Cobalt Ferrite Nanocrystals: Out-Performing Magnetotactic Bacteria

Tanya Prozorov,† Pierre Palo,†*,‡ Lijun Wang,†,‡ Marit Nilsen-Hamilton,†,‡,* DeAnna Jones,† Daniel Orr,†,§ Surya K. Mallapragada,†,§,* Balaji Narasimhan,†,§,* Paul C. Canfield,†,§, and Ruslan Prozorov†,‡,*
†Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, ‡Department of Biochemistry, Biophysics and Molecular Biology, §Department of Chemical and Biological Engineering, and *Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50011

The synthesis of magnetic nanoparticles with narrow size distribution represents a significant practical and fundamental challenge.1,2 Such particles are in high demand in various areas, from quantum computing to cancer therapy.3–12 Contrary to common sense, the smallest nanoparticles are not necessarily the best. Often, larger particles (~50 nm), just below the superparamagnetic threshold, are the most suitable for many applications. For example, in magnetic recording and drug delivery, larger particles with large magnetic moments are preferred.13–16 The problem is not only the particle size but also significant agglomeration of the particles. It is especially difficult to produce non-agglomerated nanocrystals of ferromagnetic nanoparticles.17 Various synthetic approaches have been utilized, ranging from homogeneous synthesis18 to heterogeneous synthesis7 and to the use of powerful ultrasound to rapidly decompose volatile organometallics.19–21 One of the drawbacks associated with rapid synthesis is a decreased degree of crystallinity in the resulting material leading, in turn, to a significant spin misalignment, which reduces the total or net magnetic moment per particle. When the synthesis involves a more controlled thermal decomposition, it is possible to somewhat further minimize the crystallinity problems.1,17

In this article we describe a novel room-temperature bioinspired route to produce nanocrystals of one of the best known, commercially used ferromagnetic compounds: cobalt ferrite. The idea arose from our investigations of magnetite biomineralization by various magnetotactic bacteria.22 We investigated the ability of the acidic recombinant mms6 protein, cloned from these bacteria, to promote shape-selective growth in vitro.23 These experiments were successful and yielded uniform magnetite nanocrystals, resembling those seen in magnetotactic bacteria, as shown in Figure 1.

The synthesis of magnetic nanoparticles with narrow size distribution represents a significant practical and fundamental challenge.1,2 Such particles are in high demand in various areas, from quantum computing to cancer therapy.3–12 Contrary to common sense, the smallest nanoparticles are not necessarily the best. Often, larger particles (~50 nm), just below the superparamagnetic threshold, are the most suitable for many applications. For example, in magnetic recording and drug delivery, larger particles with large magnetic moments are preferred.13–16 The problem is not only the particle size but also significant agglomeration of the particles. It is especially difficult to produce non-agglomerated nanocrystals of ferromagnetic nanoparticles.17 Various synthetic approaches have been utilized, ranging from homogeneous synthesis18 to heterogeneous synthesis7 and to the use of powerful ultrasound to rapidly decompose volatile organometallics.19–21 One of the drawbacks associated with rapid synthesis is a decreased degree of crystallinity in the resulting material leading, in turn, to a significant spin misalignment, which reduces the total or net magnetic moment per particle. When the synthesis involves a more controlled thermal decomposition, it is possible to somewhat further minimize the crystallinity problems.1,17

In this article we describe a novel room-temperature bioinspired route to produce nanocrystals of one of the best known, commercially used ferromagnetic compounds: cobalt ferrite. The idea arose from our investigations of magnetite biomineralization by various magnetotactic bacteria.22 We investigated the ability of the acidic recombinant protein, mms6, cloned from these bacteria, to promote shape-specific growth in vitro.23 These experiments were successful and yielded uniform magnetite nanocrystals, resembling those seen in magnetotactic bacteria, as shown in Figure 1.

In addition to replicating nanocrystals seen in nature, we have successfully templated synthesis of more complex and
highly magnetic nanocrystals that do not occur in living organisms using this bioinspired approach and by investigating a variety of magnetic ions for the synthesis. Here we describe the protein-templated synthesis and characterization of nanostructured cobalt ferrite (CoFe$_2$O$_4$), which is not known to occur in magnetotactic bacteria. Two forms of mms6 were used in the current study: a recombinant polyhistidine-tagged full-length mms6 (his-mms6), and a synthetic C-terminal domain of this protein containing 25 amino acids (c25-mms6). To control placement of the formed nanocrystals and minimize nanoparticle aggregation, the two proteins were covalently attached to triblock copolymers, called poloxamers, which hierarchically self-assemble in aqueous solutions to form thermoreversible gels, allowing more controlled diffusion and crystal growth rates.

