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Abstract

Heterosis, or hybrid vigor, is the enhancement of the phenotype of hybrid progeny
relative to their inbred parents. Heterosis is extensively used in agriculture, and the
underlying mechanisms are unclear. To investigate the molecular basis of phenotypic
heterosis, researchers search tens of thousands of genes for heterosis with respect to
expression in the transcriptome. Difficulty arises in the assessment of heterosis due
to composite null hypotheses and non-uniform distributions for p-values under these
null hypotheses. Thus, we develop a general hierarchical model for count data and a
fully Bayesian analysis in which an efficient parallelized Markov chain Monte Carlo
algorithm ameliorates the computational burden. We use our method to detect gene
expression heterosis in a two-hybrid plant-breeding scenario, both in a real RNA-
seq maize dataset and in simulation studies. In the simulation studies, we show our
method has well-calibrated posterior probabilities and credible intervals when the
model assumed in analysis matches the model used to simulate the data. Although
model misspecification can adversely affect calibration, the methodology is still able to
accurately rank genes. Finally, we show that hyperparameter posteriors are extremely
narrow and an empirical Bayes (eBayes) approach based on posterior means from the
fully Bayesian analysis provides virtually equivalent posterior probabilities, credible
intervals, and gene rankings relative to the fully Bayesian solution. This evidence
of equivalence provides support for the use of eBayes procedures in RNA-seq data
analysis if accurate hyperparameter estimates are obtained.

Keywords: hierarchical model, graphics processing unit, CUDA, negative-binomial, empir-
ical Bayes, hybrid vigor

∗Contact the corresponding author at niemi@iastate.edu.

1



1 Introduction

Heterosis, or hybrid vigor, is the biological phenomenon in which hybrid progeny surpasses

each of its inbred parents with respect to some characteristic. Ever since Darwin (1876)

documented heterosis, the term has usually referred to traits at the phenotypic level, and

phenotypic heterosis has long been used to enhance crops and livestock. For example, one

well-known maize hybrid described by Hallauer & Miranda (1981) and Hallauer et al. (2010)

has taller, faster-growing stalks with more grain yield than either inbred parent. Similar

breeding techniques have used heterosis to improve rice (Yu et al. 1997), alfalfa (Riday &

Brummer 2002), tomatoes (Krieger et al. 2010), and fish (Wohlfarth 1993). However, the

underlying genomic mechanisms of phenotypic heterosis remain unclear (Coors & Pandey

1999, Lippman & Zamir 2007).

Researchers have hypothesized that the enhanced expression of one or more genes in the

hybrid relative to both inbred parents, which we call gene expression heterosis, may help

account for phenotypic heterosis (Swanson-Wagner et al. 2006, Springer & Stupar 2007).

Gene expression heterosis has been measured with a variety of experimental platforms,

including microarray and its successor, RNA-sequencing (RNA-seq) (Wang et al. 2006,

2010, Oshlack et al. 2010). Both platforms measure the relative expression levels of genes

in organisms across multiple groups or experimental conditions. Relative to microarray,

RNA-seq has less noise and higher throughput, among other advantages (Landau & Liu

2013).

However, both microarray and RNA-seq present serious statistical challenges. Since a

large number of expressed genes are assayed only a handful of times each, the data analysis

is a low-sample-size multiple testing scenario prone to frequent false discoveries. With the

additional difficulty of composite null hypotheses for gene expression heterosis detection

(Ji et al. 2014, Niemi et al. 2015), assessing the false discovery rate (FDR) in the heterosis

problem is difficult. In multiple testing scenarios with composite null hypotheses, the

distribution of the null p-values is typically not uniform (Bayarri & Berger 2000, Robins

et al. 2000, Sun & McLain 2012, Dickhaus 2013) which violates a key assumption of many

ubiquitous FDR control procedures (Benjamini & Hochberg 1995, Storey 2003, Meinhausen

& Rice 2006, Dudoit & Laan 2008). Some techniques addressing composite null hypotheses
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generate null p-values that are less likely to violate the uniformity assumption (Bayarri &

Berger 2000, Romano & Shaikh 2006, Cabras 2010, Chi 2010, Dickhaus 2013), but they do

not entirely remove the assumption itself.

To mitigate these statistical challenges in microarrays, Ji et al. (2014) built a normal

hierarchical model to borrow information across genes, improve parameter estimation, and

provide a data-based Ockham’s razor effect to control the false discovery rate. Building on

the work of Ji et al., Niemi et al. (2015) construct a negative-binomial hierarchical model

for use in RNA-seq experiments. Both approaches utilize an empirical Bayes (eBayes) pro-

cedure for parameter estimation and rely on the resulting conditional posterior probabilities

of the composite null and alternative hypotheses to identify genes with expression hetero-

sis. They justify the eBayes procedure as an approximation to a fully Bayesian analysis

based on asymptotic convergence of the posterior, but provide no supporting evidence for

this claim. Nonetheless, eBayes procedures are becoming increasingly popular in statistical

genomics (Hardcastle & Kelly 2010, Wu et al. 2012, Leng et al. 2013, Lithio & Nettleton

2015).

