTAGG ATATACAAAT GCTGGGAAAA GTACACTCCT GAACCGCTTA ACTGGAGCTG
 \(\begin{array}{ccccc}10325 & 10335 & 10345 & 10355 & 10365\end{array} 10375\) ATGTGCTTGC AGAGGATAAG TTATTTGCCA CATTAGATCC AACTACTAGA AGGGTTTTGG
\(\ldots .|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots|\) \(10385103951040510415 \quad 10425 \quad 10435\)
GRMZM2G027021
TATGTTATTA GAAAACTCTC CTGGTCCATA AAAAATGGAA ACAAAAGCTT TTTTTCAT~~

GRMZM2G027021

GRMZM2G027021
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| . . . . . . . . . . \mid\) \(10445 \quad 10455 \quad 10465 \quad 10475 \quad 10485 \quad 10495\)
GTAAATTGGA TAATGGACAT GAATAAGGTC TGTATCTATT ATGATTTATA TGCCTTTGGG GTAAATTGGA TAATGGACAT GAATAAGGTC TGTATTTATT ATGATTTATA TT~~~~~GGG
 AAAGATTTTT TGTAAGAACT ATCCATCATT ATATCTACAT ATGACCATGA CTGAATGTAA AAAGATTTTT TGTAAGAACT ATCCATCATT ATATCTACAT ATGACCATGA CTGAATGTAA
 TTATGTATTA CTGTGCAGAT GAAGAATGGG ACTGAGTTCC TTCTAACTGA TACCGTCGGA TTATGTATTA CTATGCAGAT GAAGAATGGG ACTGAGTTCC TTCTAACTGA TACCGTCGGA
\(\ldots .|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| . \ldots \mid\) 106251063510645106551066510675
TTCATTCAGA AATTACCCAC TATGCTGGTA CATATCCACA AAGCATATTC CTCTTGTTTA TTCATTCAGA AATTACCCAC TATGCTGGTA CATATCCACA AAGCATATTC CTCTTGTTTA
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| . \ldots \mid\) 106851069510705107151072510735
CATATCCAAC TTTGCATATA TCATTTATTG ATAATACCTT TTCAGGTAGC AGCATTTAGA CATATCCAAC TTTGCATATA TCATTTATTG ATAATACCTT TTCAGGTAGC AGCATTTAGA
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| . . . . . . . . . . . \mid\) \(\begin{array}{llllll}10745 & 10755 & 10765 & 10775 & 10785 & 10795\end{array}\)
GCAACACTAG AAGAGATATC GGAATCATCA GTTATAGTTC ATCTTGTGGA CATTAGGTAT GCAACACTAG AAGAGATATC AGAATCATCA GTTATAGTTC ATCTTGTGGA CATTAGGTAT
 GGAACTTATA CTAGGGGTTC TCTTCGTTGT GGATTCAATT TCATGCATCT ATATGCAGTT GGAACTTATA CTAGGGGTTC TCTTCGTTGT GGATTCAATT TCATGCATCT ATATGCAGTT
 ATGGACTGTC CTAATATTGT GTTATGTGTT CCAGCCATCC TTTAGCTCAA CAACAGATAG ATGCACTGTC CTAATATTGT GTCATGTGTT CCAGCCATCC TTTAGCTCAA CAACAGATAG

ATGCTGTTGA AAGAGTACTG AAGGAGTTGG ATGTCGAGTC AATCCCCAAA TTAGTCGTGT ATGCTGTTGA AAGAGTACTG AAGGAGTTGG ATGTCGAGTC AATTCCCAAA TTAGTTGTGT
 \(10985109951100511015 \quad 11025 \quad 11035\)
GGAATAAGGT TTGTTTGCTC AAATATTTGA CCTGTTTGGT AAAATTTTCA ACGTTTTCAC GGAATAAGGT TTGTTTGCTC AAATATTTGA TCTGTTTGGT AAAATTTTCA ACGTTTTCAC
 \(1104511055 \quad 11065 \quad 11075 \quad 11085 \quad 11095\)
TTTATTTTAT ATTTTTAGAG AGTAGAGATG AGATTTTCTG ATCATAGTCT TTCTATGCTG TTTATTTTAT ATTTTTAGAG AGTAGAGATG AGATTTTCTG ATCATAGTCT TTCTATGCTG
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots \mid\) 111051111511125113511451155
GATTTAGTAT CAATTTCTAC TTTCCTATGC TTAATCCCCT ATTTTAAACT TCTCTCTACA GATTTAGTAT CAATTTCTAC TTTCCTATGC TTAATCCCCT ATTTTAAACT TCTCTTTGCA
 \(111651117511185119511205 \quad 11215\)
GRMZM2G027021 AACGGTGTCA TCTACAGTTC CGCGTCGTCT ATTTTGCACG ATCCACTGAA GACAACCTTA AACGGTGTCA TCTACAGTTC CGCGTCGCCT ATTTTGCATG ATTCACTGAA GACA~~~~TA
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|. \ldots|\) \(1122511235 \quad 11245 \quad 11255 \quad 11265 \quad 11275\)
CGGTGGACTA AAATAGTGTG AAGCTTTTTT GAGCAAAAGT TGTTGCTGAA TGTAAAAGGC CGGTGGATTA AAATAGTGTG AAGCTTTTTT GATCAAAAGT TGTTGCTGAA TGTAAAAGGC

GRMZM2G027021

GRMZM2G027021
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|. . . . . . . . . .\). \(112851129511305 \quad 11315 \quad 11325 \quad 11335\)
TTCTCATTTC TGATCCACCT CTGCCTATCA CTCACTCTGA ATAGATGATG TTCATATAAG TTCTCATTTC TGATCCACCT CTGCCTATCA CTCACTCTGA ATAGATGATG TTCATATAAG

