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ABSTRACT 

Today many high performance computers are collections of shared memory compute 

nodes with each compute node having one or more multi-core processors. When writing 

parallel programs for these machines, one can use pure MPI or one can use both MPI and 

OpenMP. Since OpenMP threads are lighter weight than MPI processes, one would expect 

that hybrid approaches will achieve better performance and scalability than pure MPI. In 

practice this is not always the case. This work investigates the performance and scalability of 

pure MPI versus hybrid MPI+OpenMP for Jacobi iteration and for a 3D FFT on the Cray 

XT5. 



 1 

 

CHAPTER 1. GENERAL INTRODUCTION 

1.1 Introduction 

Multiprocessor systems are constantly being improved to meet growing demand for greater 

computational power. In order to take advantage of these powerful systems, various 

programming models have been developed, ranging from message-passing to partitioned 

global-address space models.  Many factors are involved into a complicated process of 

developing efficient programs for multiprocessor systems. This work investigates some 

aspects of hybrid programming approaches. 

The main part is dedicated to multi-core programming. It compares message-passing 

(MPI) and hybrid (MPI + OpenMP) approaches. Two algorithms are chosen to be 

implemented for each of these approaches: the Jacobi Iteration and a 3D FFT. The 

performance and scalability of these codes are investigated on the CrayXT5 multi-core 

machine. 

1.2 Thesis organization 

This thesis is organized as three chapters. 

Chapter 1, or General Introduction, gives an overview of the main part of this thesis and 

its structure. 

Chapter 2 presents modified paper “Performance analysis of pure MPI versus 

MPI+OpenMP for Jacobi Iteration and a 3D FFT on the Cray XT5” that has been published 

in Cray User Group conference, 2010. The author of this thesis has developed the Jacobi 

Iteration and the 3D FFT code for this research, performed major part of the experiments, 

and participated in discussions and the preparation process of the paper. 
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Chapter 3 contains General Conclusions for this work to summarize the results of two 

different parts of this thesis. 
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CHAPTER 2. PERFORMANCE ANALYSIS OF PURE MPI VERSUS 

MPI+OPENMP FOR JACOBI ITERATION AND A 3D FFT ON THE 

CRAY XT5 

Modified from a paper published in  

Cray User Conference 2010 Proceedings 

 

Glenn Luecke, Olga Weiss, Marina Kraeva,  

James Coyle, James Hoekstra,  

Iowa State University’s High Performance Computing Group 

2.1 Abstract 

Today many high performance computers are collections of shared memory compute nodes 

with each compute node having one or more multi-core processors. When writing parallel 

programs for these machines, one can use pure MPI or various hybrid approaches using MPI 

and OpenMP. Since OpenMP threads are lighter weight than MPI processes, one would 

expect that hybrid approaches will achieve better performance and scalability than pure MPI. 

In practice this is not always the case. This paper investigates the performance and scalability 

of pure MPI versus hybrid MPI+OpenMP for Jacobi iteration and for a 3D FFT on the Cray 

XT5. 

2.2 Introduction 

Since fast parallel execution is a critical requirement for many scientific applications, it is 

important to parallelize using methods that achieve the highest possible performance.  In the 

past, using the MPI [1] passing library gave the best possible performance for distributed 

memory parallel computers.  Today, most high performance computers, including the Cray 
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XT5, are a collection of shared memory nodes interconnected by a communication network 

for message passing.  This architecture allows one to parallelize applications using either 

only MPI or using a combination of MPI and OpenMP [2, 3].  Programming with both MPI 

and OpenMP is often called “hybrid” programming, see [3, 4].  Numerous papers have been 

written, e.g. [4, 5, 6, 7], comparing the performance of various applications using pure MPI 

and MPI+OpenMP.  The purpose of this paper is to investigate the performance of pure MPI 

versus MPI+OpenMP for Jacobi Iteration and for a 3D FFT on the Cray XT5. 