Presumably the use of eBayes rather than fully Bayesian procedures is due to the

computational difficulties involved in estimating the hundreds of thousands of parameters

in these hierarchical models. In our experience, the stalwart Markov chain Monte Carlo

(MCMC) approaches, as implemented in software such as WinBUGS (Lunn et al. 2000),

OpenBugs (Lunn et al. 2009), JAGS (Plummer et al. 2003), Stan (Stan Development Team

2014), and NIMBLE (de Valpine et al. 2016), are computationally intractable for models

of this size. Fortunately new MCMC approaches, based on parallelization on graphics pro-

cessing units, allow for fully Bayesian analyses of these models in reasonable time frames

(Landau & Niemi 2016a). In this article, we propose a fully Bayesian analysis of a hier-

archical regression model for count data, compare this approach to two best-case-scenario

eBayes procedures, and analyze a two-hybrid experiment in maize to identify genes with

gene expression heterosis.

In Section 2, we introduce the motivating two-hybrid maize heterosis RNA-seq dataset.

Section 3 presents an overdispersed, hierarchical RNA-seq model and describes the fully

Bayesian estimation procedure. Section 4 expounds simulation studies based on a two-
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hybrid plant-breeding scenario to assess our fully Bayesian approach in terms of estimation,

inference, and heterosis gene detection, and we compare our method to two best-case-

scenario empirical Bayes counterparts. Finally, Section 5 details our analysis of the maize

dataset.

2 Two-hybrid plant-breeding experiment for heterosis

gene detection

We focus on the RNA-seq dataset from Paschold et al. (2012), which contains read counts

of G = 39656 genes on N = 16 biological replicates divided evenly among four genetic

varieties. In the underlying experiment, multiple maize seedlings from each variety were

germinated according to the procedure by Hoecker et al. (2006). Three and a half days

after germination, the primary roots of the seedlings were harvested. Within each variety,

four pools of primary roots served as four biological replicates. Following the procedure by

Winz & Baldwin (2001), the sixteen collections of roots were ground under liquid nitrogen,

and the RNA was isolated. Complementary DNA (cDNA) fragments were then synthesized

in preparation for sequencing. Next the cDNA from the replicates was divided between

two flow cells (i.e. removable compartments for genetic material in the RNA-sequencing

platform) as identified in Supplementary Table S1. The two flow cells were placed into

an Illumina Genome Analyzer II, where the cDNA fragments were read, amplified, and

counted. The reads from the sequencing platform were mapped to the B73 reference genome

(RefGen v2) (Schnable et al. 2009), and the preprocessed and amplified read counts for each

gene and biological replicate were collected into a data table. The resulting G × N table

of read counts is provided in Table S1.

The varieties in the Paschold et al. data are inbred variety B73, inbred variety Mo17,

B73×Mo17 (a first-generation hybrid created by pollinating B73 with Mo17), and Mo17×B73

(a first-generation hybrid created by pollinating Mo17 with B73). This is a special case

of a more general plant hybrid scenario where there are two parent varieties and one first-

generation hybrid variety for each direction of pollination. For the general scenario, we

shall use P1, P2, H12, and H21 for the parents and the first-generation hybrids, respec-
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tively. For the Paschold et al. dataset, P1 is B73, P2 is Mo17, H12 is B73×Mo17, and H21

is Mo17×B73.

A major goal is to identify genes that have heterosis with respect to their expression

levels: that is, those with significantly higher (in the case of high-parent heterosis) or

significantly lower (low-parent heterosis) expression levels in one or both hybrids relative

to their parents. For each of the high-parent and low-parent cases, we are interested in

heterosis with respect to H12, H21, and the log-scale mean expression level of H12 and H21

together. Table 1 provides the six types of gene expression heterosis parameterized in terms

of log-scale mean expression levels µgv specific to gene g and variety v. (The third column

of Table 1 is discussed in Section 4.) “High (low)-parent H” indicates hybrid H has higher

(lower) mean expression than both parents while “high (low)-parent mean” indicates that

the average of the hybrids is higher (lower) than both parents. Our major objective is to

provide a measure of the strength of evidence for each kind of heterosis for each gene which

we accomplish using posterior probabilities of heterosis under the model in Section 3.1.

Table 1: Heterosis hypotheses for a two-parent (P1 and P2), two-hybrid (H12

and H21) gene expression experiment represented in terms of the log-scale mean

expression µgv for gene g and variety v and in terms of the parameters βg`

corresponding to columns ` = 1, . . . , L = 5 of the model matrix X in Equation

(1) of Section 4.

Heterosis With log-scale group means With βg` parameters

high-parent H12 µg,H12 > max (µg,P1, µg,P2) 2βg2 + βg4, 2βg3 + βg4 > 0

low-parent H12 µg,H12 < min (µg,P1, µg,P2) −2βg2 − βg4,−2βg3 − βg4 > 0

high-parent H21 µg,H21 > max (µg,P1, µg,P2) 2βg2 − βg4, 2βg3 − βg4 > 0

low-parent H21 µg,H21 < min (µg,P1, µg,P2) −2βg2 + βg4, 2βg3 + βg4 > 0

high-parent mean µg,H12 + µg,H21 > 2 max (µg,P1, µg,P2) βg2, βg3 > 0

low-parent mean µg,H12 + µg,H21 < 2 min (µg,P1, µg,P2) −βg2,−βg3 > 0

The complement of each of the heterosis hypotheses in Table 1 is a composite null

hypothesis. For example, the “no high-parent H12 heterosis” null hypothesis for row 1 of
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Table 1 can be written as

µg,P1 ≤ µg,H12 ≤ µg,P2 or µg,P2 ≤ µg,H12 ≤ µg,P1

or (equivalently, in terms of the βg` parameters) as

2βg2 + βg4 ≤ 0 or 2βg3 + βg4 ≤ 0.

