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that the GREET estimate is about the same as the default IPCC estimate for typical 
fertilizer application and runoff conditions in North America. In both cases, the input 
based emissions increases are an order of magnitude smaller than the plant based emission 
reduction estimates. Consequently, substantial net C02 reductions for an acre on both crops 
are calculated. 

Further, the C02 removed from the atmosphere is reduced by a factor of 4 when I acre 
of com replaces l acre of soybeans. 

There is considerable discussion and some uncertainty about how unused crop residues 
decompose. There are N20 emissions that the IPCC recommend estimating at 1.25 % of 
the nitrogen content of the crop residues. These emissions are relatively minor; we estimate 
the C02 equivalent emissions at 477.6 lbs/acre for com and 92.9 lb/acre for soybeans. 

Regarding the destination of carbon from decomposing crop residues, some presume 
that decomposing plant residues remain in the system, increasing carbon content of the 
soil , and functioning as fertilizer (Heller et al., 2003). Gallagher et al. (2003) review some 
data suggesting that soil carbon tends to be related to the tillage (conventional vs. no-till) 
method, but not to the residue practice (silage vs. field decomposition). Also, a recent 
simulation looks at com residues following a switch from conventional tillage to no-till 
farming (Sheehan et al., 2004, p. 126). In this case, leaving the residues appears to increase 
soil carbon in the transition to a steady state, until about 10 years after the change in tillage 
practice. But there is a saturation level. Hence, removing crop residues after 10 years of 
no-till agricultures may not deplete soil carbon. 

In subsequent analysis we assume no-till crop planting and residue removal. But residues 
probably shouldn't be removed prior to the saturation point to ensure sustainable production 
agriculture. Otherwise, residue burning would return C02 to the atmosphere that could have 
been sequestered in the soil. 

12.4 C02 Adjustment in a Changing Ethanol Industry 

The com-ethanol industry connects a major C02 user, com, to two major C02 producers, 
cars and cows. When ethanol expands, adjustments in several resource and product marke ts 
means that C02 balance may improve or deteriorate; the result depends on the extent of 
factor and product market adjustments. As the ethanol sustainability discussions move 
from existence to improvement issues, it is important to move beyond the conventional 
system boundaries of life cycle analysis. To illustrate, we consider the incrementaJ C02 
effects of a one gallon increase in ethanol production for two polar cases. In Table 12.3, 
com supply adjusts to provide input for the ethanol industry. In Table 12.4, com demand 
adjusts because the com supply is fixed. 

For estimates of the incremental C02 account in Table 12.3, land is diverted from soy­
beans to com. The C02 collection estimates from Table 12.2 are used, but magnitudes are 
scaled to correspond to a one gallon increase in ethanol supply. Hence, the lost soybean 
credit (-10.85), at the bottom of the table, is the lost C02 collection in soybean production. 
But the soybean collection estimate is scaled by the amount of soybean land that must be 
replaced with com to get one gallon of ethanol. The increase in com C02 collection is 
also scaled to a one gallon increase in ethanol. Indeed, the com credit (19.76) is derived 
from the carbon content of the com used for one gallon of ethanol, less the distillers ' grain 



Table 12.3 Incremental C02 equivalent emissions budget for corn-ethanol processing and alternative processing power configurations. corn market 
assumption: corn land replaces soybean land; new corn is used for ethanol and DG; soybean output reduction reduces cattle feed in pounds C02 
equivalent/gallon of ethanol, + for emission decrease and - for emission increase 

Natural gas heat & coal Corn stover heat & Willow heat & 
elec. Col. 1 elec. Col. 2 elec. Col. 3 Distillers' Grains Col. 4 

Fuel replacement: 
corn cedit 19.76 19.76 19.76 19.76 
ethanol consumption3 - 14.12 - 14.12 -14.12 -14.12 
gas consumption foregone4 19.63 19.63 19.63 19.63 
other production2 2.22 2 .20 2.20 2.20 
net 27.49 27.49 27.47 27.49 

Livestock emissions change 
hogs 0 0 0 0 
dairy cows - 15.88 - 15.88 -1 5.88 0 
DGcredit 9.68 9.68 9.68 9.68 
net -6.20 - 6.20 - 6.20 9.68 

Corn fertilizer 
for corn - 1.25 - 1.25 - 1 .25 -1.25 
for biomass 1 0 -0.261 -0.15 0 
net - 1.25 -1.51 -1.40 - 1.25 

Ethanol processing energy: 
stover credit 32.06 32.06 32.06 0 32.06 0 
willow credit 32.06 
stover decomposition -32.06 - 32.06 -32.06 
natural gas and coal -8.55 
stover combustion - 12.26 
willow combustion -1 1.93 
DG combustion -9.68 
net -8.55 19.80 20.13 -9.68 

Lost soybean credit - 10.85 - 10.85 -10.85 -10.85 

NET GAIN(+) or LOSS(-) 0.64 28.71 29.15 15.37 
1 includes machinery and fuel allowance. 
2 refinery emissions from gasoline production(3.8 lb /gal, COi equi) are replaced by farm diesel, machinery, insecticide, and pesticide emissions (totaling 1.64 lb/gal, C02 equi). 
3calculated using the carbon content of ethyl alcohol (52.2%) and assuming complete combustion. 
4 calculated using the carbon content of gasoline (86.3") and assuming complete combustion. 



