Permeability of rosmarinic acid in *Prunella vulgaris* and ursolic acid in *Salvia officinalis* extracts across Caco-2 cell monolayers

Zhiyi Qiang\(^a\), Zhong Ye\(^b\), Cathy Hauck\(^a\), Patricia A. Murphy\(^a\), Joe-Ann McCoy\(^c\), Mark P. Widrlechner\(^d,e,f\), Manju B. Reddy\(^a\), Suzanne Hendrich\(^a,\ast\)

\(^a\) Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
\(^b\) Department of Nutrition, University of California, Davis, CA, USA
\(^c\) US Department of Agriculture-Agricultural Research Service, North Central Regional Plant Introduction Station, Ames, IA, USA
\(^d\) Department of Horticulture, Iowa State University, Ames, IA, USA
\(^e\) Department of Agronomy, Iowa State University, Ames, IA, USA

A R T I C L E I N F O

Article history:
Received 14 March 2011
Received in revised form 6 July 2011
Accepted 10 July 2011
Available online 20 July 2011

Keywords:
Prunella vulgaris
Salvia officinalis
Rosmarinic acid
Ursolic acid
Permeability
Caco-2

A B S T R A C T

Ethnopharmacological relevance: Rosmarinic acid (RA), a caffeic acid-related compound found in high concentrations in *Prunella vulgaris* (self-heal), and ursolic acid (UA), a pentacyclic triterpene acid concentrated in *Salvia officinalis* (sage), have been traditionally used to treat inflammation in the mouth, and may also be beneficial for gastrointestinal health in general.

Aim of the study: To investigate the permeabilities of RA and UA as pure compounds and in *Prunella vulgaris* and *Salvia officinalis* ethanol extracts across human intestinal epithelial Caco-2 cell monolayers.

Materials and methods: The permeabilities and phase II biotransformation of RA and UA as pure compounds and in herbal extracts were compared using Caco-2 cells with HPLC detection.

Results: The apparent permeability coefficient \((P_{app})\) for RA and RA in *Prunella vulgaris* extracts was 0.2 ± 0.05 \(\times\) 10\(^{-6}\) cm/s, significantly increased to 0.9 ± 0.2 \(\times\) 10\(^{-6}\) cm/s after \(\beta\)-glucuronidase/sulfatase treatment. \(P_{app}\) for UA and UA in *Salvia officinalis* extract was 2.7 ± 0.3 \(\times\) 10\(^{-6}\) cm/s and 2.3 ± 0.5 \(\times\) 10\(^{-6}\) cm/s before and after \(\beta\)-glucuronidase/sulfatase treatment, respectively. Neither compound was affected in permeability by the herbal extract matrix.

Conclusion: RA and UA in herbal extracts had similar uptake as that found using the pure compounds, which may simplify the prediction of compound efficacy, but the apparent lack of intestinal glucuronidation/sulfation of UA is likely to further enhance the bioavailability of that compound compared with RA.

© 2011 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Rosmarinic acid (RA, Fig. 1) is a caffeic acid (CA) derivative found in various botanicals, especially in *Prunella vulgaris*, a perennial herb known as self-heal used to treat sore throat, fever, and wounds (Psotová et al., 2003). RA and *Prunella vulgaris* limit liver damage derived from a model of bacterial inflammation (Osakabe et al., 2002) and inhibit nervous system inflammation in another model (Swarup et al., 2007). Ursolic acid (UA, Fig. 1), a pentacyclic triterpene acid, is also found in *Prunella vulgaris* but especially concentrated in sage leaves (*Salvia officinalis*), and inhibits inflammation-related changes in human gingival cells (Zdarilová et al., 2009) and in other models (Liu, 1995). This compound also has anti-mutagenic activity (Young et al., 1994). Both herbs have been used traditionally to treat inflammation in the mouth, and are of interest in inhibiting gastrointestinal inflammation which is relevant to colitis and colon cancer.