The Cray XT5 has been designed for maximum performance and scalability [8] with each 

compute node consisting of two 2.4 GHz AMD Istanbul Opteron processors (often referred 

to as “sockets”) with each processor having 6 cores and a 6 MB shared L3 cache.  Thus, each 

compute node is a cache coherent Non-Uniform Memory Access (ccNUMA) node so that 

memory accesses from one socket to the memory of the other socket will be slower than 

memory accesses to the socket’s local memory [4].  Therefore, to achieve maximum 

performance on a ccNUMA node, the method of parallelization should use memory accesses 

local to the executing socket.  When an application is parallelized using MPI with one MPI 

process per socket instead of 1 MPI processes per node, memory accesses are local to the 

executing socket since all data is private to the executing MPI process, assuming the MPI 

process is not moved from one socket to another during execution.   

When running an OpenMP program on a ccNUMA node, data is normally distributed 

using “first touch”, i.e. the data will reside in the memory of the socket where the data is first 

used.  The primary method of parallelization in OpenMP is the parallelization of loops.  Loop 

iterations are scheduled for execution among threads according to the scheduling method 

specified in the OpenMP program, i.e. static, dynamic or guided (a “chunksize” can be 
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specified for each of these options).  When an OpenMP program is executed on more than 

one socket, using dynamic or guided schedule will lead to the data distribution performance 

problem due to non-local data accesses.  When an OpenMP program is executed on a single 

socket instead of on multiple sockets, then the data distribution performance problem goes 

away and one is free to use any of the scheduling options without a performance penalty due 

to non-local data accesses.  The programming environment for the Cray XT5 allows the 

scheduling of MPI programs with one or more MPI processes for each socket and thus 

guaranteeing local memory accesses for the OpenMP in the hybrid program.  Of course, 

performance of an application involves many different factors and data distribution on 

ccNUMA nodes is only one of these factors. 

2.3  The Jacobi Iteration  

The Jacobi iteration used in this paper is based on the description of the Jacobi iteration 

found in chapter 2 of volume 1 of [1] that uses the mpi_sendrecv routine for parallelization.  

Data is distributed using the 1D block partitioning shown in Figure 2.4 on page 58.  This 

Jacobi iteration comes from solving the 2D Laplace equation in a rectangle with values of the 

solution known on the four boundaries.  

Let p be the number of MPI processes used and m = n/p.  For simplicity, we assume p 

divides n evenly.  Let “dp” be mpi_double_precision, “rank” be the rank of the executing 

MPI process and let “left”/”right” be the MPI process to the left/right of the executing MPI 

process [1, p66].  The following is the Fortran code segment of the MPI parallelization of the 

Jacobi iteration.   Notice there are stride one array accesses in the innermost loop.   The time 

reported is the maximum of the times for each MPI process. 



 6 

 

!  The MPI Jacobi Iteration 

call mpi_barrier(mpi_comm_world, ierror) 

t = mpi_wtime() 

do iter = 1, niter 

     do j = 1, m 

          do i = 1, n 

               B(i,j) = 0.25d0*(A(i-1,j)+A(i+1,j) + A(i,j-1) +A(i,j+1)) 

           enddo 

     enddo 

     do j = 1, m 

         do i = 1, n 

              A(i,j) = B(i,j) 

          enddo 

     enddo 

     call mpi_sendrecv(B(1,m), n, dp, right, tag, A(1,0), n, & 

                   dp, left, tag, mpi_comm_world, status, ierror) 

     call mpi_sendrecv(B(1,1), n, dp, left, tag, A(1,m+1), n, & 

            dp, right, tag, mpi_comm_world, status, ierror) 

enddo 

time = mpi_wtime() - t 

call mpi_barrier(comm, ierror)  

call mpi_reduce(time, max_time, 1, dp, mpi_max, 0, &    

                           comm,ierror) 

 

Notice that the MPI communication exchanges vectors of length n for each MPI process.  

Thus, ignoring contention on the communication network, the wall-clock time to perform the 

MPI communication should be independent of the number of MPI processes used. 

The following describes version 1 of the hybrid Jacobi iteration.  Notice that a parallel 

region is created for each iteration and that the MPI communication is performed outside the 

parallel region.  A and B must be declared as shared since they are both needed for the MPI 

communication outside the parallel region. 