Currently available software for the analysis of RNA-seq data allows for the testing of point

null hypotheses concerning single parameters or linear combinations of parameters but does

not (to our knowledge) provide tests for complex composite nulls like those encountered

in the search for gene expression heterosis. Even if existing RNA-seq analysis software

were modified to provide p-values for tests of composite null hypotheses, the difficulties in

multiple testing described in Section 1 would limit their usefulness. Thus, new methodology

is needed.

3 Fully Bayesian methodology

To address the strength of evidence for the various types of heterosis, we build a hierar-

chical regression model for count data capable of borrowing information across genes and

accounting for gene-specific overdispersion (Niemi et al. 2015). We perform a fully Bayesian

analysis based on vague proper priors using a slice-sampling-within-Gibbs Markov chain

Monte Carlo (MCMC) algorithm that utilizes general-purpose graphics processing units

(GPUs) for efficient computation (Landau & Niemi 2016a).

3.1 Hierarchical model for RNA-seq

Let ygn be the RNA-seq count (i.e. the relative expression level) of gene g (g = 1, . . . , G)

in replicate n (n = 1, . . . , N), and let y be the G × N matrix of the ygn’s. Let X

be an N × L model matrix that connects the N samples (i.e. RNA-seq replicates)

to the genotypes, blocking factors, etc. Taking Xn to be the n’th row of X, we let

ygn
ind∼ Poisson (exp (hn + εgn +Xnβg)). The hn’s are computed from y (as explained in

Section 3.2) and are treated as constants that play the role of normalization factors in

6



other RNA-seq models, taking into account sample-specific nuisance effects such as se-

quencing depth (Si & Liu 2013, Anders & Huber 2010, Robinson & Oshlack 2010). The εgn

parameters account for overdispersion, and we assume εgn|γg
ind∼ Normal(0, γg) such that

the γg parameters are analogous to the gene-specific negative-binomial dispersion param-

eters widespread in other RNA-seq data analysis methodology (Landau & Liu 2013). We

assumed 1/γg
ind∼ Gamma (ν/2, ντ/2), parameterized such that E[1/γg] = 1/τ .

The gene-specific vector-valued parameters βg account for the effects on gene expres-

sion of the experimental variables of interest. Aside from the normalization factor hn, we

interpret Xnβg to be the log-scale mean expression level of gene g in RNA-seq sample n.

To borrow information across genes, we assign βg` | θ`, σ`
ind∼ Normal(θ`, σ

2
` ) for each `.

This model is similar to negative binomial regression models from other RNA-seq data

analyses (McCarthy et al. 2012, Wu et al. 2012), with one difference being that we mix

Poisson distributions over log-normal rather than gamma distributions. This choice is made

primarily to ease computational implementation by reducing the number of distinct types

of full conditionals. Due to the similarity between the gamma and log-normal distributions,

we suspect that similar results would be obtained if gamma distributions had been used.

3.2 Inference on gene-specific parameters and heterosis proba-

bilities

To perform Bayesian analyses, we assigned independent priors for the hyperparameters.

Specifically τ ∼ Gamma(a, b), ν ∼ Uniform(0, d), θ`
ind∼ Normal(0, c2`), and σ`

ind∼ Uniform(0, s`)

for ` = 1, . . . , L with the values for Roman letters chosen to provide vague, relatively un-

informative priors on these hyperparameters. Before parameter estimation, we calculated

the log-scale replicate-specific normalization constants hn as follows. We first calculated

log-scale counts wgn = log(ygn+0.5·I(ygn = 0)), replicate-specific means w.n = 1
G

∑G
g=1wgn,

and the grand mean w.. = 1
N

∑N
n=1w.n. Afterwards, we set hn = w.n−w.. for n = 1, . . . , N .

To estimate the full joint posterior distribution of the parameters, we used the paral-

lelized slice-sampling-within-Gibbs MCMC algorithm described in Landau & Niemi (2016a).

Without parallel computing, the computational burdens of the MCMC would be heavy,

with the elapsed runtime for each dataset stretching over multiple days (see Section 5).
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However, with the strategy we employed, which uses massively parallel computing that

takes advantage of general-purpose graphics processing units (GPUs), we analyzed typical-

sized RNA-seq data in just a few hours per dataset. The algorithm accelerates MCMC

computation by executing conditionally independent Gibbs steps in parallel and using par-

allelized reductions to compute the full conditional distributions of the hyperparameters.

Efficiency is increased by reducing the data transferred from GPU to CPU, and thus we lim-

ited posterior samples to all hyperparameters and a random subset of gene-specific param-

eters. For each parameter ψ, we also record ψ = 1
M

∑M
m=1 ψ

(m) and ψ2 = 1
M

∑M
m=1

(
ψ(m)

)2
,

where ψ
(m)
g is the mth Monte Carlo sample of ψg, and approximate the posterior p(ψ|y)

with N
(
ψ, ψ2 − ψ2

)
. Finally, we assessed the posterior probabilities of heterosis in Table

1 via their ergodic averages, e.g., according to the first row of Table 1,

P (high-parent H12 heterosis for gene g|y)

≈ 1

M

M∑
m=1

I
(

2β
(m)
g2 + β

(m)
g4 > 0 and 2β

(m)
g3 + β

(m)
g4 > 0

)
where I(A) is 1 if A is true and 0 otherwise.