A major limiting step in the utilization of compounds from the diet such as RA and UA is their intestinal absorption and metabolism. Both compounds contain hydroxyls and are likely to be glucuronidated or sulfated in intestinal cells, forms that are generally considered to be less bioactive than parent compounds. Glucuronidation/sulfation has been demonstrated for RA but not for UA, and the plant matrix components might alter this metabolism but this has not been studied yet. The absorption or metabolism of RA has been examined in vivo to a limited extent (Baba et al., 2004, 2005; Konishi et al., 2005). When *Perilla* extract containing 200 mg of RA was orally administered to six men, RA in both...
plasma and urine was present predominantly as glucuronide and/or sulfate conjugated forms, at 0.6 ± 0.2% and 1.5 ± 0.4% of the total intake, respectively, within 48 h after ingestion (Baba et al., 2005). Gut microbes may metabolize RA to give phenolics such as caffeic acid (CA), o-koimaric acid (OCA) and m-hydroxymethylpropionic acid, which are then absorbed by monocarboxylic acid transporter (MCT)-mediated active processes (Konishi and Kobayashi, 2005). After the oral administration of *Sambucus chinensis* ethanol extract (40 g/kg to rats, containing 80 mg UA/kg) about 0.6% of ingested UA was recovered in plasma based on estimated blood volume and plasma area under curve of this compound, suggesting poor absorption or extensive metabolism and distribution to other body tissues (Liao et al., 2005). Both RA and UA as constituents of *Prunella vulgaris* may contribute to its bioactivities, and the effects of plant matrix on uptake of its key bioactive compounds are of interest.

Caco-2 cells are immortalized human epithelial colorectal adenocarcinoma cells and offer a standard rapid, reliable, and low-cost model for *in vitro* prediction of intestinal drug permeability and absorption (Hubatsch et al., 2007). Caffeic acid-related compounds, such as RA and chlorogenic acid, have been studied using Caco-2 cells and are proposed to transfer across the intestinal barrier by paracellular diffusion (Konishi and Kobayashi, 2004, 2005). The plant material matrix may alter absorption and bioavailability of phytochemicals (Manach et al., 2004). *Prunella vulgaris* and *Salvia officinalis* contain sugars, steroids, alkaloids, essential oils, flavonoids, polyphenols, triterpenoids, and saponins (Lu and Foo, 2000; Cheung and Zhang, 2008; Loizzo et al., 2008; Rasool et al., 2010). Therefore, it is crucial to investigate the effect that the plant matrix may have on the uptake of RA and UA found in *Prunella vulgaris* and *Salvia officinalis*. *In vitro* studies have not been done in association with the permeation of RA in *Prunella vulgaris* extracts using Caco-2 cells nor have different sources of *Prunella vulgaris* plant material been compared for their influence on RA uptake. Uptake of UA in the Caco-2 cell model also has not been investigated, either as a pure compound or from plant extracts. Our hypotheses were that the absorbability of RA and UA was independent of the plant extract matrix and this study was conducted to investigate the permeabilities of RA and UA as pure compounds and in *Prunella vulgaris* and *Salvia officinalis* ethanol extracts across Caco-2 cell monolayers, to facilitate future studies of the efficacy of these herbs against gastrointestinal inflammation.

2. Materials and methods

2.1. Plant extraction

All *Prunella vulgaris* plant samples were provided by the U.S. Department of Agriculture North Central Regional Plant Introduction Station in Ames, IA. *Salvia officinalis* extract was provided by Sabinsa Corporation (Payson, UT). Seeds from accessions *Prunella vulgaris* Ames 27664, 27665 (both originally collected in North Carolina), and 27748 (collected in Missouri) were germinated in Petri plates at 25 °C (voucher records: Herbarium specimen. Taken by: McCoy, J., USDA, ARS. On: 08/24/2006. Located at: ISC. Inven-
tory sample: Ames 27664, 27665 and 27748. SD 04ncao01). The resulting seedlings, segregated by accession, were transferred to flats in a greenhouse (held at 20–25 °C). Upper flowering portions of 14-month-old plants were harvested at the time of peak flowering, dried, and ground. Four grams of aliquots of the ground samples were extracted with 500 mL of 95% ethanol by Soxhlet percolation for 6 h, filtered, dried by rotary evaporation and lyophilized. Then the extracts were redisolved in 0.5 mL of ethanol and stored at −20 °C under nitrogen. Information about the *Prunella vulgaris* accessions used for these experiments is available via the Germplasm Resources Information Network database at http://www.ars-grin.gov/npgs/acc/acc_queries.html.