!  Version 1:  hybrid Jacobi iteration  
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do iter = 1, niter 

!$omp  parallel shared(A, B, m)  private(i, j) 

!$omp  do schedule(runtime) 

      do j = 1, m 

          do i = 1, n 

               B(i,j) = 0.25d0*(. . .) 

          enddo 

      enddo 

!$omp  end do 

!$omp  do schedule(runtime) 

             do j = 1, m 

                  do i = 1, n 

                       A(i,j) = B(i,j) 

                  enddo 

             enddo 

!$omp  end do 

!$omp  end parallel 

     call mpi_sendrecv(B(1,m), n, dp, ..., A(1,0), n, dp,...) 

     call mpi_sendrecv(B(1,1), n, dp, ..., A(1,m+1), n, dp, ...) 

enddo 

 

Another way to write the hybrid program is to create a single parallel region that contains 

all iterations including all MPI communication. Since the MPI communication is within a 

parallel region but not from multiple threads, one should call mpi_init_thread as shown 

below and the environment variable MPICH_MAX_THREAD_SAFETY should be set to 

‘serialized’. 

Since the A = B loop does not change the values of B and does not involve the 0 and m+1 

columns of A, it is okay to use the nowait clause on the second parallel loop.  This should 

increase performance when using the !$omp single directive immediately following the loop.  

!   Version 2:  hybrid Jacobi Iteration 

  call mpi_init_thread(mpi_thread_serialized, provided, ierror) 

    . . . 
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!$omp  parallel shared(A, B, m) private(i, j)  

do iter = 1, niter 

!$omp  do schedule(runtime) 

             do j = 1, m 

                 do i = 1, n 

                      B(i,j) = 0.25d0*(. . .) 

                 enddo 

             enddo 

!$omp  end do 

!$omp  do schedule(runtime) 

             do j = 1, m 

                 do i = 1, n 

                     A(i,j) = B(i,j) 

                 enddo 

            enddo 

!$omp  end do nowait 

!$omp  single 

            call mpi_sendrecv(B(1,m), n, dp, ..., A(1,0), n, dp,...) 

            call mpi_sendrecv(B(1,1), n, dp, ..., A(1,m+1), n, dp,...) 

!$omp  end single ! implicit barrier 

enddo 

!$omp  end parallel 

 

Since using private instead of shared variables will sometimes increase performance, we 

wrote version 2 of the hybrid Jacobi with B private (using only the size needed for each 

thread to conserve memory).  The performance of the private B version was about the same 

as the shared B version so we only present performance results when B is shared. 

Notice that the two calls to mpi_sendrecv are independent of each other and therefore can 

be executed in parallel.  This can be accomplished using the !$omp sections directive as 

shown below.  To execute version 3 of the hybrid Jacobi, one must link with the thread safe 

version of the MPICH2 library, libmpich_threadm; one must call mpi_init_thread as shown 
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below and the environment variable MPICH_MAX_THREAD_SAFETY must be set to 

‘multiple’. 

!  Version 3:  hybrid Jacobi Iteration 

  call mpi_init_thread(mpi_thread_multiple, provided, ierror) 

. . . 

!$omp  parallel shared(A, B, m) private(i, j) 

do iter = 1, niter 

!$omp  do schedule(runtime) 

             do j = 1, m 

                 do i = 1, n 

                      B(i,j) = 0.25d0*(. . .) 

                  enddo 

             enddo 

!$omp  end do 

!$omp  do schedule(runtime) 

             do j = 1, m 

                 do i = 1, n 

                      A(i,j) = B(i,j) 

                 enddo 

             enddo 

!$omp  end do nowait 

!$omp  sections 

!$omp  section 

             call mpi_sendrecv(B(1,m), n, dp, ..., A(1,0), n, dp,...) 

!$omp  section 

             call mpi_sendrecv(B(1,1), n, dp, ..., A(1,m+1), n, dp,...) 

!$omp end sections ! implicit barrier 

enddo 

!$omp  end parallel 

2.4  Jacobi Iteration Performance Results  

All runs were made stand alone on Cray’s internal XT5 named “koi” and the minimum of 10 

trials is reported.   Since the XT5 used for this paper had Istanbul processors, the “xtpe-

istanbul” module was loaded.  The problem size, n, was taken to be 24*1024, i.e. large 
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enough to be interesting, small enough so the problem would fit into the memory of two 

nodes and a multiple of 12 so all 12 cores on each node would have the same amount of 

computation.  The number of OpenMP threads used for the hybrid programs was always 

equal to the number of cores available to each MPI process.  For example, when using 2 MPI 

processes per node, each MPI process used 6 OpenMP threads.  The number of iterations, 

niter, was taken to be 300 so that the total time for all iterations could be accurately measured 

(with niter=300, there was little variation in timings).  The following options were used on 

the aprun command: 

 The “-cc cpu”  option was used to “bind processing elements to CPUs”, i.e. to bind MPI 

processes and OpenMP threads to cores.  This is sometimes called “CPU affinity”. 