For each analysis, we ran 4 independent Markov chains with overdispersed starting

values relative to the full joint posterior distribution of the parameters. For each chain,

we used a burn-in period of 105 iterations (the first 50 of those iterations without tuning

the slice sampler), and then 105 true iterations with a thinning interval of 20 so that 5000

samples are retained for a small subset of parameters of interest. We monitored those chains

for convergence using Gelman-Rubin potential scale reduction factors R̂ (Gelman & Rubin

1992) which were calculated using ψ and ψ2 (see Landau & Niemi (2016a)). Specifically,

we monitored R̂ on the 2L + 2 hyperparameters, the G × L parameters βg`, and the G

hierarchical variance parameters γg. In our experience, we found R̂ values near one for all

but a few of the ≈ 105 gene-specific parameters that varied when rerunning the MCMC.

In addition, since we retained Monte Carlo samples of the hyperparameters, we monitored

hyperparameter effective sample size, which we generally found to be well above the 10 to

100 effective samples recommended by Gelman et al. (2013).

For computation, we developed and used the R (R Core Team 2016) packages fbseq

(Landau & Niemi (2016b), Landau & Niemi (2016a)) and fbseqCUDA (Landau 2016a),

8



publicly available on GitHub (GitHub, Inc. 2016). In Section 5, we also developed and

used fbseqOpenMP (Landau 2016b), also available on GitHub. The fbseqOpenMP pack-

age is a version of fbseqCUDA that replaces CUDA with OpenMP, a less powerful but

more accessible parallel computing technology (Dagum & Menon 1998). We also released

fbseqStudies (Landau 2016c), an R package that replicates all the results of this paper.

The fbseqStudies package is publicly available through the GitHub repository of the same

name. Installing fbseqStudies according to the instructions in the package vignette and

running the paper case() function reproduces the computation, figures, tables, etc. shown

in all the following sections.

4 Studies of simulated heterosis datasets

We assessed coverage of credible intervals (CIs), calibration of posterior probabilities, and

the ability of our method to rank genes by constructing simulations with known values of

the gene-specific parameters. For CIs, we calculated coverage, i.e. the proportion of genes

whose true parameter value falls within the interval, across all genes and as a function

of the parameter value, and compared this proportion to the intervals’ credibility. To

assess calibration of posterior probabilities, we constructed kernel-smoothed plots of the

true heterosis status of each gene against its estimated posterior probability, and we refer

to these figures as calibration curves throughout. For each calibration curve, we calculated

the mean absolute vertical distance from the identity line, which we call calibration error.

Posterior probabilities provide a ranking of genes of interest for each hypotheses in Table 1.

To evaluate these rankings, we constructed receiver operating characteristic (ROC) curves

and the areas under these curves (Landau & Liu 2013).

For all the simulation studies in this article, we simulated RNA-seq count datasets

under the plant hybrid scenario from Section 2. Each simulated dataset contained count

data on G = 30000 genes for N = 16 or N = 32 total replicates spread evenly over the

P1, P2, H12, and H21 varieties. From left to right, the columns in each count data table

y corresponded to P1, P2, H12, and then H21, respectively. Within each variety, the all

columns for the first block (flow cell) preceded all the columns of the second block. Thus

our model matrix, which we also used to analyze the Paschold et al. dataset in Section 5,
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is compactly represented as

X =




1 1 −1 0

1 −1 1 0

1 1 1 1

1 1 1 −1

⊗ J(N/4)×1 J(N/4)×1 ⊗


1

1

−1

−1



 (1)

where “⊗” denotes the Kronecker product and Jm×n is the m by n matrix with all entries

equal to 1. We chose the first ` = 1, . . . , 4 columns of the N × L model matrix (L = 5)

to strategically model gene expression heterosis. For a maize dataset similar to that of

Paschold et al., Lithio & Nettleton (2015) found strong correlations among gene-specific

model coefficient parameters, a phenomenon that could potentially violate our model’s

conditional independence assumptions. To mitigate this effect among columns ` = 1, . . . , 4,

we selected a slightly reparameterized, two-hybrid version of the parameterization used by

Ji et al. (2014) and Niemi et al. (2015). Column ` = 5 of X is a gene-specific experimental

block effect, used in the analysis of the Paschold et al. data (Section 5) to account for the

difference between the two flow cells of the sequencing platform in the original experiment.

Table 2 provides interpretations for the parameters βg` in terms of the log-scale group

means while Table 1 provides the method to evaluate each heterosis hypothesis using these

βg` parameters.

For Section 4.2, we evaluated coverage, calibration, and ranking for simulations where

the assumed model in the analysis matched the model used to generate data. Section 4.3

provides an assessment of robustness under two alternative data-generating scenarios as

well as a comparison to an eBayes approach.

