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Abstract— We consider a network (that is capable of network there is a set of terminal nodes that are only interested in
coding) with a set of sources and terminals, where each terminal the sum of these sources i.e. unlike the multicast scenario

is interested in recovering the sum of the sources. Considering \here the terminals are actually interested in recovering all
directed acyclic graphs with unit capacity edges and independent, th in thi the t inal v int ted |
unit-entropy sources, we show the rate region when (a) there are € sources, In this case the terminals are only Interested in

two sources andr terminals, and (b) n sources and two terminals. the sum of the sources. In this paper we study the rate region
In these cases as long as there exists at least one path from eaclof the network arithmetic problem under certain special cases.

source to each terminal we demonstrate that there exists a valid |n particular we restrict our attention to directed acyclic graphs
assignment of coding vectors to the edges such that the termlnals(DAGS) with unit capacity edges and independent, unit entropy
can recover the sum of the sources. g . ’

sources. Moreover, we consider the following two cases.

I. INTRODUCTION i) Networks with two sources and terminals, and

Network coding is a new paradigm in networking wherell) nétworks withn sources and two terminals.
nodes in a network have the ability to process informatidror these two cases we present the rate region for the problem.
before forwarding it. This is unlike routing where node8asically we show that as long as there exists at least one path
in a network primarily operate in a replicate and forwarffom each source to each terminal, there exists an assignment
manner. The problem of multicast has been studied intensivélycoding vectors to each edge in the network such that the
under the paradigm of network coding. The seminal work &rminals can recover the sum of the sources.
Ahlswede et al. [1] showed that under network coding the This paper is organized as follows. Sectioh Il presents the
multicast capacity is the minimum of the maximum flows fronietwork coding model that we shall be assuming. Se¢fign Il
the source to each individual terminal node. The work of lgontains our results for the case when there are two sources
et al. [2] showed that linear network codes were sufficie@ndn terminals and sectidn 1V contains the results and proofs
to achieve the multicast capacity. The algebraic approachf@s the case when there aresources and two terminals. In
network coding proposed by Koetter and Médard [3] providegectionl Y we outline our conclusions.
simpler proofs of these results. II. NETWORK CODING MODEL

In recent years there has also been a lot of interest in theI del tth work directed h
development and usage of distributed source coding sche { our model, we represent the network as a directed grap
due to their applications in emerging areas such as sen%i = (V,E). The network contains a set of source nodes

h

r T : g
networks. Classical distributed source coding results su C V that are observing independent, discrete unit-entropy
as the famous Slepian-Wolf theorem [4] usually assume
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squrces and a set of termindls C V. Our network coding

direct link between the sources and the terminals. HowevrglpcIeI is basically the one presented in [3]. We assume that

in applications such as sensor networks, typically the sourcee"’%Ch edge in the network has unit capacity and can transmit

o N, .
would communicate with the terminal over a network. Thug,?ee ;‘Zg‘?glgggsa fllr;tregleelgozf ﬁ'zelf eferivirr;ltetljmz (hV:Z a
considering the distributed compression jointly with the ne aher capacit iter::an %e treatgd).as mu%ti e uni% capacit
work information transfer is important. Network coding for 9 pacity, P pacity

correlated sources was first examined by Ho et al. [5]. T ges (fractional capacities can be teated by choosing

. rge enough). A directed edgebetween nodes; andv; is
work of Ramamoorthy et al. [6] showed that in generérispresented a&; — v;). Thus head(e) — v; andtail(c) —

separating distributed source coding and network coding It A path between two nodes andu. is a seauence of edges
suboptimal except in the case of two sources and two termi- P W 5 vi ! qu g
.., e} such thattail(e1) = v;, head(ex) = v; and

nals. A practical approach to transmitting correlated sourc %1’;2’_' " vailles 1 b1

over a network was considered by Wu et al. [7]. Reference [ f‘?’h(eezs)i_naclllosqel;;)gj_ e _) o linear combination
. . : R

also introduced the problem dfetwork Arithmetidhat comes 9 gev; — v;),

up in the design of practical systems that combine distributga the S|gnaI§ on the incoming edges onand the source
source coding and network coding. signal atv; (if v; € S). In this paper we assume that the