2.2. HPLC analysis

RA (90%) and UA (92%), both from Sigma–Aldrich Co. (St. Louis, MO) and 2,4,6′-trihydroxybenzoin (THB, internal standard), synthesized in Dr. Hendrich’s Laboratory (Song et al., 1998) were dissolved in methanol to use them as standards. Methanol, acetonitrile (HPLC grade) and phosphoric acid (AR grade) were obtained from Fisher Scientific (Pittsburgh, PA).

HPLC analysis was performed on a Beckman Coulter 126 HPLC, equipped with photodiode array detector model 168 and a model 508 autosampler (Beckman Coulter, Inc., Brea, CA). The mobile phase was 1.25% phosphoric acid: acetonitrile (15% aceto-

nitrite (HPLC grade) and phosphoric acid (AR grade) were obtained from Fisher Scientific (Pittsburgh, PA).

2.3. Transepithelial transfer experiment

Caco-2 cells were obtained from American Type Culture Col-

lection (Manassas, VA) at passage 18 and all experiments were performed from passages 25–30. The cells were cultured according to Hubatsch et al. (2007). Cytotoxicity of RA, UA, and extracts was measured according to Nasser et al. (2008). RA, UA, *Prunella vulgaris* ethanol extracts containing the same concentrations of RA, and *Salvia officinalis* extract containing the same concentrations of UA, at 1, 10, 20, 50, and 100 μM, were tested for cytotoxicity. DMSO in DMEM (Dulbecco’s modified Eagle’s medium, 0.3% (v/v), Gibco Invitrogen, Carlsbad, CA) was used as control.

After the cells in the flask grew to 90%–100% confluence, cells were trypsinized and seeded on collagen-coated polye-

citrafluoroethylene membrane inserts (0.45 μm) fitted in bicameral chambers (Transwell-COL, 24 mm ID, Corning Inc., Corning, NY) at 1.2 × 10^5 cells/cm². The transepithelial electrical resistance (TEER) was tested by Millicell ERS meter (Fisher Sci., Pittsburgh, PA) to reflect the tightness of intercellular junctions and only cells with TEER ≥ 250 Ω cm² were used for permeability study. At 14–16 d post seeding (90–100% confluence) on the transwell, RA, UA and extracts at non-cytotoxic concentrations or 100 μM of the para-
cellular marker, LY (lucifer yellow, Sigma–Aldrich Co., St. Louis, MO), dissolved in Hank’s Buffered Salt Solution (HBSS, pH 7.4, Gibco Invitrogen, Carlsbad, CA), were added to the apical chamber, then basolateral solutions were collected after 0.5, 1, 2, and 4 h. After 4 h,
The contents of rosmarinic and ursolic acids in ethanol extracts of Prunella vulgaris and Salvia officinalis determined by HPLC.

<table>
<thead>
<tr>
<th></th>
<th>RA g/L (mM)</th>
<th>UA g/L (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prunella vulgaris</td>
<td>8.4 ± 0.6</td>
<td>0.1 ± 0.0</td>
</tr>
<tr>
<td>(17.4 g/L)</td>
<td>(23.3 ± 1.7)</td>
<td>(0.2 ± 0.0)</td>
</tr>
<tr>
<td>Prunella vulgaris</td>
<td>3.2 ± 0.3</td>
<td>0.1 ± 0.0</td>
</tr>
<tr>
<td>(66.2 g/L)</td>
<td>(9.0 ± 0.8)</td>
<td>(0.1 ± 0.0)</td>
</tr>
<tr>
<td>Prunella vulgaris</td>
<td>19.9 ± 1.1</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td>(117.0 g/L)</td>
<td>(55.2 ± 3.1)</td>
<td>(1.0 ± 0.2)</td>
</tr>
<tr>
<td>Salvia officinalis</td>
<td>4.0 ± 0.1</td>
<td>2.6 ± 0.4</td>
</tr>
<tr>
<td>(10 g/L)</td>
<td>(5.8 ± 0.9)</td>
<td></td>
</tr>
</tbody>
</table>

* No RA was found in Salvia officinalis extract.