AAAATTAATG CAGTAGTAAA TCCCTAATAT TTATATAAAT GTTGCAGGGT TCTGTGGAGC
AAAATTAATG CAGTAGTAAA TCCCTAATAT TTATATAAAT GTTGCAGGGT TCTGTGGAGC
 \(114051141511425 \quad 11435 \quad 11445 \quad 11455\)
TTTGATTTGC ATTAGCTCAT TTTTTA~TCT AATCTTCAAG ATCAATCAGA ATCATAGTCA TTTGATTTGC ATTAGCTCAT TTTTTAATCT AATCTTCAAA ATCAATCAGA ATCATAGTCA
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|. . . . . . . . .\). GGAGTTTGTA ATAATAGTGC AAATAATGAT GCAATCATGC AAACAAGACA AAATTATACA GGAGTTTGTA ATAATAGTGC AAATAATGAT GCAATCATGC AAACAAGACA AAATTATACA
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots \mid\) \(115251153511545 \quad 11555 \quad 11565 \quad 11575\)
TTTTCAACTG GATCTGATTC TTCAAGTGCT TCCTTTTTGG AACTAAGACA TATTTGTATG TTTTCAACTG GATCTGATTC TTCAAGTGCT TCCTTTTTGG AACTAAGACA TGTTTGTATG
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|. \ldots|\) \(1158511595 \quad 11605\) 11615 \(11625 \quad 11635\)
TCATGCAGAT TGACAATACG GATGAACCAT TGAGTGTAAA AGAGGAGGCT CAGAAACAAG
TCATGCAGAT TGACAATACG GATGAACCAT TGAGTGTAAA AGAGGAGGCT CAGAAACAAG
 \(1164511655 \quad 11665 \quad 11675 \quad 11685 \quad 11695\)
GAATAATCTG CATATCAGCG ATGAATGGTG ATGGTTTGGA AGATTTATGT AATGCAGTTC GAATAATCTG CATATCAGCG ATGAATGGTG ATGGTTTGGA AGATTTATGT AATGCAGTTC
 \(11705117151172511735 \quad 11745 \quad 11755\)
AAGCAAAGTT GAAAGTATGT GTTCCCCCCT CGTAGGCAGA GGAGTTGTTT TCCCGACATG AAGCAAAGTT GAAAGTATGT GTTCCCCCCT CGTAGGCAGA GGAGTTGTTT TCCCGACATG
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots \mid\) \(11765117751178511795 \quad 11805 \quad 11815\)
CCTTTTTGGG TATCTACTGC ACTTATTTAT TTGGATTGGA ATGAAGGGCC TCTGTGGTCC CCTTTTTGGG TATCTACTGC ACTTATTTAT TTGGATTGGA ATGAAGGGCC TCTGTGGTCC
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| . . . . . . . . . . . \mid\) \(\begin{array}{llllll}11825 & 11835 & 11845 & 11855 & 11865 & 11875\end{array}\) TGATCTAAGA ATTTTAGGAG CTGGTCATAC CTAGCTCCAG AAATTATTGG AGCCAGAGCT TGATCTAAGA ACTTATGGAG CTGGTCATAC CTAGCTCCAG AAATTATTGG AGCCAGAGCT
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|. . . \ldots|\) \(11885118951190511915 \quad 11925 \quad 11935\)
GTAGGCATAT ACGAGTACAT GTTATGCCTA TGGTGCGTCT GGGGCCTGGC CAGGACTCCT GTAGGCATAT ACAAGTACAT GTTATGCCTA TGGTGCGTCA GTCAAGGGGC CTGGCCATGA
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| . \ldots \mid\) 1194511955119651197511995
TAGTTTTAGT TAAATAGATA GGATTAGAT~ ~~~~AAGGTT GTTAGGAGAT AGAGTTGTGG
CTCCTTAGTT TTAGTTAAAT AAATAGGATT AGATAAGGTT GTTAGGAGAT AAAGTTGTGG
 \(120051201512025 \quad 12035 \quad 12045 \quad 12055\)
GATTTGTTAG GGGCTGGCTC TATGTAAAGA GAGGCACCAC AGTTAGTTGA GGCAACAATG GAttTGTtAG GGGCTGGCTC TATGTAAAGA GAGGCACCAC AGTTAGTTGA GGCAACAATG