RESULTS AND DISCUSSION

The ability of his-mms6 and c25-mms6 to promote shape-selective formation and growth of nanocrystals was tested in a Pluronic gel in the presence of iron and cobalt ions. Figure 2 shows the transmission electron microscopy (TEM) images of CoFe$_2$O$_4$ nanocrystals obtained in concentrated Pluronic gel without the protein, without the protein in the presence of a functionalized Pluronic block copolymer solution, in the presence of unbound his-mms6, in the presence of unbound c25-mms6, in the presence of Pluronic-conjugated his-mms6, and in the presence of Pluronic-conjugated c25-mms6. (Inset) High-resolution (HR) TEM image of a fragment of the central particle with lattice spacing of 0.48 nm between the (111) planes. The scale bar in all images is 50 nm.

Figure 2. TEM of CoFe$_2$O$_4$ nanocrystals obtained (a) in protein-free synthesis in Pluronic gel, (b) in protein-free synthesis in Pluronic gel with a small amount of functionalized Pluronic, (c) in the presence of unbound his-mms6, (d) in the presence of unbound c25-mms6, (e) in the presence of Pluronic-conjugated his-mms6, and (f) in the presence of Pluronic-conjugated c25-mms6. (Inset) High-resolution (HR) TEM image of a fragment of the central particle with lattice spacing of 0.48 nm between the (111) planes. The scale bar in all images is 50 nm.

in the presence of unbound his-mms6 (Figure 2c) or unbound c25-mms6 (Figure 2d). These nanocrystals exhibited rectangular shapes, most likely due to the protein templating. Finally, nanocrystals synthesized in the presence of either Pluronic-conjugated his-mms6 (Figure 2e) or Pluronic-conjugated c25-mms6 (Figure 2f) exhibited 50–80 nm thin hexagon-like structures. It can be seen that the nanocrystals in Figure 2f showed more pronounced faceting and more well-defined shapes than those in Figure 2e. The difference in particle shape and size may be attributed to the different templating action of unbound and covalently attached (conjugated) proteins, as discussed below. Under closer examination of the TEM images in Figure 2f, the thin hexagon-like plates appear rather as truncated equilateral triangles. Such nanostructures, therefore, would have a 3-fold symmetry rather than a 6-fold symmetry. Finally, the inset in Figure 2f shows a high-resolution TEM (HRTEM) image of a fragment of the structurally uniform particle (plate) with lattice spacing of approximately 0.48 nm, as will be discussed further.

Figure 3 shows an X-ray powder diffraction pattern of the sample presented in Figure 2f (Cu Kα; d-spacing, in Å: 5.254, 2.930, 2.52, 2.089, 1.726, 1.477, and 1.605). All diffraction peaks can be indexed to the (111), (220), (311), (400), (422), (333), and (440) planes of spinel CoFe$_2$O$_4$ with a cubic symmetry (Fd3m, JCPDS file no. 22-1086) and lattice parameter $a = 8.373(\pm 0.003)$ Å, which is in good agreement with the value of 8.3919 Å reported in JCPDS 22-1086. Chemical impurities were not detected. The relative sharpness of the X-ray diffraction peaks indicates that the material is well crystalline. This is fur-
ther supported by the high-resolution electron micrograph displayed in the inset of Figure 2f, with 0.48 nm spacing perpendicular to the (111) plane of the plates. This, in turn, corresponds to the nanostructured plates growth along the (111) direction of a cubic cell, therefore having a 3-fold symmetry.

We now turn to a discussion of the magnetic measurements. A ferromagnetic particle becomes “superparamagnetic” below a critical size of the order of 100 nm, depending on the material. Such a particle cannot develop internal magnetic domains and, therefore, acts as a paramagnetic particle with magnetic moment \(\mu \) up to \(10^7 \) Bohr magnetons. The blocking phenomenon (and its characteristic “blocking” temperature, \(T_B \)) is a signature of the superparamagnetic regime that depends on the particle size, degree of crystallinity, and interparticle interactions.\(^{24}\) Below \(T_B \), nanoparticles are “blocked”, which means that initially random magnetic moments of individual nanoparticles cannot readily align with the applied field, because magnetic Zeeman (\(\mu H \)) and thermal fluctuation (\(k_B T \)) energies are insufficient to overcome the energy barrier set by the magnetic anisotropy and interparticle dipolar interactions. Experimentally, \(T_B \) is marked by the peak in the \(M(T) \) curve measured upon warming after a magnetic field was applied at a low temperature to a zero-field-cooled sample (so called ZFC-W procedure).\(^{21,24,25}\)