In the network arithmetic problem, there are source nodag"rce nodes do not have any incoming edges from other

each of which is observing independent sources. In additigﬁqe?' If this is not the case one can always infroduce an
artificial source connected to the original source node that

This research was supported in part by NSF grant CNS-0721453. has no incoming edges. We shall only be concerned with
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networks that are directed acyclic and can therefore béetlea
as delay-free networks [3]. Lét,, (such thattail(e;) = v
and head(e;) = v;) denote the signal on thé”" edge inE
and letX; denote thej'” source. Then, we have

Y,, = Z fj.iYe, if v, € V\S, and
{ej|head(e;)=vi}
}/(ii = Z aj_,in if Vi € S,

T

]

{7]X; observed avy, }

s B B m Fig. 1. The figure on the left showsith(S] —T7) (in blue) andpath (S} —
where the coefficients;; and f;; are fromGF(2™). Note T}) (in red). The figure on the right shows that one can find a newoset

that since the graph. is directed acyclic, it is possible faress paths from S/ and S}, to T/ such that they share edges fram o 7”. The
Y., for an edgee; in terms of the sources(,’s. Suppose first intersection of the new paths is at node

that there are: sourcesX, ..., X,. If Yo, = >0 Be, 1 Xk
then we say that the global coding vector of edgeis

B, = [Beir -+ Be;n]. We shall also occasionally use the find a new set of paths from§; — 77 and S; — 77 so
term coding vector instead of global coding vector in this that they share the set of edges framto 7.

paper. We say that a node (or edgee;) is downstream of We assume that such paths have been found for all
another node; (or edgee;) if there exists a path from; (or terminals. Thus for each termindl’ there exists a
e;) to v; (or e;). corresponding; which denotes the f|rst vertex where

the pathsS] — T} and S; — T; meet. Note that the
v;’s may not be distinct. Now, consider the subgraph

In this section we state and prove the rate region for the  of G that is defined by the union of all these paths and
network arithmetic problem when there are two sources and  suppose that we call i&’. In our discussion we shall
n terminals. only be concerned with the grak.

The basic idea of the proof is the following. We show that 3) Note thatG’ is also a directed acyclic graph. Therefore a
there exist a certain set of nodes that can obtain both the numbering of the nodes exists such that if there exists a
sourcesX; and X, and find a multicast code that multicasts path between nodg andv; then: < j. We now number
the pair(Xy, X,) to these nodes. We then modify the set of  the nodes irG’ in this manner. We shall refer to the first

IIl. CASE OF TWO SOURCES AND1 TERMINALS

coding vectors so that all the terminals can reca¥er+ X» meeting point of patft] —77) and patliS; —77) under
while ensuring that the coding vectors remain valid. this new numbering as,(r,).
Theorem 1:Consider a directed acylic graph = (V, E) Lemma 1:In the graphG’ constructed as above, the fol-
with unit capacity edges, two source nodgsandS; andn  |owing properties hold for allj = 1,.. ., n.
terminal nodedl1, ..., T, such that flow(s! - O
max-flo — V(1)) = 1,
max-flow(S; —T;) > 1 foralli=1,2andj=1,...,n maX-ﬂOV\(SZ—v ( Jj):l and @)
At each source nod§;, there is a unit-rate sourc&;. The max-flow((S], S5) — Vo(T: )) —9. (3)
X,'s are independent. There exists an assignment of codipgof. Obvious by the construct|on of the grapgH. [
vectors to all edges such thatedth: = 1,...,n can recover  The previous claim implies that there exists a network code
X1+ Xo. so that the pair(X;, X,) can be multicast to each node
Before embarking on the proof of this result we define g (1) d = 1,....m using Theorens in [3] . Suppose that
modified graph that shall simplify our later arguments.  such a network code is found and the global coding vectors

1) We introduce artificial source nod&$ andS5 such that for each edge i’ are found. Let these global coding vectors
there exists a unit capacity edgé — S;. Similarly we be specified by the sg = {3, | e € E'}.
introduce artificial terminal nodes; and unit capacity =~ We now present an algorithm that modifigs so that
edgesT; — T7. Note that we are given the existence oéach terminall;,: = ,n can recoverX; + Xo. This
at least one path from; — Tj for all ¢, 4. This in turn shall serve as a proof of Theordﬂt 1. First we sort the set
implies that max- roWS’ T’) max-flow(S; —T}) = {v (Ty)s -+ »Va(T,)} tO obtain {v,,,... v, } so thaty; <
max-flow((S7, 53) — T;) = 1. - < 7,. Let the terminal node corresponding to the node

