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CHAPTER 1: INTRODUCTION  

 

Western Corn Rootworm Biology and Resistance 

The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: 

Chrysomelidae) is a serious pest of corn (Zea mays L.)  in the Midwestern United States 

(Levine and Oloumi-Sadeghi 1991).  The first recorded collection of western corn rootworm 

in North America occurred in 1867 in Kansas (LeConte 1868) and western corn rootworm 

was recognized as a pest in 1909 (Gillette 1912).  The distribution of western corn rootworm 

has since expanded east across the Great Plains, facilitated by the expansive planting of corn 

beginning in the 1950s (Gray et al. 2009).  Western corn rootworm has also been introduced 

in Central and Western Europe from the United States in at least five separate introductions 

beginning in 1992 (Baca 1993, Ciosi et al. 2008).    

Larvae are the most destructive stage of this pest.  Root feeding by western corn 

rootworm larvae can reduce water and nutrient uptake (Kahler et al. 1985), facilitate root and 

stalk infection (Palmer and Kommedahl 1969), and complicate harvest by making plants 

more susceptible to lodging (Levine and Oloumi-Sadeghi 1991).  This feeding can be 

quantified with the 0-3 node-injury scale, where 0 is no feeding and 3 is three pruned 

(defined as consumed to about 3.8cm of the stalk) nodes (Oleson et al. 2005). One node of 

injury is associated with a 17% loss in yield (Dun et al. 2010).      

Rootworm oviposition occurs in the late summer at a depth of 10-20 cm in the field 

where adults are feeding and eggs undergo an obligatory diapause (Branson and Krysan 

1981, Gray and Tollefson 1988).  Extended periods of cold soil temperatures, in the range of 

-7.5
o
 to -13

o
 C, can cause egg mortality, but eggs can tolerate periods of soil saturation 

(Gustin 1981, Levine and Oloumi-Sadeghi 1991).  After overwintering in the soil, the eggs 
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hatch in late spring, where establishment of individuals on roots is estimated to be 5-10% 

(Hibbard et al 2004).  Soil saturation during hatch can prevent the establishment of larvae on 

corn roots and larval survival is lower in sandy soil compared to those with higher clay 

content (Levine and Oloumi-Sadeghi 1991).  Rootworm larvae feed on corn roots and have 

three instars.  Over the course of their development, larvae may move up to three plants 

down a row (Hibbard et al 2003).  Pupation also occurs in the soil and western corn 

rootworm adults emerge beginning in late June or early July.   

Adult males are sexually mature 5 to 7 days after emergence.  Females begin to 

emerge later than males and are sexually mature upon emergence (Guss 1976, Branson 1987, 

Hammack 1995).  For females, there is a 13 day prevoiposiontal period followed by up to 60 

days of oviposition (Branson and Johnson 1973).  Adults can be found in a cornfield from 

emergence until the first frost in the fall (Levine and Oloumi-Sadeghi 1991) and feed on corn 

tassels, pollen, kernels, and leaf tissue but do not often cause significant damage (Clark and 

Hibbard 2004).  Adult males move 6-17m per day (Spencer et al 2003).  Rootworm have few 

natural enemies.  Some ants feed on rootworm larvae while ground beetles and mites can 

prey on eggs and larvae (Levine and Oloumi-Sadeghi 1991, Meinke et al 2009).  There are 

also some fungi that infect all rootworm life stages and nematodes that attack rootworm 

larvae, pupae, and adults (Levine and Oloumi-Sadeghi 1991, Toepfer et al. 2009).   

The western corn rootworm is a highly adaptable pest and populations have evolved 

resistance to many management strategies including certain insecticides, crop rotation, and 

transgenic corn that produces toxins derived from Bacillus thuringiensis (Bt).  Resistance is a 

genetically based decrease in susceptibility to a management strategy (Tabashnik 1994) and 

develops in a population as a result of repeated exposure to a management practice.  
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Populations of western corn rootworm have evolved resistance to some organocholorine 

(Ball and Weekman 1963), organophosphate (Meinke et al. 1998), and carbamate (Meinke et 

al. 1998) insecticides used for adult management and to the pyrethroid insecticide bifenthrin 

that is used for larval and adult management (Pereira et al. 2015).  These instances of 

resistance occurred after multiple years of corn production using these insecticides. 

Because larvae complete their development only on the roots of corn and some other 

grasses (Wilson and Hibbard 2004), crop rotation to a non-host is often used as a cultural 

strategy to manage rootworm populations.  Root injury by western corn rootworm larvae in 

first year rotated corn was first reported in Illinois in 1987 (Levine and Oloumi-Sadeghi 

1996).  This rotation resistance is the result of a loss of ovipositional fidelity to corn and 

developed in a county under high selection pressure for resistance to crop rotation because 

87% of the land was rotated annually between corn and soybean (Levine et al. 2002, Gray et 

al. 2009).  Rotation resistance became more widespread in Illinois and Indiana in the mid-

1990s (Gray et al. 2009).   

Bacillus thuringiensis and Insect Management 

Bacillus thuringiensis is a Gram-positive bacterium that produces a crystalline (Cry) 

protein with insecticidal properties.  Strains of B. thuringiensis have been isolated from soil, 

stored grains, plant material, and dead insects (Schnepf et al 1998, de Maagd et al 2001).  In 

addition to the incorporation of Bt toxins in transgenic crops, B. thuringiensis and its 

associated Cry proteins are applied to crops as sprays and mixtures (Bravo et al 2007).  