 The “-ss” option was used to ensure processing elements only allocate memory local to 

its assigned NUMA node (i.e. socket).  This is sometimes called “memory affinity”. 

 The “-N #” option was used to indicate the number, #, of MPI processes for each 

compute node. 

 The “-S #” option was used to indicate the number, #, of MPI processes per socket. 

 The “-n #” option was used to indicate the number, #, of MPI processes used when 

executing the application. 

 The “-d #” option was used to indicate the number, #, of OpenMP threads used for each 

MPI process. 

All programs were run using the PGI compiler.  To be able to run the hybrid programs, it 

was necessary to setenv OMP_STACKSIZE 1G.  The following options were used for the 

PGI compiler: 

 “-mp=nonuma -fast” compiler options were used for hybrid programs  
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 “-fast” was used for pure MPI programs. 

 

MPI time = 149.07     

hybrid 1 dynamic 
dynamic 

1024 
static guided 

1 MPI proc/node 394.35 278.12 222.65 253.11 

2 MPI proc/node 220.01 148.38 148.57 148.13 

4 MPI proc/node 221.30 147.55 149.08 148.22 

6 MPI proc/node 185.78 147.24 148.34 148.01 

hybrid 2     

1 MPI proc/node 390.74 252.37 221.21 257.42 

2 MPI proc/node 219.04 148.37 147.70 147.99 

4 MPI proc/node 220.21 148.05 147.45 148.54 

6 MPI proc/node 182.98 148.25 147.82 148.34 

hybrid 3     

1 MPI proc/node 394.33 235.91 220.10 250.74 

2 MPI proc/node 219.93 148.61 148.31 148.54 

4 MPI proc/node 229.26 147.73 148.24 149.63 

6 MPI proc/node 186.20 149.75 148.06 150.34 

 

Table 1. Jacobi iteration timings in seconds for 2 nodes. 

Table 1 shows timings in seconds using two nodes for the pure MPI, hybrid 1, hybrid 2 

and hybrid 3 programs using various numbers of MPI processes per node and various 

scheduling options.  Notice that 1 MPI process per node gave poor performance results.  This 

was expected because of the ccNUMA architecture of each node.  Notice that dynamic 

scheduling gave poor performance.  This is likely due to the fact that the default chunksize is 

1.  Chunksize=1024 gave good performance; however, the problem is that the optimum 

chunksize will vary depending on the problem size and the number of nodes used.  For this 

reason, the scalability comparisons in table 2 only use the static and guided scheduling 

options.  Notice that the pure MPI and all hybrid methods with at least 1 MPI process/socket 

and using static and guided scheduling performed about the same.  Because of this the 

scalability comparisons were done only using 1 MPI process/socket.  
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 The time spent in the MPI communication portion of the pure MPI program was 

measured by inserting a call to mpi_barrier before the two calls to mpi_sendrecv’s, and then 

timing only these MPI routines.  These timings showed that only about 0.2% of the total time 

was spent in MPI communication.   Since the communication time is independent (ignoring 

switch contention) of the number of nodes used, it does not scale at all.  However, the 

communication time is so small that its lack of scalability should have little effect for the 

Jacobi iteration up to 64 nodes (64*12=768 cores).   Looking at the MPI program, one would 

expect the computational time to drop by a factor of two each time the number of cores is 

doubled.  Table 2 confirms the near perfect scalability for the pure MPI program and for 

hybrid programs using static and guided scheduling for this problem size up to 64 nodes.  