4.1 edgeR, a benchmark method

Throughout our analyses, in order to help measure the effectiveness of our fully Bayesian,

hierarchical-model-driven scheme, we apply the method by McCarthy et al. (2012), an

alternative approach whose model only borrows information across genes for the overdis-

persion parameters. McCarthy et al. proposed a negative binomial generalized linear model

and implemented the estimation and inference in the edgeR package in R. Before estima-
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Table 2: For the model matrix in Equation (1), interpretations of the parameters

βg` in terms of the group means µgv (gene g, variety v). Group means and

interpretations in the table are given on the natural logarithmic scale. Since βg5

cannot be expressed in terms of the group means, only the prose interpretation

is given.

βg` Using group means Log-scale interpretation

` = 1
µg,P1 + µg,P2

2
Parental mean

` = 2
(µg,H12 + µg,H21)/2− µg,P2

2
Half difference, hybrid mean versus parent 2

` = 3
(µg,H12 + µg,H21)/2− µg,P1

2
Half difference, hybrid mean versus parent 1

` = 4
µg,H21 − µg,H12

2
Half the difference between hybrids

` = 5 − Flow cell block effect

tion, replicate-specific normalization constants are computed with the trimmed mean of

M-values (TMM) method by Robinson & Oshlack (2010). Next, gene-specific negative

binomial dispersions are obtained by maximizing weighted sums of gene-specific Cox-Reid

adjusted profile likelihoods, where the weighting occurs within groups of similar genes in

order to borrow information and improve estimation. Then, gene-specific model coefficient

parameters are estimated independently via maximum likelihood. While the method pro-

vides a useful baseline for comparing parameter estimates, it does not provide a comparison

to posterior heterosis probabilities (Niemi et al. 2015).

4.2 Assessing performance when the data-generation and analy-

sis models agree

We generated 10 datasets from the model in Section 3.1 using N = 16 total replicates per

dataset. To generate each dataset, we fixed hyperparameters ν, τ , θ1, . . . , θ5, and σ1, . . . , σ5

to values similar to the posterior modes of the real data shown in Figure 3. Conditioning on
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those fixed hyperparameter values, we generated the γg’s and βg`’s from their hierarchical

distributions under the model. Similarly, we conditioned on those γg values to generate

the εgn’s from their hierarchical distributions. Finally, with parameter values in hand and

the model matrix X given by Equation (1), we generated RNA-seq counts ygn using the

Poisson (exp (εgn +Xnβg)) distribution from the model (with hn = 0 for all n = 1, . . . , N).

We used a single node of a computing cluster with a single NVIDIA K20 GPU, two 2.0

GHz 8-Core Intel E5 2650 processors, and 64 GB of memory. The maximum total elapsed

runtime per dataset was around 3.2 hours using the GPU-parallelized algorithm. For each

dataset, no more than 9 R̂ values were above 1.1 and these all correspond to βg` parameters.

For the hyperparameters, the minimum effective sample size across all simulated datasets

was ∼ 600 (for σ2
4). Evidence of lack of convergence was weak overall, though estimation

and inference may be poor for the few genes with R̂ > 1.1.

With these results, we assessed the accuracy of posterior inference on the hyperparam-

eters. Figure S1 shows the estimated 50% and 95% credible intervals for all 10 datasets,

along with the true values used in data generation. There appears to be no apparent over-

all bias in the location of the intervals and, for each parameter, the number of intervals

covering the truth is consistent with the appropriate binomial distribution.

We also assessed posterior inference on the parameters βg` because they are important

for detecting heterosis genes. As described in Section 3.2, we retained full samples of

only a few randomly selected βg` and otherwise approximate posteriors via their normal

approximations. Across the simulations, coverage for normal-based 95% CIs ranged from

94.7% to 95.4% for ` 6= 4 and from 92.9% to 96.7% for ` = 4. Figure 1 displays the

smoothed coverage proportions plotted against the true parameter values. From the figure,

for each `, coverage exceeded desired minimum near the overall mean true parameter value,

but dropped for extreme parameter values. The lower row in Figure 1 shows that for ` > 1

the low βg`’s tended to be overestimated and the high βg`’s tended to be underestimated,

i.e. the CIs shrunk towards the hierarchical mean. Figure S2 shows the mean squared error

(MSE) of the model coefficient estimates for each method, where the mean is computed

over all the genes. MSE is significantly lower in our method relative to edgeR, which is a

reflection of the benefits of borrowing information.
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Figure 1: Posterior inference on the βg` parameters for Simulation Study 1 in

Section 4.2. For each ` = 1, . . . , 5 and each dataset, the top row shows the

kernel-smoothed local proportion of βg` parameters for which 95% CIs cover

the true parameter values. The horizontal dashed lines are at 0.95, the desired

coverage rate, and the solid black vertical lines indicate the respective true values

of the hierarchical means θ` used to generate the count data. The bottom row

shows, for ` = 1 through 5 in the same order, the CIs (dark gray vertical lines)

that do not cover the true parameter values (black points). Here, the solid black

horizontal lines indicate the true hierarchical mean, θ`.
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Finally, Figure S3 shows a receiver operating characteristic (ROC) curve for each kind

of heterosis and each dataset. The results, all favorable for our proposed approach, are

extremely similar across datasets. With areas under the curves ranging from 0.916 to 0.922

for low-parent heterosis and from 0.930 to 0.936 for high-parent heterosis, our method

competently filtered out the heterosis from the null genes. In addition, all the calibration

curves in Figure S4 are extremely close to the identity line, so the estimated posterior

probabilities of heterosis were extremely accurate and well-calibrated.