Another way to probe the magnetic response of superparamagnetic assembly is to measure its magnetic moment at a fixed temperature as a function of the magnetic field. It is important to compare \(M(H) \) curves below and above \(T_B \) to show the absence of the magnetic hysteresis above \(T_B \). Any residual hysteresis would indicate particle agglomeration, which is an undesired but often observed phenomenon. A detailed discussion of the physics of superparamagnetic nanoparticles is given elsewhere.\(^{24,25}\)

Figure 4 shows the results of ZFC-W measurements performed upon warming after a magnetic field of 500 Oe was applied at 5 K after cooling in zero applied field. Clearly, nanoparticles grown in the activated Pluronic without proteins exhibit the lowest blocking temperature. Nanoparticles grown in Pluronic gels with either unbound c25-mms6 or unbound his-mms6 show an elevated \(T_B \). Finally, nanocrystals grown in the presence of Pluronic-conjugated proteins show the largest blocking temperatures. The results are fully consistent with the TEM images, indicating large, well-formed particles grown in the presence of Pluronic-conjugated his-mms6 and c25-mms6.

Figure 5 compares magnetization loops measured at 5 and 250 K in nanoparticles obtained in the Pluronic gel with and without the Pluronic-conjugated c25-mms6.

There is a significant relative reduction in the maximum magnetization at 250 K compared to 5 K in the Pluronic gel alone and only a moderate change in the case of gel with Pluronic-conjugated c25-mms6. Also, nanocrystals formed in the presence of Pluronic-conjugated c25-mms6 exhibit a very large coercivity field, \(\sim 0.9 \) T at 5 K (compared to 0.5 T for the protein-free Pluronic), and a much larger remnant magnetization, 54% of its value at 5 T (versus 25% in Pluronic). Such an enhancement of the irreversible properties is consistent with an elevated blocking temperature in nanocrystals synthesized with Pluronic-conjugated c25-mms6.

Figure 4. Zero-field-cooled measurements for the six samples discussed in the text. Notice the significant difference in the blocking temperatures between the samples without the biominalization proteins (Pluronic), with unbound his-mms6 and c25-mms6 (two middle curves), and with conjugated his-mms6 and c25-mms6, which have the largest \(T_B \).

Figure 5. Magnetization loops at 5 and 250 K, measured in nanoparticles obtained in functionalized protein-free Pluronic (left) and with conjugated c25-mms6 (right).
mms6. Note, however, that the magnetic hysteresis in both cases is virtually zero at 250 K, which indicates that the nanoparticles are not blocked and are not agglomerated, so the reported enhancement of the irreversibility at low temperatures is intrinsic, and our nanoparticles are superparamagnetic. Finally, the initial susceptibility in this reversible state is much larger in nanoparticles formed with Pluronic-conjugated c25-mms6, which is consistent with a much larger effective magnetic moment for a well-shaped larger particle, as seen in the TEM images.

On the basis of all of the above experiments, we offer the following hypothesis on the mechanism of protein-templated nanocrystal formation. The acidic iron-binding mms6 protein was first reported by Arakaki and co-workers as a membrane protein. The hydrophobic N-terminus of this protein is presumed to be closely associated with the magnetosome phospholipid membrane, while the hydrophilic C-terminus is tightly bound to the bacterial magnetic particle. In vivo, this protein is likely to form an acidic binding surface lining of the vesicle membrane, thus promoting the formation of the uniform cuboctahedral magnetite nanocrystals. Moreover, in addition to iron binding activity, mms6 was shown to competitively bind several other metal ions, including Mg2+, Zn2+, Cu2+, and Ni2+. Taking into account the differences in atomic radii and electronic configurations of metal ions, a cavity-controlled, ion-specific binding to the mms6 is implausible. In concentrated Pluronic gels, micelles self-assemble into a variety of hierarchical structures, including the face-centered cubic and body-centered cubic lattices, and such arrangement within the gel is likely to affect the shapes of further liquid components. The consequent gelation of Pluronic by hierarchical self-assembly is maintained in the presence of both unbound and Pluronic-conjugated proteins. If, under the current synthetic conditions, the micelles in the amphilipic Pluronic block copolymers self-assemble into hierarchical architectures, they could presumably act in a manner similar to that of the mms6-containing bacterial phospholipid membranes, allowing a surface-controlled crystal growth. Both unbound forms of mms6 are likely to phase-separate from the gel into the water-rich regions of the gels, being expelled from the micelles. Thus, neither unbound his-mms6 nor c25-mms6 can provide the extended surface needed for the nucleation and growth of larger nanoparticles, as is evident from the analysis of the TEM images shown in Figure 2. By contrast, Pluronic-conjugated forms of mms6 inevitably become incorporated into the micelles and are thus brought into closer contact, with a greater probability of forming extended ion-binding surfaces. Here, the close packing of micelles in the gel appears to stimulate crystal growth along the (111) direction of the cubic cell. We have determined that his-mms6 protein forms large aggregates, whereas c25-mms6 forms smaller ones. It is likely that aggregation of mms6 affects the crystal formation, with a number of protein molecules assembled into the multimers and enabling formation of sizeable nanocrystals. Steric effects, therefore, are expected to play an important role in this process. Here, the crystal-templating ability of the significantly larger Pluronic-conjugated his-mms6 would be inferior to that of the less aggregated and more compact c25-mms6, as is clearly reflected in the TEM images shown in Figure 2e,f. These observations are also in complete agreement with the magnetic properties measurements in Figures 3 and 4, suggesting that the Pluronic-conjugated c25-mms6 provides controlled crystal sizes and shapes with superior magnetic behavior, which is not achievable using conventional room-temperature synthesis methods.