AAGAACAGCC AGTCCAATTC CCTCAAATAC TTAGTAGTCT AATCTCCCTC AAAAACCAAC
AAGAACAGCC AGTCCAATTC CCTCAAATAC TTAGTAGTCT AATCTCCCTC AAAAACCAAC
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline &  & ...|....| & ...| 12145 . \({ }^{\text {l }}\) & 12155 & ...| 12165 . \({ }^{\text {l }}\) & 12175 \\
\hline \multirow[t]{4}{*}{GRMZM2G027021} & titgcceagc & tatctictig & GCAATGTTAA & CCCtantgat & CTAAGGATCA & TAAACACAGA \\
\hline & tttGCCCAGC & tatcttcttg & GCAATGTTAA & CCCTAATGAT & CTAAGGATCA & taAACACAGA \\
\hline & . & , & . \(\cdot . . . \mid\) & . | . . . | & . | . . . | & | \\
\hline & 12185 & 12195 & 12205 & 12215 & 12225 & 12235 \\
\hline \multirow[t]{4}{*}{GRMZM2G027021} & GGGTATtTAG & CTGAGGTATT & TCCTTATTTT & GGATCAATGA & CGGATGTCAT & ACTCGGTGCT \\
\hline & GGGTATtTAG & CTGAGGTATT & TCCTTATTTT & GGATCAATCA & CGGAtGTCAT & ACtCGGTGCt \\
\hline & . & ......... \(\mid\) & . & . | . . . | & . | . . . | & \\
\hline & 12245 & 12255 & 12265 & 12275 & 12285 & 12295 \\
\hline \multirow[t]{4}{*}{GRMZM2G027021} & GAAAGCTCCT & ACACGATGTG & GGGTATGGGG & AATGGAATTT & CTAGTTAGAG & CTGCAGAAGG \\
\hline & GAAAGCTCCT & ACACGAtGTG & GGGTATGGGG & AATGGAATTT & CTAGTtAGAG & CTGCAGAAGG \\
\hline & .. | ....| & . \({ }^{\text {.... }}\) | & . . \({ }^{\text {. }}\). | & ....|....| & ....|....| & | . . . | \\
\hline & 12305 & 12315 & 12325 & 12335 & 12345 & 12355 \\
\hline \multirow[t]{6}{*}{GRMZM2G027021} & GATTGTTGGG & GCGAAGGCGA & AgACGCtacc & CTTCGCTCCA & AGCCtTCGTC & AACCTCGTCG \\
\hline & GA~~~~~~~~ & & & & & \\
\hline & ..... \(\mid\) & & & | .... | & ........ \(\mid\) & \\
\hline & Gene Delet & & & & & \\
\hline & ..... \(\mid\) & |....| & |.... \(\mid\) & | .... & . | . . . | & | . . . \(\mid\) \\
\hline & 12785 & 12795 & 12805 & 12815 & 12825 & 12835 \\
\hline \multirow[t]{4}{*}{GRMZM2G027021} & AGGGAttaAA & CACAGATGTT & TAAAGCACCT & ATtTTATCCT & ACTAGTGAAA & AAAATCTGCA \\
\hline & \(\sim \sim \sim T T A A A\) & CACAGATGTT & TAAAGCACCT & ATtTtatcct & ACTAGTGAAA & AAA~TCTGCA \\
\hline & . | . . . | & . & | . . . . \(\mid\) & | . . . \({ }^{\text {| }}\) & | . . . . | & \\
\hline & 12845 & 12855 & 12865 & 12875 & 12885 & 12895 \\
\hline \multirow[t]{4}{*}{GRMZM2G027021} & TAGACTCGTT & GACTCATTGT & GGTTGTGAGA & CCTCCCACTG & CCACTAGCTT & Ctttanttct \\
\hline & TAGACTCGAT & GACTCATTGT & GGTTGTGAGA & ССтСССАСтG & CCACTAGCTT & Ctttanttct \\
\hline & . | .... | & , & . 1 & . \({ }^{\text {. }}\) & . 1. & \\
\hline & 12905 & 12915 & 12925 & 12935 & 12945 & 12955 \\
\hline \multirow[t]{4}{*}{GRMZM2G027021} & TGGTGGTGCC & AtGCAGCCAG & ATCTtTGCTC & AAAATGGAAG & AAAA \(\sim\) TGATT & TAATTTCCTA \\
\hline & TGGTGGTGCC & AtGCAGCCAG & ATCTtTGCTC & AAAATGGAAG & AAAAATGATT & taAtttccta \\
\hline & . .... | & & . & - & \(\ldots\)... & \\
\hline & 12965 & 12975 & 12985 & 12995 & 13005 & 13015 \\
\hline \multirow[t]{4}{*}{GRMZM2G027021} & GTAATCCTAT & tTACtTAGGA & GCtttganag & tatagGata & tcattatttt & TCAAGGTGTT \\
\hline & GTAATCCTAG & tGAttTAGGA & GCTtTGGAAG & tatagGata & TCATtGttt & TCAAGGTGTT \\
\hline & . | . . . . | & . | . . . \(\mid\) & | . . . | & | . & .... & \\
\hline & 13025 & 13035 & 13045 & 13055 & 13065 & 13075 \\
\hline \multirow[t]{4}{*}{GRMZM2G027021} & AgGCtagatg & TCCAAAGTGT & TGTGT~~GCA & GTGGttactg & AAGGGCAGAT & gtactactig \\
\hline & AgGctagatg & TCCAAAGTGT & tGTGTCTGCA & GTGGttactg & AAGGGCAGAT & GtgGtgcctg \\
\hline & | . . . . \(\mid\) & & ...|.... \(\mid\) & ...|.... \(\mid\) & | . & \\
\hline & 13085 & 13095 & 13105 & 13115 & 13125 & 13135 \\
\hline \multirow[t]{4}{*}{GRMZM2G027021} & GCGTAGGGCT & tTgGccctet & AGGACCTGGC & CCTTAAGGCT & GAACCACTTA & GG \\
\hline & GCGTAGGGCT & ttgeccetct & AGGACCCC~~ & \(\sim \sim T T A A G G C T\) & GAACCACTTA & GGCCttettc \\
\hline & |....| & & ...|.... \(\mid\) & ..\(^{\text {. }}\) & . . \({ }^{\text {. }}\) & \\
\hline & 13145 & 13155 & 13165 & 13175 & 13185 & 13195 \\
\hline \multirow[t]{4}{*}{GRMZM2G027021} & & & & & & \\
\hline & GGTTAATCCC & GTtACCtATG & AATTGGACGG & AATTGAAAA & AATTATGAAG & AAATtTGACT \\
\hline & . . | . . . \({ }^{\text {| }}\) & . & . & | . . . | & ...|....| & | .... | \\
\hline & 13205 & 13215 & 13225 & 13235 & 13245 & 13255 \\
\hline \multirow[t]{4}{*}{GRMZM2G027021} & & & & & & \\
\hline & TACtTGAGAT & TTAAACCCAC & ACAATCCTAA & TCAATCTACA & TGGATTGAGA & GCTAACCGAA \\
\hline & \(\ldots|\ldots .\). & ..... \(\mid\) & . | . . . | & .. | .... | & ....|.... | & \(\ldots\)...... \(\mid\) \\
\hline & 13265 & 13275 & 13285 & 13295 & 13305 & 13315 \\
\hline \multirow[t]{2}{*}{GRMZM2G027021} & & ~ GTCGAAAC & GGGGCCAATA & Gtttttanat & GTGGGTTGTA & tTCCACCCTC \\
\hline & CAAGCMCTTA & AgGtchanac & GGGGCCAATA & GTttttaAAC & GTGGGTTGTA & tttcaccctc \\
\hline
\end{tabular}