4.3 Robust comparison of fully Bayes versus eBayes

In RNA-seq analyses, eBayes is relatively more common than fully Bayes (Hardcastle &

Kelly 2010, Wu et al. 2012, Ji et al. 2014, Niemi et al. 2015) due to the reduced compu-

tational burden even though theoretically, eBayes procedures risk lower quality estimation

and posterior inference by ignoring hyperparameter uncertainty. For this study, we con-

sidered two eBayes versions of our fully Bayesian approach: the Oracle approach fixed

hyperparameters at the values used in data generation while the Means approach fixed hy-

perparameters at the posterior means estimated from the fully Bayesian approach. Thus,

these methods provided a comparison under the best possible case for eBayes, and we did

not address the question of how to obtain eBayes estimates of hyperparameters without

running a fully Bayesian analysis.

For a robust comparison of our three methods, we simulated two datasets, one with

N = 16 total replicates and the other with N = 32, under each of the three scenarios below.

To generate counts, all scenarios used known values of the parameters βg`, along with known

γg’s or negative binomial dispersions, depending on the data-generating mechanism. Thus,

parameter estimation and gene detection could be assessed as in the previous simulation

study. The following three approaches were used to generate gene-specific parameter values.

Model Datasets were generated exactly as in Simulation Study 1. This was the only

scenario where the true hyperparameter values were known, so it was the only

scenario where we applied the Oracle eBayes method.

edgeR This scenario utilized the benchmark method by McCarthy et al. (2012) ex-

plained in Section 4.1. First, we applied the edgeR package to the Paschold
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et al. (2012) data to obtain normalization factors, estimated negative bino-

mial dispersions, and estimated βg` parameters. Then, using these quantities

as truth, we simulated counts using the negative binomial model of McCarthy

et al..

Simple The βg1 and βg5 parameter values were generated from normal distributions

similar to their counterparts in the Model simulation. For ` = 2, 3, and 4, the

βg`’s were drawn from discrete distributions in order to exaggerate the heterosis

effect. We used P (βg` = 0) = 0.5 and P (βg` = 1) = P (βg` = −1) = 0.25

for ` = 2 and 3, P (βg4 = 0) = 0.99, and P (βg4 = 1) = P (βg4 = −1) =

0.005. All βg` parameters were generated independently across g = 1, . . . , G

and ` = 1, . . . L. With the parameters in hand, count data were generated from

a negative binomial model with a single common dispersion for all genes close to

value of the dispersions obtained from the Paschold et al. dataset using edgeR.

With respect to each of the six kinds of heterosis given in Section 2 and Table

1, roughly 6.5% of the simulated genes had some type of heterosis.

The fully Bayesian implementation was exactly the same as the previous simulation

study with essentially the same results in terms of runtime, convergence diagnostics, and

effective sample size for hyperparameters. The MCMC step of the eBayes procedure was

also performed using the software in the R packages fbseq and fbseqCUDA utilizing an

option to skip sampling of hyperparameters. The runtime of this step was similar to the

fully Bayesian analysis, e.g. up to 2.7 hours for eBayes versus 3.2 hours for fully Bayes for

N = 16 and up to 4.3 hours versus 4.8 hours for N = 32, since the vast majority of time

is spent in sampling the gene-specific parameters.

Figure S5 shows the observed rates at which estimated 95% credible intervals cover

parameters βg` for each method under comparison. Coverage was around the nominal 95%

for the Model scenario, as well as for the Simple scenario, except for slightly higher-than-

nominal coverage of the βg4’s. In the edgeR scenario, coverage was uniformly poor, ranging

roughly from 50% to 90%.

Figure 2 provides MSE for the βgl parameters where each mean is taken over all the

genes. Here, MSEs are almost the same between the eBayes and fully Bayesian methods,
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once again showing these methods to be equally-matched. Overall, MSE is highest in the

edgeR scenario and lowest in the Simple scenario (see the y-axis scales) indicating that

parameter estimation is most challenging in the edgeR scenario. MSE for the fully Bayes

and eBayes approaches are smaller or similar to the edgeR results except for βg1 in the

edgeR simulations with 16 samples. As in Figure 1, the βg1’s have higher variability than

the other model coefficients so information borrowed across genes is least useful here. In

contrast, MSE dramatically improved relative to edgeR for βg4 where true parameters are

drawn from distributions tightly concentrated around zero.
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Figure 2: For Simulation Study 2 in Section 4.3, mean squared errors of the

estimated model coefficients, where each mean is taken over all the genes. The

row labels indicate simulation scenarios, and the lines in each panel correspond

to individual simulated datasets.

Similar overall patterns carry over from parameter estimates to posterior probabilities

of heterosis. Figure S11 shows the calibration errors as defined in Section 4, which varied

only slightly between the eBayes and fully Bayesian approaches. Calibration error was

similar across sample sizes, but increased from the Model scenario to the edgeR scenario

and dramatically increased in the Simple scenario.
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Figure S9 shows the calibration curves themselves for N = 16. (The results for N =

32, shown in Figure S10, are similar.) Compared to the Model scenario calibration was

worse in the edgeR scenario, where many low probabilities were underestimated and high

probabilities were overestimated for some types of high-parent heterosis. For the edgeR

scenario, low-parent heterosis probabilities tended to be overestimated overall. Calibration

was egregiously poor in the Simple scenario, where posterior probabilities were heavily

overestimated.