Table 12.4 Incremental C02 equivalent emissions budget for corn-ethanol processing and alternative processing power configurations. corn market 
assumption: hog feeding reduced for all corn supply, and DC feeding to dairy cattle. No change in corn production ... in pounds C02 equivalent/gallon of 
ethanol, + for emission decrease and - for emission increase 

Natural gas heat & Corn stover heat 
coal elec. & elec Willow heat & elec. Distillers' Grains 

Fuel replacement: 
Corn credit 0 0 0 0 
ethanol consumption -1 4.12 -14.12 - 14.12 -14.12 
Gas consumption foregone 19.63 19.63 19.63 19.63 
other production2 2.20 2.20 2.20 2.20 
Net 7.71 7.71 7.71 7.71 

Livestock emissions change 
hogs 12.21 12.21 12.21 12.21 
dairy cattle -20.11 -20.11 -20.11 0 
DG credit 0 0 0 0 
net -7.90 -7.90 -7.90 12.21 

Corn fertilizer 
for corn - 1 .25 -1.25 -1.25 -1.25 
for biomass 1 0 - 0.26 -0.15 0.00 
net -1.25 -1.51 -1.40 -1.25 

Ethanol processing energy: 
stover credit 0 0 0 0 
willow credit 32.06 
stover decomposition 0 32.063 0 0 
natural gas and coal -8.55 
stover combustion -12.26 
willow combustion -11.93 
DG compustion -9.68 
Net -8.55 19.80 20.13 -9.68 

NET GAIN(+) or LOSS(-) -9.99 21.10 18.54 8.99 

1 includes machinery and fuel allowance. 
2 refinery emissions from gasoline production(3.8 lb/gal, CC>z equi) are replaced by farm deisel, machinery, insecticide, and pesticide emissions(totaling 1.64 lb/gal, CC>i equi). 
3 decomposition forgone by using biomass for power. 
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byproduct, its carbon and C02 collection (9.68). The stover credit of 32.06 is scaled to 
the 1/2.7 bushels of corn. These same C02 coUection estimates hold across all columns of 
Table 12.3, because the same crops are used regardless of the processing power 
configuration. 

C02 emissions estimates are presented for the major uses and inputs associated with 
ethanol processing. The fuel replacement and livestock emissions are the same for all 
columns. But the input emissions change significantly across power configurations. The 
net fuel replacement is a gain (27.47). It consists of the C02 collection of corn, the 
ethanol fuel burning in an automobile (-14.12), the gasoline consumption foregone 
(19.62) and other production (2.20). Other production reflects the net gain from reduced 
petroleum extraction and processing against the increase in (non-fertilizer) agricultural 
inputs. The ethanol and gasoline estimates are calculated using the carbon content, in 
effect assuming an ideal engine that bums everything completely to carbon dioxide and 
water. 

The net emissions estimate for livestock (-6.20) represents a loss. The partial credit 
from corn production, the carbon embodied in distillers' grains, is a gain (9.68). But 
the loss associated with emissions from dairy cows (-15.88) is a larger net loss. The 
dairy cow emission estimate used IPCC default emissions of each major greenhouse gas 
(carbon dioxide, methane and nitrous oxide) in North America, and conventional weighting 
procedures for conversion to carbon dioxide equivalents. 

The corn fertilizer and ethanol processing emissions vary across columns with processing 
power alternatives. The fertilizer emissions include the corn crop, and in some cases, the 
fertilizer for the biomass crop used for ethanol energy. 

Differences in emissions across power configurations are important in the net C02 

position associated with ethanol processing: 

I. The main baseline entry (col. I) for processing emissions (-8.55) reflects the natural gas 
and coal used. The stover component of corn plant collections ( +32.06) is a large credit, 
but there is a corresponding offset (-32.06) associated with stover decomposition in 
the atmosphere. So the net processing and the gas/power emissions are the same. 

2. When corn stover is the power source (col. 2), the emissions from decomposition are 
replaced with a stover combustion estimate (-12.26) from GREET. Hence, net position 
becomes a colJection instead of an emission at 19 .80. 

3. When willow crop is the power source (col. 3), the stover credit and decomposition 
are both present. Additionally, a willow credit is to account for crop growth. Finally, 
a woody crop combustion estimate from GREET is used again; the net processing is 
similar to stover, at 20.13. 