GRMZM2G027021

GRMZM2G027021
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| . . . . . . . . . . \mid\) \(1332513335 \quad 13345\) 13355 \(13365 \quad 13375\)
TCCCCTGGAG GTGGCTAATC CATCGGGGGA TTCTTTTTTC TTTCTTAATG AAATGAAGCT TCCCCTGGAG GTGGCTAATC CATCGGGGGA TTCCTTTTTC TTTCTTAATG AAACGAAGCT

CTCCTGTGTG GTTCGAGAAA AAAAATCTGC ATATGAGCTG GAGTTTTGCC AAAGATGATG CTCCTGTGTG GTTCGAGAAA AAAAATCTGC ATATGAGCTG GAGTTTTGCC AAAGATGATG

TAAATCATGC ATATTTGTCT TCTACAGGAC TCGATGGTTC CTATAGAAGC TTTTGTCCCA TAAATCATGC ATATGTGTCT TCTACAGGAC TCGATGGTTC CTATAGAAGC TTTTGTCCCA
 \(1350513515 \quad 13525 \quad 13535 \quad 13545 \quad 13555\)
TATGACAAAG GAGATCTCCT GAATGACATA CATAAGGTTG GAATGGTTGA AAAAATGGTG TATGACAAAG GAGATCTCCT GAATGACATA CATAAGGTTG GAATGGTTGA AAAAATGGTG
 \(1356513575 \quad 13585 \quad 13595 \quad 13605 \quad 13615\)
AGTGTCCTAT TTGATTTAAG ATGCAGTTTC TTTGGCAATG GTGTTTTTGA GCTTCTGGTT AgTGTCCTAT TTGATTTAAG ATGCAGTTTC TTTGGCAATG GTGTTTTTGA GCTTCTGGTT
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|. . . . . . . . . .\). \(13625 \quad 13635 \quad 13645 \quad 13655 \quad 13665 \quad 13675\)
CATGTTGTCA AGTTTCTGCT TTTGTAATTT TGTTCTGGAT GAAATACACG AGTTAATTCA CATGTTGTCA AGTTTCTGCG TTTGTAATTT TGTTCTGGAT GGAATACATG AGTTAATTCA