Figures S6 and S7 provide ROC curves for N = 16 and N = 32 while Figure S8 provides

areas under the ROC curves (AUCs) for all simulations. The AUCs were around 0.85 (0.90)

for edgeR, 0.94 (0.96) for Model, and 0.99 (0.99) for Simple with N = 16 (N = 32). The

ROC curves and AUCs were almost identical for the fully Bayes and eBayes methods. Thus,

despite a lack of coverage and poor calibration of posterior probabilities, the methodology

appears to have provided reasonable rankings of genes even when the model assumed in

the analysis disagreed with the data-generating mechanism.

5 Fully Bayesian analysis of the Paschold et al. dataset

Having assessed our methodology’s estimation, inference, and gene detection abilities in

the simulation studies in Section 4, we now turn back to the original motivating hetero-

sis dataset in Section 2, where P1 is B73, P2 is Mo17, H12 is B73×Mo17, and H21 is

Mo17×B73. The model matrix X and the interpretations of the parameters βg` are the

same as in Section 4.

The dataset contains count data for G = 39656 genes on N = 16 biological replicates

evenly spread over the four varieties. A large fraction of genes in the reference genome

have low expression levels: roughly 21% have mean counts less than 1 and 39% have mean

counts less than 10. Still, the mean count is around 255.5, the median is 37, the third

quartile is 290, and the maximum is 38010. Figure S12 shows a kernel density estimate

of the log of the counts after incrementing by 1. As the figure suggests, the counts are

multimodal, mainly split into low and high count groups.

We applied our fully Bayesian approach to the Paschold et al. dataset using the same

number of chains, burn-in length, thinning, number of iterations, hardware, etc. as in Sec-
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tion 4.2. The GPU-accelerated version had a total elapsed runtime of 3.9 hours compared

to an OpenMP version with 16 OpenMP threads that would have taken 5 days. Similar to

previous convergence diagnostics, R̂ was less than 1.1 for all parameters except three βg`

parameters and one γg parameter, and all the hyperparameter effective sample sizes were

above 500.

Figure 3 shows posterior distributions for all hyperparameters. The marginal posterior

distributions were approximately normal and extremely narrow, so uncertainty in these

parameters was small. The marginal posteriors were so concentrated that the prior distri-

butions, which were diffuse and uninformative, would just appear as horizontal lines near

zero in the figure.
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Figure 3: Kernel density estimates from MCMC samples of the hyperparameters

from the fully Bayesian analysis of Paschold et al. data.

Figure 4 provides posterior distributions and normal-based approximations to the pos-

terior distributions, as described in Section 3.2, for a random subset of βg` parameters. For

each parameter, the normal approximation closely matched the kernel density estimate, as
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did the equal-tail 95% CIs computed from each. This finding justifies the computational

strategy recommended by Landau & Niemi (2016a), which, for the sake of computational

tractability, discarded most MCMC parameter samples and retained only the estimated

posterior means and mean squares of these parameters.
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Figure 4: Kernel density estimates (shaded area) and approximate normal den-

sities (dashed lines) of the marginal posterior distributions and 95% equal-tail

credible intervals based on MCMC samples (solid) and normal approximation

(dashed) of a random subset of βg` parameters based on the fully Bayesian

analysis of the citeauthorpaschold data.

To assess shrinkage, we compare our hierarchical model approach with the (relatively)

non-hierarchical edgeR method by McCarthy et al. (2012) explained in Section 4.1. Figure

5 compares posterior means of gene-specific parameters from the hierarchical model to the
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analogous estimates from the non-hierarchical model. Virtually no shrinkage is observed

for the βg1 since the estimated hierarchical variance, σ2
1 in Figure 3, is large. In contrast,

the rest of the βg` estimates from the hierarchical model show shrinkage (towards the

hierarchical means) relative to the analogous non-hierarchical model estimates with the

most severe shrinkage occurring for the βg4’s. The lower-right panel of the figure plots

the log of the γg parameters versus the log of the edgeR dispersions. The estimates are

strongly associated with the identity line, supporting the notion that the γg’s are equivalent

to negative binomial dispersions. The odd shape is due to the edgeR approach of borrowing

information about overdispersion for genes with similar expression levels and finding that

genes with higher expression have lower overdispersion values.
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Figure 5: Two-dimensional hexagonal histograms with logarithmic shading of

posterior means from the fully Bayesian analysis versus estimates from the

edgeR analysis for gene-specific parameters of the Paschold et al. data with the

identity line (solid) and hierarchical mean (dashed) under the fully Bayesian

analysis. In the lower-right panel, the horizontal axis corresponds to the log-

scale gene-specific negative binomial dispersions from edgeR.

Figure S13 shows the estimated posterior probabilities of each kind of heterosis. Most
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probabilities are below 0.5, and there is a spike at 0 for each kind of heterosis, so gene-

specific heterosis appears uncommon overall. In addition, there is a spike around 0.25 in

each histogram, which corresponds to unexpressed and barely expressed genes. The value

0.25 is the estimated predictive probability for a new gene g̃

P (βg̃2 > 0 and βg̃3 > 0|y) ≈ P (βg̃2/σ2 > 0|y)P (βg̃3/σ3 > 0|y) ≈ 0.25

since θ2 and θ3 are close zero (see Figure 3), βg2 and βg3 are assumed independent, and the

probability that a bivariate, independent, standard normal is in the positive quadrant is

0.25.