4. When distillers grain is used as the power source (col. 4), an emissions estimate based 
on the carbon content of DGs is used. The net processing change shows as a loss, but 
conceptually, it offsets the DG credit from the livestock account. 

Now look at the net gains and losses for an ethanol expansion at the bottom of 
Table 12.3. First, the Baseline net emission is a relatively small net gain of 0.62 lbs/gal, 
which suggests that ethanol does not improve emissions. However the net gains are consid­
erably larger with any of the three forms of biomass power. The stover and willow cases are 
considerably larger, near 29 lb/gal of C02. The distillers' grain power improves emissions 
moderately, about 15 lb/gal of C02. The reason for the increase with all forms of biomass 
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power is that there's an offsetting carbon collection at work with biomass power, whereas 
there's only an emission with the fossil fuel power in the baseline case. 

Notice that the net improvement with an ethanol expansion is neutral for the baseline, 
even despite a significant net reduction associated with increased livestock feeding. 1 Partly, 
this occurs because of the positive land production credit for corn. Partly, it occurs because 
of our idealized perfect engine that converts all C to C02. 

Next, consider the incremental C02 account of Table 12.4. Here, com and soybean 
production is fixed, so the component credits (corn, DG, and stover) are all zero on the 
margin. Compared with Table 3S then, a level reduction in the C02 benefit associated 
with both product markets occurs. The fuel replacement net benefit is now only 7.71. 
The livestock net emission is slightly smaller, at - 7.90, because reduced emissions from 
declining hog production and corn feeding, 12.21, replace the DG credit. Next, the soybean 
credit is excluded from Table 12.4, because there is no change in soybean production. So 
the baseline net (for col. I) is -9.99, a substantial loss. Apparently, the C02 situation 
deteriorates when the ethanol industry expands by diverting corn from hog feeding when 
it increases dairy feeding and uses fossil fuel based power. 

However, adoption of any of the biomass power options improves the net C02 situation 
regardless of whether supply or demand adjusts. For instance, the net gain improvement 
from switching to corn stover power is 28.71 - 0.64 = 28.07 in Table 12.3. About the 
same improvement, 31.09, is obtained from Table 12.4. Further, the relative ranking of the 
power options is about the same for both market situations. 

12.5 Conclusions 

We looked at some possible changes in com-ethanol (CE) industry practices that improve 
sustainability, using contributions to energy balance and global warming as the criteria. 
Our calculations suggest that moving from fossil fuel to biomass power can change the 
energy balance fraction from a moderate to a substantial contribution. Similarly adopting 
biomass power could induce a substantial improvement in the greenhouse gas contribution 
of the corn ethanol industry. On both the energy balance and global warming scores, all 
of the biomass power forms considered improved the situation, although some were better 
than others. Any or some combination of power alternatives could be included in actual 
implementations, after economic considerations such as production costs, and storage costs 
are taken into account. 

Expanding the CE industry also has the potential to improve the balance of greenhouse 
gasses. However, there is a need to expand the traditional system boundary and incorporate 

1 Consider the conven1ional system boundary and refinery/bio-refinery comparison at thc baseline. A unit of gasoline would 
emit: - 19.63 gasoline combustion 

-3.80 refinery/extraction 
- 23.43 lb/total 

A unit of ethanol would emit: - 14.12 ethanol combustion 
- 11 .44 com and ethanol production 
- 25.56 subtotal 
+8.91 land credit, com less soy 

- 16.65 
Without the land credit. ethanol emits 9.1 % more than gasoline due to higher processing emissions. With the land credit, ethanol 
emits 29 % less than gasoline. Wang uses a smaller land credit for com and a smaller combw.tion advantage for ethanol. 
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LCA into economic analysis. Then realistic adjustments of agricultural land and livestock 
markets that accompany CE industry expansion could also be included. Our exploratory 
calculations suggest that the GHG balance improves when com supply expands to accom­
modate increased ethanol processing. Also, the relative efficiency of com in photosynthesis 
is an important contributing factor when com-replacing-soybeans is the dominant supply 
adjustment. Jn contrast, the GHG balance deteriorates when com demand adjusts, because 
the supply does not make a contribution on the margin; and because increased livestock 
emissions are significant. 

Our exploratory calculations of incremental changes in GHG balance are a useful refer­
ence point for evaluating what happens when the CE expands. But the com industry may 
need to make substantial improvements before our reference level is realized. For instance, 
our analysis of residue removal assumed no till fanning and a decade-long adjustment 
period to rebuild soil carbon. Also, the nitrogen analysis assumed that the IPCC reference 
levels of ferti lizer runoff occur. But there may also be potential for improvement far beyond 
the reference level. Perhaps livestock emissions can be reduced below the IPCC default 
levels. Alternatively, the CE industry could move to reduce the connection to the livestock 
industry, by using high starch com varieties that reduce the proportion of DGs that are 
produced, or by using the DGs as a source of processing power. 
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