Table 2 also shows that the hybrid programs perform about the same as the pure MPI 

program from 2 nodes up to 64 nodes when using 2 (and 4) MPI processes per node. 
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Nodes MPI 
static 

hybrid 1 hybrid 2 hybrid 3 

2 149.07 148.57 (149.08)  147.70 (147.45) 148.31 (148.31) 

4 74.96 75.07 (74.22) 74.25 (73.93) 75.18 (75.21) 

8 37.65 37.42 (37.41) 37.01 (37.14) 37.34 (37.66) 

16 18.94 18.88 (18.74) 18.68 (18.92) 18.76 (19.53) 

32 9.37 9.58 (9.67) 9.65 (9.48) 9.51 (9.66) 

64 4.91 4.98(4.91) 4.95(4.97) 4.91 (5.09) 

  
guided 

hybrid 1 hybrid 2 hybrid 3 

2 149.07 148.13 (148.22) 147.99 (148.54) 148.54 (149.63) 

4 74.96 74.65 (74.51) 74.23 (74.06) 75.22 (75.59) 

8 37.65 37.61 (37.52) 37.61 (37.37) 37.76 (38.20) 

16 18.94 19.16 (18.98) 19.09 (18.91) 19.18 (19.40) 

32 9.57 9.85 (9.65) 9.87 (9.71) 9.73 (9.96) 

64 4.91 5.20 (5.11) 5.15 (5.11) 5.05 (5.29) 

 

Table 2. Jacobi iteration timings in seconds  

using 2 (and 4) MPI process/node for hybrid programs. 

We experimented with using less than six cores on the sockets and found that with a fixed 

number of nodes and for a fixed problem size, it is most efficient to utilize all six cores for 

each socket. 

Notice that when using the hybrid Jacobi with 2 MPI processes per node instead of 12 in 

the pure MPI Jacobi, MPI communication decreases by a factor of 6.  To take advantage of 

this fact we explored a rectangular Jacobi iteration where the MPI communication will be 

about 25% of the total time.  Instead of the 2-dimensional arrays A and B being square, we 

made them rectangular of sizes n1 by n2 where n1*n2 = n*n so that the number of operations 

performed would be the same as in the above example with n = 24*1024.  Table 3 presents 

the performance data when n1 = 24*1024*256 and n2 = 24*4 using 2 nodes.  Notice that for 
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this rectangular Jacobi iteration, all hybrid versions outperform the pure MPI with hybrid 3 

with static scheduling giving a speedup of 1.17 over the pure MPI version. 

 

MPI = 279.92 time in seconds 
Speedup = 

MPI/hybrid 

hybrid 1  ( static ) 258.12 1.08 

hybrid 1  (guided) 259.08 1.08 

hybrid 2  ( static ) 253.80 1.10 

hybrid 2  (guided) 252.16 1.11 

hybrid 3  ( static ) 239.79 1.17 

hybrid 3  (guided) 241.21 1.16 

 

Table 3. Rectangular Jacobi iteration timings with 2 nodes using  

2 MPI process/node for hybrid. 

2.5 The 3D FFT 

Fast Fourier Transform [9] is widely used in many engineering and scientific applications.  

The 3D FFT presented in the paper is a straightforward parallel implementation of the 3D 

FFT formula (1) for a problem size n*n*n that calls multiple 1D FFTs.   
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Let p be the number of MPI processes.  Let m = n/p and assume that p divides n evenly 

so that we can use mpi_alltoall instead of mpi_alltoallv for the global transpose portion of the 

FFT. Let x and y be double complex, one-dimensional arrays of size n*n*m where x is the 

input data and the output data is stored in y in normal form.  

One can perform multiple 1D FFTs by calling ZFFT1D from AMD’s Core Math Library 

within a loop or one can make a single call to ZFFT1M().  We tried both methods and found 
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that the timings were the same within the accuracy of our timings, so we used ZFFT1M to 

simplify the program. 

The following describes the hybrid program used for this study.  The pure MPI program 

was obtained by compiling the hybrid program without OpenMP support.  Notice that there 

are 8 loops.  Loops 1, 3 and 6 each perform m*n 1D FFT’s and loops 2, 4, 5, 7 and 8 all 

rearrange data in x and y.  We selected the order of the loops based on stride with the 

smallest stride for the inner most loop and the largest stride for the outer most loop.    

However, it was not obvious how to arrange the loops for loop 4, so we experimented and 

measured times.  Parallelizing loop 4 with OpenMP using dynamic scheduling on the j loop 

instead of the k loop dropped the time from 9.4 seconds to 4.7 seconds when using 4 nodes, 

so we took the outer loop to be the j loop.  Experiments for loops 2, 4, 5, 7 and 8 were also 

performed to determine if loop collapsing and specified scheduling would help performance.  