We also compare these probabilities to estimated effect size, which we take to be a

relative measure of the strength of heterosis in terms of estimated posterior means. For

example, consider the heterosis of a gene g with respect to the B73×Mo17 hybrid. From

Table 1, heterosis occurs if 2βg2 + βg4 > 0 and 2βg3 + βg4 > 0. For this type of heterosis we

define the effect size of gene g to be the positive part of min (2βg2 + βg4, 2βg3 + βg4) /
√
γg.

We define effect size for the other types of heterosis similarly, using the analogous linear

combinations of the βg`’s from Table 1. In Figure 6, we plot estimated posterior probabilities

against their analogous estimated effect sizes. Each panel shows a so-called “volcano” plot

similar to Figure 4 of Niemi et al. (2015). The highest concentrations of genes correspond

to low effect sizes and low posterior probabilities with a distinct ridge at low probabilities

with an effect size of zero (due to the definition of effect size). Posterior probability and

effect size are positively associated and genes of interest for future investigation are genes

with high posterior probability and large effect size. Table S1 provides these posterior

probabilities and effect sizes enabling scientists to search in maize genome databases for

relationships amongst these genes.

6 Discussion

We presented a fully Bayesian strategy for modeling high-dimensional count data, a rare

approach in fields such as RNA-seq data analysis due to the computational challenges,

but solidly tractable with new massively parallel computing strategies. We applied our

approach to the heterosis problem in RNA-seq data analysis, where no existing methods
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Figure 6: Two-dimensional hexagonal histogram of gene-specific posterior prob-

abilities of heterosis, shaded on a logarithmic scale, against the analogous effect

sizes from the fully Bayesian analysis of the Paschold et al. data. Results are

shown for high (top row) and low (bottom) heterosis for the B73×Mo17 hybrid

(left column) and Mo17×B73 hybrid (middle), and their mean (right).
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for RNA-seq analysis are directly applicable. We used simulation studies to assess the

fully Bayesian approach and compared it to two best-case-scenario eBayes counterparts.

From our simulations, we found that our fully Bayesian method strongly shrunk estimates

of important gene-specific parameters towards common means, which generally improved

estimation relative to a non-hierarchical model. The fully Bayesian and eBayes methods

performed equally well under all metrics considered. This finding supports the use of eBayes

methods in RNA-seq analyses when good hyperparameter estimates are available. However,

we did not investigate computationally efficient methods to obtain eBayes hyperparameter

estimates. We also note that computationally there is little benefit to using eBayes relative

to our fully Bayes method, e.g. 4.3 hours vs. 4.8 hours, unless the researcher selects a small

subset of genes to evaluate in the second stage of an eBayes analysis. Finally, we analyzed

the motivating RNA-seq dataset by Paschold et al. (2012) to evaluate the evidence for each

of six types of heterosis and therefore provide guidance on genes that may be involved in

the molecular mechanism for heterosis.

Our methodology has important application-level utility for practitioners in multiple-

testing scenarios such as genomics. Procedures for controlling the false discovery rate

(FDR) usually require the null p-values to have a uniform distribution (Benjamini &

Hochberg 1995, Storey 2003, Meinhausen & Rice 2006, Dudoit & Laan 2008), a condi-

tion that is typically violated when composite null hypotheses are tested (Bayarri & Berger

2000, Robins et al. 2000, Sun & McLain 2012, Dickhaus 2013). We avoid the need for such

a tenuous assumption by dispensing with an explicit FDR control procedure altogether,

opting instead for a fully Bayesian approach with a hierarchical model that shares informa-

tion across genes (Muller et al. 2007). FDR control aside, this borrowing of information is

associated with improvements in parameter estimation and gene detection (Landau & Liu

2013, Ji et al. 2014, Niemi et al. 2015).

Our results suggest some possible improvements to our model for future work. From

Figure 1, the gene-specific parameters βg` were poorly estimated if their true values are

extreme for a given index element `. Specifically, low βg`’s tended to be overestimated and

high βg`’s tended to be underestimated, i.e. the estimates of extreme βg` parameters were

overly shrunk towards their hierarchical means. If we assumed hierarchical distributions
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with heavier tails, e.g. Laplace, Student t, or horseshoe (Carvalho et al. 2009), shrink-

age should relax for extreme βg`’s, and overall estimation, inference, and gene detection

could improve. Alternatively, a semi-parametric approach, e.g. a Dirichlet process mixture

(Muller & Mitra 2013, Liu et al. 2015), could be employed to estimate the distribution of

the gene-specific parameters.

7 Supplementary Materials

Supplementary materials for this article are available online. The supplementary figures

(Figure S1, Figures S2, etc.) are in a separate pdf document. Table S1 is a comma-separated

values spreadsheet containing the total per-replicate gene expression counts of the Paschold

et al. (2012) data, as well as fully Bayesian posterior estimates of the gene-specific heterosis

probabilities, gene-specific parameter means and standard deviations, estimated effect sizes,

and gene-specific parameter estimates from the edgeR method by McCarthy et al. (2012)

from Section 4.1.
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