Apical solutions were collected and membrane on the transwell insert was placed in 1.5 mL of ice-cold sodium hydroxide (0.5 M) and sonicated with a probe-type sonic dismembrator (Biologics Inc., Manassas, VA); pH was adjusted to 7.0 and all samples were injected directly to HPLC for analysis. For LY quantification, the apical and basolateral solutions were transferred to a 96 well plate and read spectrophotometrically at 450 nm. Total cellular protein was determined by Coomassie (Bradford) assay (Pierce Laboratories, Rockford, IL).

2.4. Transepithelial transfer of single compounds and extracts after treating with β-glucuronidase/sulfatase

At 14–16 d post seeding of the cells on the transwell, 10 μM RA as a single compound and Prunella vulgaris ethanol extracts diluted to contain 10 μM RA or 20 μM UA and Salvia officinalis extract diluted to contain 20 μM UA were applied to Caco-2 cells. After collecting the basolateral solutions at 0.5, 1.2, and 4 h as well as apical solutions and cell homogenates at the end, 20 μL of β-glucuronidase/sulfatase (Type H-2 from Helix pomatia, 85 units/L of glucuronidase and 7.5 units/L of sulfatase, Sigma–Aldrich Co., St. Louis, MO) were added and incubated overnight at 37 °C to release the parent compounds. These samples were then injected directly to HPLC.

Apparent permeability coefficients (P_app) were determined using the equation [10]:

\[P_{app} = \frac{(dQ/dt) \times (1/A \times C_0)}{dQ/dt} \]

where the permeability rate constant (μmol/s); A was the surface area of the membrane (cm²); and C_0 was the initial concentration of the compound (μM). Basolateral recoveries (%) were calculated as the proportion of the original amount that permeated through the monolayer, which was calculated as the amount transported divided by the initial amount in the apical chamber. Transport rate (μM/h/cm²) was calculated as the amount transported divided by incubation time and the area of the membrane.

2.5. Statistical analysis

Data are given as means ± S.D. Differences in cytotoxicity, P_app, transport kinetics, basolateral recoveries and transport rate of the pure compounds and extracts were evaluated statistically using ANOVA and Tukey’s multiple comparison tests by SAS 9.1 (SAS Institute Inc., Cary, NC). Differences were considered significant at p < 0.05.

3. Results

3.1. Determination of RA and UA in Prunella vulgaris and Salvia officinalis ethanol extracts

The amounts of RA in ethanol extracts varied ~sixfold across the three Prunella vulgaris accessions; UA content in Prunella vulgaris extract was ~four- to twenty-fold less on a molar basis than was UA in Salvia officinalis extract (Table 1). The ethanolic extract of Prunella vulgaris 27748 had threefold greater RA and tenfold more UA than the two other accessions studied. No RA was found in the Salvia officinalis extract.

3.2. Cytotoxicity test

For RA as a pure compound, concentrations greater than 50 μM were significantly cytotoxic compared with the control (0.3%, v/v, DMSO in DMEM, p < 0.05). Ethanolic extracts of Prunella vulgaris accessions containing >20 μM RA showed significant cytotoxicity. Concentrations >20 μM of UA as a pure compound and Salvia officinalis extract containing same amount of UA were toxic to the Caco-2 cells (data not shown). Therefore, 1, 2, 5, 10 μM of RA, and Prunella vulgaris ethanol extracts containing these concentrations of RA, and 2, 5, 10, 20 μM of UA and Salvia officinalis extract containing these amounts of UA were used for permeability studies.

The basolateral recovery of paracellular marker, LY, was 0.5 ± 0.1%. In the basal chamber after 4 h, 1.3 ± 0.3, 1.2 ± 0.2, 1.4 ± 0.6 and 0.9 ± 0.4% of parent RA was transferred for pure compound, or for RA in Prunella vulgaris 27664, 27665 and 27748 extracts, respectively (no significant differences, p > 0.05). The apical recoveries of RA were 86.7 ± 2.9, 85.8 ± 3.6, 81.2 ± 5.7% and 79.1 ± 11.2% for the pure compound, or for RA in Prunella vulgaris 27664, 27665 and 27748 extracts, respectively, with no significant differences (p > 0.05, data not shown).