2) For each virtual termmaif’,j =1,...,n there exists a be denoted’; }(4)- As mentioned before it is possible that there
path fromS; to 77 for i = 1,2. Let us denote this by exist terminalsl; and7; such thain(7;) = «(T}). Therefore
path(S; —T}). We say that two paths intersect if theythe set ofy;’s is not dlstmct Consequently the mappifify;)
have at Ieast one node in common. For a given termirial one to many. We do not make this explicit to avoid the
T7, in _general t_hepath(S{ — T}) and path(S; — T7) notatilon becoming too complex. The steps are presented in
could intersect in many nodes. Note that they have fdgorithm .
intersect at least once since the edfje — Tj is of It is important to note that this algorithm may replace
unit capacity. Suppose that the first intersection point tee existing coding vectors assigned by the multicast code
denotedv,;. As demonstrated in Fill 1 it is possible taconstruction on some edges. We now show that the new
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Initialize demand]i] = 0,i = 1,...n; Uy, feceives(Xy, Xp). This implies that setting
for k «— 1 to n do Be = [L 1] for e € path(vy,,, — Ty(y,,,)) Wil
if demandf(+,)] == 0 then ensure thatlemand[f (yx+1)] = 1. This assignment
for e € path(v, — T}, ) do is valid since the coding vectdt 1] lies in the span
| B.=1[11]; Fw) of the coding vector space of,, .. Furthermore,
end ¢ ' there does not exist a path from, ., to any node
k .
demandf (v,)] = 1; on sz_l path(_S{ —vy,) Upath(Sy —_Uw) since the_
for m—k-+1ton do graph is acyclic. Therefore the assignment of coding
if demandf(y,,)] == 0 then vectors to the previous edges remains valid. B
if there exists gath(vq, — T}, ) Note that conversely if any of the conditions in the stateimen
then of Theoren1L is violated then there exists some terminal that
for e € path(v,, — T}(v )) do cannot obtain the value ok, + X». To see this note that
| B, =[11]; " since the graph has unit-capacity edges the max-flow between
end any pair of nodes has to be an integer. Further, if for example
demandf (y,)] = 1; max-flom(S; — Tj_) =0, then the rece?ved signal &t cannot
end depend onX;. Since, X; and X, are independentX; + X5
end cannot be computed at;.
dend IV. CASE OFn SOURCES AND TWO TERMINALS
en
end We now present the rate region for the situation when there
aren sources and two terminals such that each terminal wants

Algorithm 1: Algorithm for assigning coding vectors
so that each terminal can recover the sum of the two
sources.

to recover the sum of the sources.

To show the main result we first demonstrate that the
original network can be transformed into another network
where there exists exactly one path from each source to each

global coding vector assignment is valid and is such that ed€minal. This ensures that when network coding is performe
terminal receivesy; + Xo. on this transformed graph the gain on the path from a source

Proof of Theorenf]1. to a terminal can be specified by a monomial. By a simple

We claim that the assignment of coding vectors is vali@rgument it then follows that coding vectors can be assigned
at each stage of the algorithm and by stdge< k& < n, SO that the terminals recover the sum of the sources.
demandif (y,)] = 1. - Theorem 2:Consider a directed acylic graplix =

. Base case (k=1)Note that by the construction of’ (V, E) with unit capacity edges. There are source nodes

there exists a path from.,, to Ty(,,). The algorithm

sha

S1,855,...,5, and two terminal node%; and7, such that

Il assign coding vectdi 1] to those edges and set max-flow(S; — Tj) > 1 forall i = 1,...,n andj = 1,2.

demand[f(y1)] = 1. We only need to ensure that the

assignment is valid. To see the validity of the assignmeft the source nodes there are independent unit-rate sources
note that the graph is acyclic, therefore the coding vectol§, i = 1,...,n. There exists an assignment of coding vectors
on path(S] — v,,) and path(S5 — v,,) do not change. such that each terminal can recover the modulo-two sum of