The cases where this helped performance are indicated in the pseudo-code below.  We tried 

fusing loops 1, 2 and 3 in the MPI program and found there was no increase in performance.  

We also tried to do loop collapsing for the 1D FFT loops and  found there was no 

performance improvement.  Based on our experiments, the version below performs the best. 

! hybrid 3D FFT  

. . . 

integer,parameter :: n = 12*128 

double complex,allocatable :: x(:), y(:) 

call mpi_init_thread(mpi_thread_multiple, provided, ierror) 

call mpi_comm_size(mpi_comm_world, p, ierror) 

m = n/p  !  we assume p divides n evenly 

allocate(x(0:n*n*m-1), y(0:n*n*m-1) 

             . . . 

call mpi_barrier(comm, ierror) 

t = mpi_wtime() 
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!$omp  parallel shared(x, y, m) private(i, j, k, comm)  

!$omp  do schedule(runtime) ! LOOP 1:  m*n 1D FFTs 

             do k = 0, m-1 

                 call ZFFT1M(-1, n, n, x(k*n*n), comm, info) 

             enddo 

!$omp  do schedule(guided) collapse(2) ! LOOP 2:  transpose 

             do k = 0, m-1 

                  do j = 1, n-1 

                       do i = 1, n-1 

                            y(i + j*n + k*n*n)  =  x(j + i*n + k*n*n) 

                       enddo 

                  enddo 

             enddo 

!$omp  do schedule(runtime) !  LOOP 3:   m*n 1D FFTs 

             do k = 0, m-1 

                  call ZFFT1M(-1, n, n, y(k*n*n), comm, info) 

             enddo 

!$omp  do schedule(dynamic) LOOP 4:  transpose 

             do j = 0, m-1 

                 do k = 0, n-1 

                      do i = 0, n-1 

                           x(i+j*m+k*n*m)  =  y(k+j*n+i*n*n) 

                      enddo 

                 enddo 

             enddo 

!$omp  single 

         call mpi_alltoall(x, n*m*m, mpi_double_complex, y, & 

         n*m*m, mpi_double_complex, mpi_comm_world, ierror) 

!$omp  end single ! implicit barrier 

!$omp  do schedule(runtime) !  LOOP 5:  rearrange data  

             do k = 0, m-1 

                  do j = 0, n-1 

                      do ip = 0, p-1 

                           do i = 0, m-1 

                                x(i + ip*m + j*n + k*n*n)  =  & 

                                                       y(i + j*m + (ip*m+k)*m*n) 
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                            enddo 

                         enddo 

                   enddo 

             enddo             

!$omp  do schedule(runtime) ! LOOP 6:  m*n 1D FFTS 

             do k = 0, m-1 

                  call ZFFT1M(-1, n, n, x(k*n*n), comm, info) 

             enddo 

!$omp  do schedule(guided) collapse(2) ! LOOP 7: transpose 

             do j = 0, m-1 

                 do k = 0, n-1 

                      do i = 0, n-1 

                           y(i + j*n + k*m*n)  =  x(k + i*n + j*n*n) 

                      enddo 

                  enddo 

             enddo 

!$omp  single 

       call mpi_alltoall(y, n*m*m, mpi_double_complex, x, & 

         n*m*m, mpi_double_complex, mpi_comm_world, ierror) 

!$omp  end single ! implicit barrier 

!$omp  do schedule(dynamic) collapse(3) ! LOOP 8: 

                                                                      !  rearrange data 

            do k = 0, m-1 

                do ip = 0, p-1 

                     do j = 0, m-1 

                         do i = 0, n-1 

                              y(i + j*n + ip*n*m + k*n*n)  =  & 

                                                        x(i + j*n + (ip*m+k)*m*n) 

                          enddo 

                     enddo 

               enddo 

              enddo 

!$omp   end parallel 

 time = mpi_wtime() – t 

 call mpi_barrier(comm, ierror)  

 call mpi_reduce(time, max_time, 1, dp, mpi_max, 0, comm, ierror) 
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2.6 Performance Results for the 3D FFT  

All runs and timings were made as was done for the Jacobi iteration, i.e. the minimum of 10 

trials is reported.   As was done for the Jacobi iteration, the pure MPI program was obtained 

by compiling the hybrid program without OpenMP support. Since each node has 12 cores, 

the problem size, n, should be a multiple of 12 so that all cores will have the same amount of 

computation.  So we could compare hybrid and pure MPI performance using 4, 8, 16, 32 and 

64 nodes, we chose the largest problem that could be run on 4 nodes of the Cray XT5 we 

used, and also could be run on 64 nodes.   n = 12*128 satisfied these conditions. 