The rate of membrane permeation was calculated for UA as a pure compound and from Salvia officinalis extract at the same doses. The uptake of UA increased linearly and significantly from 0.03 ± 0.01 to 0.2 ± 0.04 μM/h/cm² (p < 0.01) and was not saturable across the tested concentrations (5–20 μM, Fig. 2). It was also not saturable across tested time-points (0.5–4 h) both for pure compounds and UA contained in Salvia officinalis extract (Fig. 3A). Due to LOD of UA and the lesser amount of it in Prunella vulgaris extracts compared with RA, UA was not detected for apically-applied Prunella vulgaris extracts containing 1–10 μM RA. Basolateral recoveries of RA as pure compound and RA in Prunella vulgaris 27664 increased over time (RA in Prunella vulgaris 27665 and 27748 are not shown), although RA was not detected basolaterally at 0.5 and 1 h before deconjugation (Fig. 3A). The basolateral transfer of UA was significantly greater than RA at each time point both for pure compounds or compounds contained in plant extracts (p < 0.01, Fig. 3A). No significant differences were found between RA as a pure compound and RA in Prunella vulgaris extracts or UA as...
a pure compound and UA in Salvia officinalis extract \((p>0.05)\) in apparent permeability coefficients \((P_{app}, \text{Table 2})\). After deconjugation using \(\beta\)-glucuronidase/sulfatase, RA recoveries significantly increased from \(1.3 \pm 0.3\%\) to \(6.1 \pm 1.4\%\), \(1.2 \pm 0.2\%\) to \(6.5 \pm 2.7\%\), \(1.2 \pm 0.03\%\) to \(4.9 \pm 0.6\%\), \(1.1 \pm 0.2\%\) to \(5.5 \pm 1.2\%\) \((p<0.01)\) in basolateral chamber for the single compound, or for RA in Prunella vulgaris 27664, 27665 and 27748 extracts, respectively \((\text{Fig. 3C, RA in Prunella vulgaris 27665 and 27748 are not shown})\). The transfer of RA glucuronide/sulfate conjugates was not saturable during 4 h and increased linearly with the incubation time \((p<0.01, \text{Fig. 3B})\). To check the mass balance, the total recoveries (apical+basolateral) of RA increased from 80–88% before deconjugation to 84–93% after deconjugation for pure compound and RA in extracts, with no new peaks detected. The basolateral recoveries of UA were \(19.0 \pm 4.2\%\) or \(15.9 \pm 3.2\%\) for pure compound before or after incubation with \(\beta\)-glucuronidase/sulfatase, and \(17.6 \pm 2.5\%\) or \(14.5 \pm 4.3\%\) for Salvia officinalis extract, not statistically different from \(0.5 \pm 0.1\%\) in Caco-2 cells before and after deconjugation of post-experimental basolateral solutions. (A) Before deconjugation. No RA was found at 0.5 or 1 h. Means bearing different letters were significantly different \((p<0.01)\). (B) After deconjugation with \(\beta\)-glucuronidase/sulfatase; for RA and RA in Prunella vulgaris 27664. (C) Total basolateral recovery of RA and UA after deconjugation over 4 h incubation. The basolateral recoveries of RA after \(\beta\)-glucuronidase/sulfatase incubation were significantly different from that before the enzyme treatment \((p<0.01)\). Basolateral recoveries were calculated as the amount transported divided by the initial amount in the apical chamber during 4 h uptake study. Data are the mean \pm S.D \((n=9)\).

![Characteristics of transfer of rosmarinic (RA) and ursolic acids (UA) for pure compounds or plant extracts across Caco-2 cells before and after deconjugation of post-experimental basolateral solutions](image)

Fig. 3. Characteristics of transfer of rosmarinic (RA) and ursolic acids (UA) for pure compounds or plant extracts across Caco-2 cells before and after deconjugation of post-experimental basolateral solutions. (A) Before deconjugation. No RA was found at 0.5 or 1 h. Means bearing different letters were significantly different \((p<0.01)\). (B) After deconjugation with \(\beta\)-glucuronidase/sulfatase; for RA and RA in Prunella vulgaris 27664. (C) Total basolateral recovery of RA and UA after deconjugation over 4 h incubation. The basolateral recoveries of RA after \(\beta\)-glucuronidase/sulfatase incubation were significantly different from that before the enzyme treatment \((p<0.01)\). Basolateral recoveries were calculated as the amount transported divided by the initial amount in the apical chamber during 4 h uptake study. Data are the mean \pm S.D \((n=9)\).