TTCAACTACC CCCAAATAGA CAACTTAGGC CTTATTTAAA TGCACTAGAG CTAATAATTA TTCAACTACC TCCAAAGAGA CAACTTAGGC CTTATTTAAA TGCACTAGAG CTAATAGTTA
 137451375513765137751378513795
GCTGGCTGTT GCCCAACTAA TAGCTGATTT GGTAAAAATA GCTAATAGTT GAACTATTAA GCTGGTTGTT GCCTAACTAA TAGCTGATTT GCTAGAAATA GCTAATAGCT GAACTATTAG
 \(1380513815 \quad 13825 \quad 13835 \quad 13845 \quad 13855\)
TTGGGCTGTT TGGATGTTTG CAGCTAATTT TAGCAACTAA CTATTATCTC CTGTGCATTC TTGGGCTGTT TGGATGTTTA CAGCTAATTT TAGCAACTAA TTATTATCTC TAGTGCATTC
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|. . . . . . . . . . .\). \(138651387513885 \quad 13895 \quad 13905 \quad 13915\) AAACAGGGCC TTAGTCATGG AAGCATGTGC ATGGGTTACT TGTTAAAATT TTCTTTCTGA AAACATGGCC TTAGTCATGG AAGCATGTGC ATGGGTTAAT TGTTAAAATT TTCTTTCTGA
 1392513935139451395513965139
ATAATCACAC ATTTTTGCTT ATTGCAAATC TGCAAACCTA GATAATATCT AGACATTCCC ATAATCACAC ATTTTTGCTT ATTGCAAATC TGCAAACCTA GATAATATCT AGACATTCCC
 139851399514005140151402514035
AAGTACACGA TATATTGATT TCTTGAGAAG CTTTCACTTA ACAGAAAATT TGCTTTGCAT AAGTACACGA TATATTGATT TCTTGAGAAG CTTTCACTTA ACAGAAAATT TGCTTTGCAT
 \(140451405514065 \quad 14075 \quad 14085 \quad 14095\)
TATTGTTTGG ATTTAGTGAT AACTCCCCCC TCTTGCGATA TTCACTGCAG GAGTACAAGG TATTGTTTGG ATTTAATGAT AACTCCCCCC TCTTGCGATA TTCACTGCAG GAGTACAAGG
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|. . . \ldots|\) \(14105141151412514135 \quad 14145 \quad 14155\)
AAAGTGGGAC ATTTGTAAAA GCTCATGTGC CTCTACCTCT GGCAAGGCTT CTCACACCTC AAAGTGGGAC ATTTGTAAAA GCTCATGTGC CTCTACCTCT GGCAAGGCTT CTGACACCTC
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \ldots . \mid \ldots \\
& 14165
\end{aligned}
\] & \[
\begin{aligned}
& \ldots . . . . . \mid \\
& 14175
\end{aligned}
\] & \[
\begin{gathered}
\ldots . \\
14185
\end{gathered}
\] & \[
\begin{aligned}
& \ldots \\
& 14195
\end{aligned}
\] & \[
\begin{aligned}
& \ldots \\
& 14205
\end{aligned}
\] & \[
14215
\] \\
\hline \multirow[t]{3}{*}{GRMZM2G027021} & TACGGCAGCA & GGTGGCAGCC & ACTGTGTGAT & GTGCATGTCC & CCGATCCCTT & GATGCCATTG \\
\hline & TACGGCAGCA & GGTGGCAGCC & ACTGTGTGAT & GTGCATGTCC & CCGATCCCTT & GAtGCCAttg \\
\hline &  & . \(14235 . .\). & . \(14245 . . . \mid\) &  &  &  \\
\hline \multirow[t]{3}{*}{GRMZM2G027021} & GCACTCACAA & AATTACCACA & TCTTGTAGAT & TCACAAAAGG & AATAGCTTTG & CTGTAGAAAA \\
\hline & GCACTCACAA & AATTACCACA & TCTTGTAGAT & TCACAAAAGG & AATAGCTTTG & CTGTAGAAAA \\
\hline & . \(14285 .\). & 14295 &  & 14315 & 14325 &  \\
\hline \multirow[t]{3}{*}{GRMZM2G027021} & CTTA~~~~~~ & GAtTATCTTC & ATTGTGTTTC & TACGGTTCTA & CCAGAGTACC & GTATCAACAG \\
\hline & CTTAATCATA & GATTATCTTC & AtTCTGTTTC & TACGGTTCTA & CCAGAGTAGC & GTATCAACAG \\
\hline & \(\begin{aligned} & \text {. } \\ & 14345\end{aligned} . . . \mid\) & 14355 & \(\ldots|\ldots|\) & \(\ldots|\ldots|\) & 14385 & \[
\begin{aligned}
& \ldots \\
& 14395
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{GRMZM2G027021} & GTGCACAGGA & CTAGATAGCT & GTATGTACGC & ACAACAGAAA & TGTAAATGTT & CTCAGCAGAA \\
\hline & GTGCACAGGA & CTAGATAGCT & GTATGTACGC & ACAACAGAAA & TGTAAATGTT & CTCAGCAGAA \\
\hline & \[
\begin{aligned}
& \ldots . .|\ldots| \\
& 14405
\end{aligned}
\] & \(\ldots\).
14415 & . . .
14425 & .
14435 & 14445 & \[
\underset{14455}{\ldots} \mid
\] \\
\hline \multirow[t]{3}{*}{GRMZM2G027021} & TTTAAG~CCC & CGTTTGGTTT & GGG~TAG~TC & ~~~ACTTTTA & GTCCCTAAAA & ATATAAACAT \\
\hline & TTTAAGGTCC & CGTTTGGTTT & GGAGTGACTA & GTTACTTTTA & GTCCCTAAAG & AAGCAAACAT \\
\hline & \[
\underset{14465}{\ldots}|\ldots|
\] & \% 14475 & 14485
14 &  & . .
14505 & 14515 \\
\hline \multirow[t]{3}{*}{GRMZM2G027021} & GGTGACTAAA & ATAGGGTAAC & TAAATTTAAG & TTCTTTAGTC & ATCGAGGAGT & GGACTAAAGT \\
\hline & GGTGACTAAA & GTAGGGTGAC & TAAATTTAAG & TTCTTTAGCC & ACCGAGGAGA & C~~~TAAAGT \\
\hline &  & 14535 & \(\cdots|\ldots|\) & 14555 & 14565 & \(\ldots|\ldots|\) \\
\hline \multirow[t]{3}{*}{GRMZM2G027021} & AGGATTTTTA & CCTCATTTGC & TCTTITCTTT & TTTTTTATTG & CAGCAGTCAT & CCACTAATTA \\
\hline & AGGATTTTTA & CCTCATTTGC & CTTCTCTTTC & TT~~~~AGTG & CAGCAGTCAT & CTACTAATTA \\
\hline & \[
\underset{14585}{\ldots}|\ldots|
\] & \[
\begin{aligned}
& \cdots 59 \\
& 14595
\end{aligned}
\] & \[
\begin{aligned}
& \ldots . . \\
& 14605
\end{aligned}
\] & \(\ldots\).
14615 & \[
14625
\] & \[
\underset{14635}{\ldots} .
\] \\
\hline \multirow[t]{3}{*}{GRMZM2G027021} & ATAGGAGTAA & TATAGTCATT & Attigcatca & ATTAATGCCT & TTTAGTCAGG & TTTAGTCACT \\
\hline & ATTGGGGTAA & TACAGTCATT & ATTCGCACCA & ATTAATGCCT & TTTAGTTAGG & TTTAGTCACT \\
\hline & \[
\begin{gathered}
\ldots . \operatorname{l} . . . \mid \\
14645
\end{gathered}
\] & \[
\underset{14655}{\ldots}|\ldots|
\] & \[
\begin{aligned}
& \ldots . \\
& 14665
\end{aligned}
\] & \[
\begin{aligned}
& \ldots . . . . . \mid \\
& 14675
\end{aligned}
\] & \[
14685
\] & \[
14695
\] \\
\hline \multirow[t]{3}{*}{GRMZM2G027021} & GGAACTAAAC & CAAACGAGGT & ACTTTAGTAA & CTAAACTTTA & GTCAGGTGAC & TAAAGAAACC \\
\hline & GGAACTAAAC & ~~~~~GGGGT & ACTTTAGTGA & CTAAAGTTTA & GTCAGGTGAC & TAAAGAAACC \\
\hline & \[
\begin{aligned}
& \ldots .|\ldots| \\
& 14705
\end{aligned}
\] & \[
\cdots \mid \cdots
\] & \[
\begin{aligned}
& \ldots \\
& 14725
\end{aligned}
\] & \[
\begin{aligned}
& \ldots \\
& 14735
\end{aligned}
\] & \[
14745
\] & \[
\begin{aligned}
& \ldots \\
& 14755
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{GRMZM2G027021} & AAACAGGAC~ & ~AACTCTCCT & TTTCCCAGTT & TGAGAATCAT & TCTGACTACA & AGCATGCGGC \\
\hline & AAACATGACC & TAACTCTCAT & TTTCCCCGTG & TGAGAATCAT & TCTATCTACA & AGCATGTGTC \\
\hline & \[
\underset{14765}{\ldots}|\ldots|
\] & \[
14775
\] & \[
\begin{aligned}
& \ldots .|\ldots| \\
& 14785
\end{aligned}
\] & \[
\begin{aligned}
& \ldots . \mid \ldots \\
& 14795
\end{aligned}
\] & \[
14805
\] & \[
14815
\] \\
\hline \multirow[t]{3}{*}{GRMZM2G027021} & TGCCAACAAG & GGGGACTTGA & GGGAGGGGGT & GACAAGGGTT & TTTTTTGGGG & GGGGGGGGGG \\
\hline & GCTGTGCCAA & CTCAAATAGT & GAACCCTCTG & GTCCCAGATT & TGCAGATATA & AGAGGCGITT \\
\hline & \[
\underset{14825}{\ldots}|\ldots|
\] & \[
\begin{aligned}
& \ldots .|\ldots| \\
& 14835
\end{aligned}
\] & \[
\begin{aligned}
& \ldots . . . . \mid \\
& 14845
\end{aligned}
\] & \[
\underset{14855}{\ldots}|\ldots|
\] & \[
\begin{aligned}
& \ldots . . . . \mid \\
& 14865
\end{aligned}
\] & \[
\begin{gathered}
\ldots \\
14875
\end{gathered}
\] \\
\hline \multirow[t]{3}{*}{GRMZM2G027021} & AGGAATGGGC & TTCCCACCGC & CGGATCGCAA & TCAACGGCCC & AAAACCATTC & CTACGCCAGA \\
\hline & GGATCTAGAT & GGCTAAATTT & TAGTCTTGTC & ACATCGAATT & AATGTTGAAT & ATTTGACTGT \\
\hline & \[
\begin{aligned}
& \ldots . \mid \ldots \\
& 14885
\end{aligned}
\] & \[
\begin{aligned}
& \ldots .|\ldots| \\
& 14895
\end{aligned}
\] & .
14905 & \(\begin{aligned} & \text {. } \\ & 14915\end{aligned} . . . \mid\) & . . .
14925 & \[
14935
\] \\
\hline \multirow[t]{3}{*}{GRMZM2G027021} & GCTCCCGACC & CCCGCACACA & CATCAAACAT & AAACTTTACT & GTTTTATGGG & TGTTTACCTC \\
\hline & TAGTTAAAAG & TATTAAATAT & AATATAATTA & TAAAATAAAT & TACCTAAATA & AGGACTAAAC \\
\hline & \[
\begin{gathered}
\ldots . \\
14945
\end{gathered}
\] & \[
\underset{14955}{\ldots} .
\] & .
14965 & .
14975 & \[
\begin{aligned}
& \ldots . . \\
& 14985
\end{aligned}
\] & \[
\begin{gathered}
\ldots . \\
14995
\end{gathered}
\] \\
\hline & CTAAAATI & AAAACCC & CATAGC & GACCCG & GAGAAAACA & AGAAA \\
\hline
\end{tabular}