The assignments are only done on edges downstreantti source$ ! | X;.
v,, and are therefore valid. As before we modify the grapliy by introducing virtual
Induction StepAssume that the claim is true for gll= source nodesS},i = 1,...n, virtual terminals7j,j = 1,2
1,...,k and consider stagk + 1. If for a given j, the and virtual unit-capacity edgeS; — S;,i = 1,...,n and
algorithm enters the for loop on lines 4-6, we call thd; — T},j = 1,2. Let the set of sources be denotsd=
nodev,, an active node. {S7,...,5.}. We denote the modified graph l8y. We also
1) Case 1.f there exists a path between some activéeed the following definitions. N .
node v,, in the set{v,,,...,v,} and TJ{,(%H) Definition 1: Exactly one path conditionConsider two

2)

then demand][f (yi41)] Will be set to1 at one of nodesv; andwvs such_ there is a patf? betweenv;, and va.
the earlier stages. By the inductive hypothesis, th&/e say that there exists exactly one path betwgeanduv, if
assignment is valid. there does not exist another pgi betweenv, andwv, such
Case 2If demand|f(yx11)] is still zero afterk iter-  thatP’ z». _ . _
ations of the algorithm, this implies that there does Definition 2: Minimality. Consider the directed acyclic
not exist a path between an active node graphG’ defined above, with sourcéy, ..., S/, and terminals

. . Vk+1

i.e. there does not exist a path from an active node andT; such that

to any node omath(Sy Ty, ) andpath(S, = oy fows! T/ =1vi=1,... .nandj=12 (4)

T]’c(%+l)). Therefore the coding vectors on the edges
in path(S) — TJ{.(%H)) U path(Sh — TJ{,(%H ) are  The graphG’ is said to be minimal if the removal of any
unchanged at the end of iteratibrand are such that edge fromE’ violates one of the equalities ial(4).



To show that Theoref 2 holds we first need an auxiliary ~Find the first node at whichpath(S], — T7) intersects
lemma that we state and prove. the blue subgraph and call that node. Similarly find
Lemma 2:Consider the grapi’ as constructed above with the first node at whichath(S], — T3) intersects the blue
sourcesSy, ..., S, and terminalsI] and T;. There exists a subgraph and call that node.
subgraphG* of G’ such thatG* is minimal and there exists Observe that inG}_, there has to exist aath(S, —
exactly one path frond] to 7 for i = 1,...,n andj = 1,2 T}) for somei = 1,...,n — 1 andj = 1,2 that passes
in G*. throughwu;. To see this assume otherwise. This implies
Proof. We proceed by induction on the number of sources. that u; does not lie on any path connecting one of the
« Base case = 1. In this case there is only one sour§g sources to one of the terminals. Therefore the incoming
and both the terminals need to recovér. Note that we and the outgoing edges af; can be removed without
are given the existence @fith(S; — T}) andpath(S] — violating the max-flow conditions ii{4). This contradicts
T3) in G'. In general these paths can intersect at multiple  the minimality ofG;, ;. Therefore we are guaranteed that
nodes which may imply that there exist multiple paths there exists at least one source such that there exists an
(for example) fromsS! to T{. Now, from path (S} — T}) exclusively blue path from it tay; in Gj,_;. A similar
andpath(S; —Ty) we can find the last node where these ~ statement holds for the node,. We now establish the
two paths meet. Let this last node be denotged Then statement of the lemma when there argources.
as shown in Figl]2 we can find a new set of paths from — Case 1.In Gy, there exists a path from; to

51 to T and S7 to T3 that overlap fromS’ to u; and
have no overlap thereafter. Choasé to be the union of
these new set of paths. It is easy to see thatinthere
is exactly one path fron$] to 77 and exactly one path
from S{ to T4. Moreover removing any edge fro@*

T3 such that all edges on this path have a blue
component.

First, we remove the color red from all edges on
path(S!, — T5)\path(S! —T}). Next, form a subset

would cause at least one path to not exist. of the sources denotet{“!) in the following manner.

For each sourcé!,i =1,...,n do the following.

i) If there exists a path (with edges of color red or
blue) from S/ to uy, add it to sets(#2) i,

Let G() denote the subgraph induced by

US;GS(“I) thh(S{ - ul)-

— Consider the graph obtained by removing the sub-

u, graphG(1) from Gy,.. We denote this grapfi;,.. We
claim that the max-flow conditions ii](4) continue
to hold overG,, for the set of sources\S().