<table>
<thead>
<tr>
<th>Plant Material</th>
<th>(P_{app} \times 10^{-6} \text{ cm/s}) before deconjugation</th>
<th>(P_{app} \times 10^{-6} \text{ cm/s}) after deconjugation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosmarinic acid</td>
<td>0.3 \pm 0.1</td>
<td>-</td>
</tr>
<tr>
<td>RA</td>
<td>0.2 \pm 0.0</td>
<td>0.9 \pm 0.2*</td>
</tr>
<tr>
<td>RA in Prunella vulgaris 27664</td>
<td>0.2 \pm 0.0</td>
<td>1.0 \pm 0.4*</td>
</tr>
<tr>
<td>RA in Prunella vulgaris 27665</td>
<td>0.2 \pm 0.1</td>
<td>0.7 \pm 0.1*</td>
</tr>
<tr>
<td>RA in Prunella vulgaris 27748</td>
<td>0.1 \pm 0.1</td>
<td>0.9 \pm 0.1*</td>
</tr>
<tr>
<td>UA</td>
<td>2.8 \pm 0.1*</td>
<td>2.4 \pm 0.4*</td>
</tr>
<tr>
<td>UA in Salvia officinalis</td>
<td>2.5 \pm 0.4*</td>
<td>2.2 \pm 0.6*</td>
</tr>
</tbody>
</table>

\(-\) not determined. \(^a\) RA was 10 \(\mu\)M for pure compound and *Prunella vulgaris* extracts containing the same content of RA. \(^b\) \(P_{app}\) of UA as a pure compound and in *Salvia officinalis* extract was calculated using non-toxic concentrations \((5, 10\) and \(20\) \(\mu\)M). \(^c\) The \(P_{app}\) of rosmarinic and ursolic acids after treating with \(\beta\)-glucuronidase/sulfatase.

\(\) Significantly greater compared with \(P_{app}\) of LY and RA \((p<0.01)\). \(^d\) Significantly different before and after deconjugation \((p<0.01)\).

\((p>0.05, \text{Fig. 3C})\). No significant differences were found in the apical recoveries of RA or UA \((p>0.05)\) and neither RA nor UA was found in cells before or after deconjugation. \(P_{app}\) for UA or UA in *Salvia officinalis* extract did not change after deconjugation reaction \((\text{Table 2})\). Both RA as a single compound and RA in *Prunella vulgaris* extracts showed the same increase in \(P_{app}\) after deconjugation \((\text{Table 2})\).
investigate the influences of preservation or processing of plant extract on the bioavailability of RA and UA both in vitro and in vivo.

If the basolateral movement of the paracellular marker, 14C, is less than 0.7% and TEER value is greater than 250 Ω·cm², the established monolayer is considered to be tight enough for permeability experiments (Ohashi et al., 2005). In our permeability studies, we tested the basolateral recoveries at time points and interval times chosen for a hydrophilic paracellularly transferred compound (RA) (Hubatsch et al., 2007). RA uptake was not saturable during 4 h incubation period (Fig. 3A), indicating that passive diffusion occurred for this parent compound. We only measured the uptake of RA at 10 µM due to its cytotoxicity; RA was not detected at 0.5 and 1 h because of its LOD and the low concentration applied to the apical chamber. Unidirectional transport (apical to basolateral transfer) was investigated for RA in our study and the pH of both apical and basolateral solutions was 7.4 (to simulate the environment of small intestine), because Konishi and Kobayashi (2005) showed that permeation of RA from the apical to the basolateral side is similar to that from basolateral to apical side; the uptake in the presence of a proton gradient (pH gradient 6.0/7.4) was nearly the same as that in the absence of a proton gradient (pH gradient 7.4/4), implying that proton coupled polarized transport was not involved for RA. The transepithelial flux of RA was inversely correlated with TEER in our experiment (data not shown), consistent with restriction of intestinal absorption of RA when the epithelial tight junction is tight enough, a finding similar to that shown for another caffeic acid derivative, chlorogenic acid (Konishi and Kobayashi, 2004).