Notice that when using the hybrid FFT with 2 MPI processes per node instead of 12 in 

the pure MPI FFT, there are 6 times fewer processes calling mpi_alltoall, but the message 

size is 36 times greater.  From this it follows that the total amount of data sent is the same.  

The effects of this are presented in tables 4, 5 and 6. 

Table 4 gives performance comparisons in seconds for 4 nodes using 2, 4 and 6 MPI 

processes per node when using dynamic, static or guided scheduling for those loops where 

the scheduling is not specified.  Notice that using 4 MPI processes/node (2 per socket) gives 

better performance than 2 MPI processes/node (1 per socket).   Also notice that the data for 1 

MPI process/node is missing.  This is because the message size in this case is over 2 GB and 

the MPI on the XT5 currently has a limit of 2 GB for the message size.  We were able to run 

with 1 MPI process/node when using 8 or more nodes.  Times were much worse when 

compared with 2 or 4 MPI processes/node. 



 19 

 

 

MPI time = 65.61    

hybrid dynamic static guided 

2 MPI proc/node 58.98 58.19 58.18 

4 MPI proc/node 57.85 56.94 57.71 

6 MPI proc/node 69.46 69.61 69.08 

 

Table 4. 3D FFT timings in seconds for 4 nodes. 

Table 5 presents times with 1 and 2 MPI processes/socket (2 and 4 MPI processes/node) 

using 4 nodes to 64 nodes so scalability can be evaluated for both the pure MPI and hybrid 

3D FFTs.  Notice the hybrid performs faster than pure MPI for 4 (13% faster), 32 (19% 

faster) and 64 (25% faster) nodes and the performance is about the same for 16 nodes.  The 

performance using 2 MPI processes/socket is faster than 1 MPI process/socket for 4, 8 and 16 

nodes and slower for 32 and 64 nodes.  Both the pure MPI and hybrid programs scaled well.  

The time spent in the two calls to mpi_alltoall for 4, 8, 16, 32 and 64 nodes ranged from 

about 60% to 70% of the total time. 

Nodes MPI 

hybrid with 2 MPI proc/node 

(4 MPI proc/node) 

dynamic static guided 

4  65.61 58.98  (57.85) 58.19  (56.94) 58.18  (57.71) 

8  31.95 35.14  (34.06) 35.09  (33.94) 34.63  (34.14) 

16  16.93 16.94  (15.42) 16.73  (15.29) 16.78  (15.44) 

32  8.99 7.28  (8.07) 7.26  (7.96) 7.28  (8.06) 

64  5.28 3.95  (4.53) 3.92  (5.51) 3.92 (4.51) 

 

Table 5. 3D FFT with 2 (and 4) MPI process/node for hybrid. 
 

2.7 Comparison with the HPC Challenge 3D FFT Benchmark 

In this section we compare the performance of the 3D FFT presented in section 4 with the 3D 

FFT from the HPC Challenge (HPCC) Benchmarks (pzfft3d.f) written by Daisuke Takahashi 

at the University of Tsukuba in Japan [10, 11].  This program includes blocking for cache to 



 20 

 

increase performance. The experiments reported in [10] show that the blocking for cache 

nearly doubled the performance compared with the performance of a corresponding FFTW 

routine on a cluster in Japan.  Reported performance results in [10] comparing the hybrid and 

pure MPI programs showed that sometimes the hybrid outperformed the pure MPI program 

and sometimes the pure MPI program outperformed the hybrid program.   Timings were 

performed as was done throughout this paper, i.e. reported times are the minimum of 10 

trials. 

Several changes to the HPCC FFT program were made so it could run for n = 12*128.  