A proposed scenario of the protein-templated synthesis of CoFe2O4 nanocrystals is shown in Figure 6. Hexagonal nanoparticles are likely templated by the protein localized on hexagonally packed micelles, with the crystal growth along the (111) direction of a cubic cell.

![Figure 6. A plausible scenario for the protein-templated synthesis of CoFe2O4 nanocrystals in the presence of the Pluronic-conjugated recombinant mms6. Here, hexagonal nanoparticles are templated by the protein on hexagonally packed micelles, with the crystal growth along the (111) direction of a cubic cell.](image-url)
METHODS

Materials and Reagents. All solutions were degassed and sparged with argon prior to their use. Pluronic F127 NF Prill Poloxamer 407 (BASF) was dissolved in toluene, recrystallized from cold hexane, and dried overnight in vacuo at room temperature. COCl₂ - 6H₂O (98%, Aldrich) and FeCl₃ - 4H₂O (99.99%, Aldrich) were reacted to a reaction flask and dissolved in water to form 0.66 and 0.33 M solutions, respectively. Sodium hydroxide, succinic anhydride, Tris-HCl, KCl, NaCl, diethyl ether, pyridine, N-hydroxysuccinimidine (NHS), and dichloromethane (Aldrich) were used as received.

The cloning and expression of the full-length recombinant polyhistidine-tagged mms6 protein (his-mms6, VGGTWT-GGRKGLLCLGGLGWPPHILGVLGAGA YAYMKSRDIESAQDSEVELRDALAMW₇₈₋₋₋_-2

nanoparticle suspensions were placed on holey carbon-coated copper grids and dried at room temperature. The nature of the obtained CoFe₂O₄ powder was verified with powder X-ray diffraction analysis using a Rigaku DMAX diffractometer (45 kV, 20 mA) with graphite-monochromated Cu Ka radiation (λ = 1.54178 Å). Diffractograms were collected at a 2θ–θ step-scan mode of 0.018°/min, with 0.02° step interval. Magnetization measurements were carried out by using a ST Quantum Design magnetic properties measurement system. The nanoparticle suspension was injected into a polycarbonate capsule and immediately cooled below the freezing temperature of the liquid (~270 K). To compare different samples, the temperature and magnetic field dependence of the magnetization were measured.

Acknowledgment. We thank Dr. Dennis Bazylinski for providing magnetotactic bacteria and useful discussions and Umai Kanapathipillai and Jorge Almodovar for their help in synthesis and materials preparation. T.P., R.P., and P.C.C. acknowledge discussions with Dr. Felis S. Catus. B.N. and S.K.M, acknowledge a useful discussion with Dr. Ram Seshadri. We thank Dr. Matthew J. Kramer and Dr. Yaqiao Wu for assistance with HRTEM. This work was supported by the Department of Energy, Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. R.P. acknowledges partial support from the NSF (grant no. DMR-0803841) and the Alfred P. Sloan Foundation. D.J. acknowledges financial support from the DOE SULI program. X-ray diffraction measurements were carried out in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois, which is partially supported by the U.S. Department of Energy under grants DE-FG02-07ER46453 and DE-FG02-07ER46471.

REFERENCES AND NOTES