Our finding of increased basolateral RA recoveries after deconjugation (Fig. 3C) is the first direct report of this type of intestinal biotransformation of RA; glucuronide/sulfate conjugates were excreted to the basolateral side (toward the circulation) rather than apical side (the intestinal lumen), but this finding is consistent with in vivo observations of RA glucuronide/sulfate conjugates as major forms of this compound in rat and human plasma (Konishi et al., 2005; Baba et al., 2005). These results suggest that RA is absorbed via both paracellular and transepithelial diffusion and MRP or OATP (organic anion transporter protein) transporters might be involved in the permeation of glucuronidated or sulfated RA, because anionic conjugates (glutathione, glucuronic acid or sulfate) cannot exit cells unless an MRP transporter is present (Peng et al., 1999). Intestinal biotransformation of RA seemingly differs from that of its possible metabolites, glucuronide/sulfate conjugates of caffeic acid, ferulic acid and o-coumaric acid which were found only apically (Kern et al., 2003). This might be due to the specificity of MRP transporters to the glucuronide/sulfate conjugates of different caffeic acid derivatives and the locations of various MRP in apical or basolateral sides of the enterocytes (Peng et al., 1999).

The plant extracts did not affect transfer of either UA or RA, and likewise the pure compounds and the compounds from the plant extracts behaved similarly in their apparent biotransformation as well (Fig. 3A–C and Table 2), establishing that the transfer of RA and UA was independent of the of the plant extract matrix for the two herbs studied. The transfer of UA seemed simpler than that observed for RA. The rate of membrane permeation of UA increased linearly with concentration and was not saturable at the tested time-points (Figs. 2 and 3A), indicating uptake by passive diffusion. Because the basolateral transfer of UA was greater than RA at each time point (Fig. 3A), and the partition coefficient (Log P) of RA was 0.2, compared with Log P of UA of 6.4 (Bérangère et al., 2004; Konishi et al., 2005), more hydrophobic UA was more absorbable than RA. This result is consistent with an interpretation of previous in vivo findings in rats that the low plasma concentration of UA was due to poor absorption but to extensive uptake of UA by other tissues (Liao et al., 2005). UA was absorbed and transferred by Caco-2 cells apparently with little glucuronidation/sulfation, which is likely to further enhance the bioavailability of UA compared with RA (Fig. 3C and Table 2). This lack of UA biotransformation might be due to the differences in glucuronidation and sulfation of aliphatic alcohol (UA) and phenol (RA) alcohol or because of the distinct structures of the two compounds: triterpenoid (UA) vs. caffeic acid derivative (RA). But two studies showed that there was wide variability in affinity for UDP-glucuronosyltransferase (UGT) and sulfotransferase (ST) across both general classes of substrates (Ebner and Burchell, 1993; Chen et al., 1996). One related triterpenoid, glycyrrhetinic acid (50–300 μM), was found to inhibit UGT2B7 activity in human liver microsomes (Nakagawa et al., 2009), which might also occur for UA. To our knowledge, no other in vivo or in vitro study has been done on the metabolism of ursolic acid. It is possible that UA may undergo additional glucuronidation or sulfate conjugation in the liver. Future studies are required to elucidate the structures of RA and UA metabolites, which affect compound transfer mechanism and efficacy.

In conclusion, RA was transferred across Caco-2 cells almost entirely in conjugated form, but UA was absorbed and transferred mostly intact, both independent of extract matrix. Our results predict no effect of plant matrix on the efficacy of either compound. It will be important to measure the uptake of gut microbial metabolites of RA and effects of RA on the expression of efflux transporters and tight junction proteins which would particularly affect a compound transferred paracellularly such as RA. Cellular models of oral as well as intestinal uptake, metabolism and anti-inflammatory activity of RA and Prunella vulgaris and UA and Salvia officinalis will be of interest as well, given traditional uses of these herbs.

Acknowledgements

This publication was made possible by grant number P01 ES012020 from the National Institute of Environmental Health Sciences (NIEHS) and the Office of Dietary Supplements (ODS), National Institutes of Health (NIH) and grant number 9P50AT004155-06 from the National Center for Complementary and Alternative Medicine (NCCAM) and ODS, NIH.

References

Baba, S., Osakabe, N., Natsume, M., Terao, J., 2004. Orally administered rosmarinic acid is present as the conjugated and/or methylated forms in plasma, and is degraded and metabolized to conjugated forms of caffeic acid, ferulic acid and m-coumaric acid. Life Sciences 75, 165–178.