T, Furthermore there still exispath(u; — T7) and

path(uy —T3) in G, .

To see this note that the max-flow conditions for

a sourceS! € S\S) can be violated only if an

edgee belonging to a path fron$] to 7;,j = 1,2

is removed. This happens only if there exists a

path frome to u; which contradicts the fact that

S! e S\S(1). Next, there still exist paths from,

to the terminals since the edges on these paths are

downstream ofu;. If any of these was removed by

the procedure, this would contradict the acyclicity of

the graph.

Note that the subgraplt:(“) contains a set of

sourcesS(“1) and a single node; such that there

exists exactly one path from each sourcesifi*) to

uy. This has to be true for the sourcesdft)\{S,}

otherwise the minimality of>’ _, would be contra-

dicted and is true foiS,, by construction.

Next, introduce an artificial sourc&, and an edge

Se — wup in Gy,.. Note that|S\S®)| < n — 2,

which means that the total number of sources in

G,, (including S,,) is at mostn — 1. Therefore the

induction hypothesis can be applied G, i.e. there

S/ S/

T T, T

Fig. 2. The figure on the left showsith (S} —T7) (in blue) andpath (S| —
T4) (in red). The figure on the right shows that one can find a newoset
paths fromS to 7] and T} such that they share edges fraf) to u; and
have no intersection thereafter.

« Induction StepWe now assume the induction hypothesis
for n — 1 sources. i.e. there exists a minimal subgraph
G;_, of G’ such that there is exactly one path from
SitoTjfori=1,...,n—1andj = 1,2. Using this
hypothesis we shall show the result in the case when there
aren sources.

As a first step color the edges in the subgréfjh ,, blue

(the remaining edges i@’ have no color). The conditions
on G’ guarantee the existence ptth(S!, — T|) and
path(S), — T4). Note that these paths may intersect
at many nodes. We preprocess them in the following
manner. Find the last node not @@;_; belonging to
both path(S!, — T{) and path(S), — T4). Suppose that
this node is denoted.. Find a new set of paths such that
they share edges froi{, to v, and call these new paths
path(S), — Ty) and path(S] — T3). Color all edges on
path(S], —T7) andpath(S; —T5) red. This would imply
that some edges have a pair of colors. Now, consider
the subgraph induced by the union of the blue and redip path from S’ to uy cannot have a (red,blue) edge sincgis the first
subgraphs that we denote,, . node where a red path intersects the blue subgraph



exists a subgraph @, . such that there exists exactlypossible to find a subgrap* of G' such that there exists
one path from(S\S)) U {S,} to each terminal. exactly one path fronf’ to Tiforalli=1,...,nandj =
Suppose that we find this subgraph. Now removk 2. Suppose that we fin@*. We will show that each terminal
S, and the edges, — u; from this subgraph and can recoved ., X; by assigning appropriate local encoding
augment it with the subgrap&(“1) found earlier. responsibilities for every node. Consider a nade G* and
We claim that the resulting graph has the propertgt I'°(v) andT(v) represent the set of outgoing edges from
that there exists exactly one path from each soureeand incoming edges into respectively. LetY, represent
to each terminal. the symbol transmitted on edge Each node operates in the
To see this note that there exists only one path fromfallowing manner.

sourceS! € S\S(1) to T/, j = 1, 2. This is because B R

even after the introduction (1) there does not Ye= e/g;(v)a x Yo for e € I%(v) ©)

exist a path fromS, to u; in this graph. Therefore )
the introduction ofG(*1) cannot introduce additional I-€- €ach node scales the symbol on each input edge by
paths betweens! € $\S(“) and the terminals. (note thata is the same for every node) and the forwards the

Next we argue for a sourcé! € S(“1). Note that SUM of the .scaled inputs on all output edges: We shall see
there exists exactly one path from to both the tha}lt the settingy = 1 will ensure that each terminal recovers
terminals so the condition can be violated only iP_i=1 Xi- To see this we examine the transfer matrix from
there exist multiple paths from! € S to u;, but e INPULSLXy ... Xy]1x, to the outpuiZy, 7, denoted\/;
the construction of7(*1) rules this out. which is of dimensiom x 1i.e. Zr, .y = [Xy ... X,,|M;.