CC AAAACCCCCC CCATAGCACG GGACCCGCAA AGAGAAAACA AAGAAAAAA
AACAAGATGA ATTTGTTAAG TCTAATTAGT TTATGATTTT TTTTTCGAAA ACGCAGGAG

GRMZM2G039971
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| . . . . . . . . . . . . \mid\)
GRMZM2G039971 CAACTCAAGT GTCCCTTCCA ATGGGTCTTT TT-CTGTGAG GTGCTTGAGA CTGTACCGGT CAACTCAAGT GTCCCTTCCA ATGGGTCTTT TTTCTGTGAG GTGCTTGAGA CTGTACCGGT

GRMZM2G039971 GAAAAATAGT ATCTACATCA GCTTAATCGG GTTCTATATC GATTTGTTTG TTCCACACTA GAAAAATAGT ATCTACATCA GCTTAATCGG GTTCTATATC GATTTGTTTG TTCCACACTA

GRMZM2G039971 TATTTATCGG GTTCCATTGA CCAATCGTCG GATGAAAGCC TCAAGGCTCA TCCATAATCC TATTTATCGG GTTCCATTGA CCAATCGTCG GATGAAAGCC TCAAGGCTCA TCCATAATCC

GRMZM2G039971 TCCTCTATCT TAAAAACCAC CAGTACCGTA CAGAGGAAAA GAAGGCGAGA AATGAGAGGA TCCTCTATCT TAAAAACCAC CAGTACCGTA CAGAGGAAAA GAAGGCGAGA AATGAGAGGA
\(\ldots|\ldots| \ldots|\ldots|\).
GRMZM2G039971 AATGGGGAAA AAAAGAAGAGA GAAAAT
AATGGGGGAA AAAA-AAGAGA GAAAAT

\section*{GRMZM2G039983}

GC~~~~~~GA ACGGACGAAC CCACACCATC ACCACCACCG GCCACCCTCT CCCTGCCCTG GCACGAGCGA ACGGACGAAC CCACACCATC ACCACCACCG GCCACCCTCT CCCTGCCCTG

GCCCCCCCCG CTTCGCCTAC TCCTGCTCCT CCTCCTCCTC CGCC~~~~TCC CCCTCCCTCC
GCCCCCCCCG CTTCGCCTAC TCCTTCCCCT CCTCCTCCTC CGCCCCCCTCC

TACAAATAGC CACCACCACC ACAGTGACGC AGCCGCCGCC GCAAACGTCG CCCCCGACCG TACAAATAGC CACCACCACC ACAGCGACGC CGCCGCCGCC GCAAACGTCG CCCCCGACCG


AAGCCTAGCC ACCACCAGCA GCACCAGCAA CCTCGCGTAG CAGCGCTCGA CACCGCTGGA AAGCCTAGCC ACCACCAGCA GCACCAGCAA CCTCGCGTAG CAGCGCTCGA CACCGCTGGA
 CGCCCCGCGC CCGCGCGAAA GCA~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CGCCCCGCGC CCGCGCGAAA GCAGGTAATTCGC TTACTCTCCT TCGTCCTCMC CGGCCGK
\(\ldots .|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|. . . . . . . .\). Gene Insertion
 \(\begin{array}{ccccc}1925 & 1935 & 1945 & 1955 & 1965\end{array} 1975\) AAAAAAGAAA TCGTTTTGGT GTTGTACACA GGACCTTGAT TCTGTCGTTG GCGATACCAT
 \(19851995 \quad 2005 \quad 2015 \quad 2035\)
GRMZM2G039983