Since this program blocks for cache, we set the cache size to 512 KB, the size of the L2 

cache on the Cray XT5 (there was no improvement in performance when the cache size was 

set to 256 KB). The HPCC hybrid FFT does not specify any scheduling so default scheduling 

is done (likely static).  

Table 6 shows timing comparisons between the FFT presented in this paper and the 

HPCC FFT using 1 MPI process/socket and n = 12*128.  For both FFT’s, the pure MPI 

program was obtained from the hybrid program by compiling without OpenMP support.  

This guarantees that the MPI program uses the same algorithm as the hybrid program.  The 

pure MPI HPCC FFT performs from 5% to 12% faster than the MPI FFT presented in this 

paper and both the hybrid FFT’s perform nearly the same.  The hybrid FFT’s performed 

better than the pure MPI FFT’s for 32 and 64 nodes and performed worse for 4, 8, and 16 

nodes.  Notice that the hybrid and pure MPI FFT’s presented in the paper both performed 

well compared with the hybrid and pure HPCC FFT’s even though there was no blocking for 

cache.  The good performance of the hybrid 3D FFT presented in this paper is likely due to 
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the careful selection of loop ordering, thread scheduling and loop collapsing that was not 

done for the HPCC FFT. 

Nodes HPCC MPI 
FFT MPI 

(speedup) 

HPCC 

hybrid 

FFT hybrid 

(speedup) 

4 57.57 65.61 (0.88) 61.87 58.18 (1.06) 

8 29.65 31.95 (0.93) 35.86 34.63 (1.04) 

16 15.47 16.93 (0.92) 16.87 16.73 (1.01) 

32 8.43 8.99 (0.94) 7.31 7.26 (1.01) 

64 4.71 5.28 (0.89) 3.96 3.92 (1.01) 

 

Table 6. Comparing the performance of the HPCC FFTs with the FFT 

 presented in section 3.5 using 2 MPI process/node. 

2.8 Conclusions 

The purpose of this study was to compare the performance of a pure MPI program with the 

performance of a hybrid program for the Jacobi iteration and for a 3D FFT on the Cray XT5.  

We started with an efficient MPI parallelization of the Jacobi iteration and a 3D FFT and 

then developed an efficient OpenMP version of the MPI program.  Compiling the hybrid 

program without OpenMP support produced the original MPI program.  For the Jacobi 

iteration, three hybrid versions are presented and their performance compared with the pure 

MPI program.  When using the square Jacobi, all three of the hybrid programs perform 

nearly the same as the pure MPI for 2, 4, 8, 16, 32 and 64 nodes using 1 and 2 MPI process 

per socket.  When using a rectangular region for 2 nodes, hybrid version 3 out-performed the 

pure MPI program by about 17%.  The pure MPI and all of the hybrid programs scaled well 

for the square Jacobi iteration.   

For the 3D FFT, we used a standard algorithm for the MPI program and then developed 

an efficient OpenMP parallelization by carefully selecting the ordering of loops, loop 

scheduling and loop collapsing.  The hybrid program gave the best performance using 4, 32 
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and 64 nodes but did not perform as well as the pure MPI program for 8 and 16 nodes.   

Sometimes using 2 MPI process/socket gave a little better performance than using 1.  The 

performance of our FFT was then compared with the performance of the cache blocking, 3D 

FFT from the HPC Challenge Benchmarks.   The FFT presented here did not block for cache 

yet achieved nearly the same performance as the HPC Challenge FFT. 

Experiments showed that for both Jacobi iteration and for the 3D FFT, it was most 

efficient to use all 12 cores on the compute nodes for the pure MPI program.  Our 

experiments also showed that using 1 MPI process per node on a CC-NUMA compute node 

does not give good performance.  Best performance for the hybrid programs considered in 

this paper were achieved using either 1 or 2 MPI processes per socket. 
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CHAPTER 3. GENERAL CONCLUSIONS 

This thesis studies performance comparison of pure MPI and MPI+OpenMP programming 

paradigms. 

The performance of a pure MPI program has been compared with the performance of an 

MPI+OpenMP for the Jacobi Iteration and a 3D FFT on the Cray XT5. Different 

implementations of these algorithms have been developed and run using different numbers of 

processes/threads. The results are reported in numerous tables.  The performance results are 

discussed in details. 
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