— Case 2.In G,, there exists a path from, to Note that thei'" entry of M; corresponds to the sum of the
T/ such that all edges on this path have a blugains from all possible paths frosy to 7;. The construction

component. of G* ensures that there is exactly one such path. Therefore
the i'" entry of M; will be a non-zero monomial imv for

This case can be handled in exactly the same mangdlri = 1,...,n. Now settinga = 1 will ensure that all the

as in case 1 by removing the color red from almonomials evaluate td i.e. M; = [1 --- 1], which implies

edges omath(S, —T})\path(S!,—T3) and applying that Zr, .7 = 31" | X;. L

similar arguments fotu,. As in the previous section it is clear that if any of the

— Case 3.In Gy, there (a) does not exist a path withconditions in the statement of Theorém 2 are violated then
blue edges fromu; to T3, and (b) does not exist aeither terminall’ or 7% will be unable to findy_" | X;. For
path with blue edges from, to T7. example if max-flowX; — T1) = 0 then the received signal

at 71 cannot depend oiX;. Thus,T; cannot compute any

As shown previously; lies on some path frorf to  function that depends o ;.
T for somei andj in G, ;. In the current case there V. CONCLUSION

does not exist a blue path from to T;. Therefore  \we considered the problem of finding the rate region for
there has to exist a blue path fram to 77 in G7,_;.  the problem of communicating the modulo-2 sum of a set of
A similar argument shows that there has to exist g gependent unit rate sources to a set of terminals in the cas
blue path fromu, to 75 in G7,_,. when the underlying network can be modeled as a directed
Note that the exclusively red paths frof) tous and  4¢yclic graph with unit capacity edges. The rate region has
uy are such that they overlap until their last intersegseen presented for the cases when there are (a) two souttes an
tion point. Now, choose the desired subgraph to Beterminals, and (b) sources and two terminals. Rate regions
the union of¢7,_, and the red pathgath(S), —u1)  for arbitrary number of sources and terminals over general

andpath(S;, —uz) i.e. G}, = G, Upath(S;, —u1)U  network topologies possibly containing cycles are cuiyent
path(S;, — uz). By the induction hypothesis there nqer investigation.

exists exactly one path betweéfi,i =1,...,n—1

and Tjﬁj = 1,2. This continues to be true G,

; R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, “Networkfdénmation
since the red edges cannot be reached from tHé Flow,” IEEE Trans. on Info. Th.vol. 46, no. 4, pp. 1204-1216, 2000.

blue edges. To see that there_ is exactly one pgH) s.v.Li,R. W. Yeung, and N. Cai, “Linear Network CodifdEEE Trans.
from S/ to T{, assume otherwise and observe that on Info. Th, vol. 49, no. 2, pp. 371-381, 2003.

; / [3] R. Koetter and M. Médard, “Beyond Routing: An Algebraipproach
there is .exaCtIy one path frony, to u; by the to Network Coding,” inlEEE Infocom 2002.
construction of the red paths. Thus the only way; p. siepian and J. Wolf, “Noiseless coding of correlatedoimation

there can be multiple paths froff, to 77 is if there sources,"IEEE Trans. on Info. Th.vol. 19, pp. 471-480, Jul. 1973.

; / ; [5] T. Ho, M. Médard, M. Effros, and R. Koetter, “Network Ciod for
are multiple paths fromu; to 77, but this would Correlated Sources” IGISS 2004,

_contradict the indu_ction hypothesis since this woulg] A Ramamoorthy, K. Jain, P. A. Chou, and M. Effros, “Segiang
imply that there exists som&/,i = 1,...,n—1 that Distributed Source Coding from Network CodingZEE Trans. on Info.

; / i Th, vol. 52, pp. 2785-2795, June 2006.
has muItlpIe paths tTl' A similar argument shows [7] Y. Wu, V. Stankovi¢, Z. Xiong, and S. Y. Kung, “On pradiicdesign for

that there exists exactly one path fraf) to 7;. B joint distributed source coding and network coding,”Rroceedings of
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Proof of Theoreni]2From Lemma R we know that it is  del Garda, Italy 2005.
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