GRMZM2G039983

GRMZM2G039983

GRMZM2G039983

GRMZM2G039983
GGATGTGTCC TACGAGAAGT GTGCTGATCC GTCGAACTCG GACCTGCCTA GCGCTGTTGT GGATGTGTCC TACGAGAAGT GTGCTGATCC GTCGAACTCG GACCTGCCTA GCGCTGTTGT

TGATGCTGAG CGATACGACG ATGGCGGCTC CGAACACCTG GGATCTGCTG TAGTAGAGGG TGATGCTGAG CGATACGACG ATGGCGGCTC CGAACACCTG GGATCTGCTG TAGTAGAGGG
 AGCTACTGGA AACGAAGGGA ATTCGGGGAC CGAAAGTTCC GAGCAGACTG GTGATG~~~~ AGCTACTGGA AACGAAGGGA ATTCGGGGAC CGAAAGTTCC GAGCAGACTG GTGATGGTAA
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots \mid\)
~~~~~~~~~~

$\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \mid$ 22252235225522652275

GTGTTTRCTG AGTTAGATGC GCAGGRCAAT GCGTGCTGAC MCTGGATCAT GGTTGTAATT
 ~~~~~~~~~~~~~AGCGCGCT GGAGGAGGTG AAGGCTCTCC TGTTGATGTC GAAAACAGCG GTATGAATTC AGAGCGCGCT GGAGGAGGTG AAGGCTCTCC TGTTGATGTC GAAAACAGCG

CTGATAAACA AGAGAGCCAG GAGACGACGG TTCCGATGGA AGAAACAGAA ACGAGCGACG
CTGATAAACA AGAGAGCCAG GAGACGACGG TTCCGATGGA AGAAACAGAA ACGAGCGACG

|  | $\underset{2405}{\mid \ldots}$ | $\underset{2415}{\mid} \ldots \mid$ | $\underset{2425}{ } \ldots \mid$ | $\underset{2435}{ } \ldots$ | $\underset{2445}{\ldots} \mid$ | $.\|\ldots\|$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GRMZM2G039983 | GCACCTCGAT | CACGTCGATG | GAGGATGCCC | TGGAACCGAA | CCGTCATCAC | GATCTCCCGT |
|  | GCACCTCGAT | CACGTCGATG | GAGGATGCCC | TGGAACCGAA | CCGTCATCAC | GATCTCCCGT |
|  | $\begin{gathered} . \\ 2465 \end{gathered}$ | $\begin{aligned} & \|\ldots\| \\ & 2475 \end{aligned}$ | $\underset{2485}{ } \underset{ }{\cdots} \mid$ | $\underset{2495}{ } \underset{ }{\cdots} .$ |  | $\begin{aligned} & .\|\ldots\| \\ & 2515 \end{aligned}$ |
| GRMZM2G039983 | CGGAGCCTGA | GGATGTGGGC | AACCACACTC | CTGATCCTGA | TCAGTCCAGC | GGCAAGAACT |
|  | CGGAGCCTGA | GGATGTGGGC | AACCACACTC | CTGATCCTGA | TCAGTCCAGC | GGCAAGAACT |
|  | $\ldots$ | $\begin{aligned} & \mid \ldots \\ & 2535 \end{aligned}$ | $\cdots{ }_{2545} \ldots \ldots \mid$ | $\begin{aligned} & . \\ & 2555 \end{aligned}$ | $2565$ | $\underset{2575}{ }\|\ldots\|$ |
| GRMZM2G039983 | CCAAAGGAAA | CAGTAGCGTG | TTCCAGAGCG | CAAGGAGGGT | GCTGGCTICA | ACCAATAAG~ |
|  | CCAAAGGAAA | CAGTAGCGTG | TTCCAGAGCG | CAAGGAGGGT | GCTGGCTTCA | ACCAATAAGG |
|  | $\underset{2585}{ }\|\ldots\|$ | $\underset{2595}{ } \ldots$ | $\underset{2605}{ } \ldots$ | $\underset{2615}{ } \ldots$ | $\underset{2625}{ } \underset{ }{\mid} \ldots$ | $\underset{2635}{ } .$ |
| GRMZM2G039983 |  |  |  |  |  |  |
|  | TGGGTATATC | TCCATTTCTC | TGAAACCCCC | TTTTTTTCCC | TTCATGTATG | WTCCCATCAA |
|  | $\underset{2645}{ }\|\ldots\|$ | $\underset{2655}{\mid \ldots}$ | $\underset{2665}{ } \ldots$ | $\underset{2675}{\|. . .\|}$ | $\underset{2685}{\mid \ldots}$ | $2695$ |
| GRMZM2G039983 |  |  |  |  |  | ~~~~~~AAAA |
|  | CATTTTTTCT | ATCAKAGTCA | CACGGAAATA | ATGCTCAACA | TTTTTTTTTC | TTGCAGAAAA |
|  | $\underset{2705}{ } \underset{ }{\mid} \ldots \mid$ | $\underset{2715}{ } \ldots \mid$ | $\underset{2725}{ } \ldots$ | $\begin{aligned} & \mid \ldots \\ & 2735 \end{aligned}$ | $\ldots \mid$ | $2755$ |

GRMZM2G039983

GRMZM2G039983

GRMZM2G039983

GRMZM2G039983

GRMZM2G039983

GRMZM2G039983

GRMZM2G039983

GRMZM2G039983

CTCCATCTGC AACTGCACGG AAGCCACTGC AGTTGACTAA CAGAGGTAAC CAGGATGACG CTCCATCTGC AACTGCACGG AAGCCACTGC AGTTGACTAA CAGAGGTAAC CAGGATGACG
 CGAAATCGTC GGCTGGAAAG GCCGCCACGG TTCCATCAGG CCCGGTTTTC CGCTGTACTG CGAAATCGTC GGCTGGAAAG GCCGCCACGG TTCCATCAGG CCCGGTTTTC CGCTGTACTG
 AACGGGCCGA GAAGCGCAGA GAA~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
AACGCGCCGA GAAGCGCAGA GAAGTATGTG ACATAACTTT CTTCTTCTTT TTTTTTTAGA
$\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots \mid$ 2885289529052925

AACTATGAAT CAGAATCTTG GTAAAGGGGG GAATAATGTG GTTATGATTG TTGTTTTCAT
 ~~~~~~~~~~~~~~TTTTAT ATGAAGCTGG AGGAGAAGCA TCAAGCTATG GAGGAAGAGA GCTTTGCTTC GCAGTTTTAT ATGAAGCTGG AGGAGAAGCA TCAAGCTATG GAGGAAGAGA

AGATTCAGTT GGAGGCTAAG TTGAAG~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~
AGATTCAGTT GGAGGCTAAG TTGAAGGTAA ATAAATTTAT CTATATGGCT GCCATTTGAC
$\ldots .|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|. \ldots|$
Gene Insertion
$\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \mid$ $3185 \quad 3195 \quad 3205 \quad 3215 \quad 3225 \quad 3235$

~~~~~~~AAA GAGCAGGAGG AGGCACTGAA GCAGCTGAGG AAGAGCCTGA CCTTCAAAGC ATtTCAGAAA GAGCAGGAGG AGGCACTGAA GCAGCTGAGG AAGAGCCTGA CCTTCAAAGC

CAACCCCATG CCGAGCTTCT ACCACGAGGC GACGCCGTCC CCGAAGGCCG AGTTCAAGAA CAACCCCATG CCGAGCTTCT ACCACGAGGC GACGCCGTCC CCGAAGGCCG AGTTCAAGAA

\(\begin{array}{ccccc}3305 & 3315 & 3325 & 3335 & 3345\end{array}\) GCTGCCCACG ACCCGGCCCA AGTCGCCCAA GCTGGGCAGG AGGAAGACGG TCTCGACCTC
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots|\) \(\begin{array}{llllll}3365 & 3375 & 3385 & 3395 & 3405 & 3415\end{array}\)

GRMZM2G039983

CATGGAGACG TCCAACTCGT CGTCGGAGAG CGAGGGCACG AGGCCGTGCT GCCGCGCCAG CATGGAGACG TCCAACTCGT CGTCTGAGAG CGAGGGCACG AGGCCGTGCT GCCGCGCCAG
 CCGCGACGGC CTCGACAGCA GCTGCAGATG CGGCGGCAGG AGCAGGCCGC AGGCCGCGAA CCGCGACGGC CTCGACAGCA GCTGCAGATG CGGCGGCAGG AGCAGGCCGC AGGCCGCGAA
 GGCCAAGCCG GCCGCCGGGC CCAAGAAGCC GCCGCCGCAG CAGCAGCAGC CGAAACACCG CGCCAAGCCG GCCGCCGGGC CCAAGAAGCC GCCGCCGCAG CAGCAGCAGC CGAAACACCG

CGCCCACAAG ATCGCCGGCG AGGGCGCCAT CAACATCGCC GTGCACTAGC CGCCGCCGCC CGCCCACAAG ATCGCCGGCG AGGGCGCCAT CAACATCGCC GTGCACTAGC CGCCGCCGC~
 GCTTCTTGAA ACTTCTTTCC GGTCGCATGC ATGCAGGACG ATGGCGATGG CGTGCGGATT ~~TTCTTGAA ACTTCTTTCC GGTCGCATGC ATGCAGGACG ATGGCGATGG CGTGCGGATT
 \(\begin{array}{lllll}3665 & 3675 & 3685 & 3695 & 3705\end{array}\)
TTCCTTCTAA GTTATGAGAG TGCTTTGTCG GCTTGTGGAT TTGGTGTAGA TAATAATATA TTCCTTCTAA GTTATGAGAG TGCTTTGTCG GCTTGTGGAT TTGGTGTAGA TAATAATATA
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|. . . . . . . . . .\). AgTTATGGTG ACGACGAACG AACAGGGGCT GCTGCCACGA GTGAGGCCGG TCAGTCAGAC AGTTATGGTG ACGACGAACG AACAGGGGCT GCTGCCACGA GTGAGGCCGG TCAGTCAGAC

AGAGGTGGTG GTGTTTATTG CTTGCTTGCT TGTTTGTCTG TTTGTTTGTT TATTTATGCT
AGAGGTGGTG GTGTTTATTG CTTGCTTGCT TGTTTGTCTG TTTCTTTGTT TATTTATGCT
 \(\begin{array}{llllll}3845 & 3855 & 3865 & 3875 & 3885 & 3895\end{array}\)
AATCTTATTT ATTTAATCTG CTGTCGAGGA TGGCCTGCGC ATTGCCACTG TGCAGCGCTG AATCTTATTT ATTTAATCTG CTGTCGAGGA TGGCCTGCGC ATTGCCACTG TGCAGCGCTG


CTTGTTTTTT ~~~~CGTCTT CTTAATTTAT GGGGAGTGGT AAGAGAGACT TGAGCGCTGG CTTGTTTTTT TTITCTTCTT CTTAATTTAT GGGGAGTGGT AAGAGAGACT TGAGTGCTGG
\(\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|\ldots| . . . . . . . . . . . \mid\) 3965397539854005
ATGTAACGTG TACAAACGAA AACGAAGGCT TGCTGGTGGT GGTGATGGAG GATTTTATCT ATGTAACGTG TACAAACGAA AACGAAGGCT TGCTGGTGGT GGTGATGGAG GATTTTATCT

40254035404540554065
GAACTATGCT CACTCGCTGC ATTTCTATTG AGTTCTTCAA GAGCTTGCTA AA
GAACTATGCT CATTCGCTGC ACTTCTATTG AGTTCTTCAA GAGCTTGCTA AA~~~~~~~