Toxins have been identified that work against insects in the insect orders Coleoptera, 

Lepidoptera, Diptera, and Hymenoptera as well as nematodes (Bravo et al 2007).  
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A Bt toxin must be ingested to kill an insect.  After ingestion, the toxin binds to 

specific receptors in the brush border membrane of the insect midgut and causes the midgut 

cells to lyse (Schnepf et al 1998, Gonzalez-Cabrera et al 2006).  The benefits of transgenic Bt 

technology for pest management include target specificity, plant and yield protection, and 

reduced insecticide use (Rice 2003).  The first crops that produced Bt toxins were 

commercialized in 1996 and targeted lepidopteran pests (transgenic corn producing Cry1Ab 

and cotton producing Cry1Ac) (Tabashnik and Carrière 2009).     

As with any management strategy, the repeated use of transgenic crops places 

selective pressure on populations of insects to develop resistance.  Resistance to crops that 

produce Bt toxins may occur as a result of decreased cleavage of the protein, decreased 

binding to the midgut epithelium, decreased pore formation, or increased digestion of the 

active fragment (Gould 1998).  Resistance to Cry1A in many lepidopteran pests such as the 

pink bollworm (Pectinophora gossypiella Saunders), cotton bollworm (Helicoverpa 

armigera Hübner), and tobacco budworm (Heliothis virescens Fabricius), is the result of 

reduced toxin binding (Tabashnik and Carrière 2009).     

Transgenic corn producing the Bt toxin Cry3Bb1 for management of rootworm was 

first commercialized in 2003 (EPA 2003).  Corn hybrids are also currently available that 

produce the single Bt toxins mCry3A (EPA 2010a) and Cry34/35Ab1 (EPA 2010b).  Corn 

producing multiple toxins that target rootworm, referred to as a pyramid, such as Cry3Bb1 

with Cry34/35Ab1, mCry3A with Cry34/35Ab, and eCry3.1Ab with mCry3A toxins, are also 

available (EPA 2011).  

Laboratory populations of western corn rootworm have demonstrated a capacity to 

evolve resistance to Bt corn quickly, with increased survival on corn producing the Bt toxin 



5 

 

 

Cry3Bb1 after as few as three generations of selection (Meihls et al. 2008).  Field-evolved 

resistance by western corn rootworm to corn that produces Cry3Bb1 was first identified by 

Gassmann et al. (2011) from insects collected from fields in Iowa in 2009.  These 

populations came from fields where corn had been in continuous production for at least three 

years and there was a positive correlation between the number of years Cry3Bb1 corn was 

planted and survival of these populations on Cry3Bb1 corn in bioassays.  In 2014, resistance 

to mCry3A was detected in Iowa as well as cross-resistance between Cry3Bb1 and mCry3A 

(Gassmann et al. 2014).  Resistance to Cry3Bb1 and mCry3A has also evolved in fields in 

Nebraska (Wangila et al. 2015).  

 In addition to western corn rootworm, populations of corn earworm (Helicoverpa zea 

Boddie), maize stalk borer (Busseola fusca Fuller), pink bollworm, and fall armyworm 

(Spodoptera frugiperda Smith) have evolved resistance in response to field exposure to Bt 

toxins (Tabashnik et al. 2013).  Resistance to Cry1Ac corn was first reported in the United 

States for corn earworm in 2006 based on evidence from diet-incorporated bioassays (Ali et 

al. 2006, Tabashnik et al. 2008).  Resistance to Bt corn producing Cry1Ab was reported for 

maize stalk borer in South Africa in 2007 for insects collected in 2006 and tested in an on-

plant experiment (van Rensburg 2007).  Dhurua and Gujar (2011) found resistance to 

Cry1Ac cotton in pink bollworm populations that were collected from the field in India in 

2008 and subjected to diet-incorporated bioassays.  In the United States, pink bollworm 

remains susceptible to Cry1Ac cotton, likely due to compliance with refuge requirements and 

cotton that produces a high dose of the Bt toxin (Tabashnik et al. 2012).    Resistance to 

Cry1F maize was reported for fall armyworm in Puerto Rico in 2010 using diet overlay 
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bioassays with individuals collected in 2007 and 2008 (Storer et al. 2010) and resistance has 

also developed in Brazil (Farias et al. 2014).        

Insect Resistance Management 

Insect resistance management (IRM) plans are implemented to prevent or delay the 

evolution of resistance to insecticides in insect populations.  A number of strategies have 

been theorized, including planting refuges of non-Bt hosts in proximity to the Bt crop, 

pyramiding multiple toxins in a single plant, using crops that express a high dose of toxin, 

using plants that produce a low dose of toxin in conjunction with natural enemies, or planting 

crops with differential expression of toxin over time or throughout the plant (Gould 1998).  

For rootworm IRM, the refuge strategy and the planting of corn that produces pyramids of 

multiple rootworm active Bt toxins with a refuge have been used to delay the evolution of 

resistance to Bt.   

When planting a corn hybrid that produces a single Bt toxin targeting rootworm, it is 

required that 20% of a field is planted to non-Bt corn in a block refuge or 10% if a blended 

refuge is planted (EPA 2010c).  The non-Bt refuge serves as a source of susceptible 

individuals that mate with resistant insects and produce heterozygous offspring.  This reduces 

the number of homozygous resistant individuals in a field (Gould 1998). Nonrandom mating, 

for example, a lack of movement between the refuge and the Bt portion of the field or 

temporal asynchrony between the development of resistant and susceptible insects, will 

decrease the effectiveness of a refuge (Gould 1998).   

Pyramiding of multiple Bt toxins also can be referred to as redundant killing because 

individuals that are resistant to one toxin will be killed by the other toxin (Gould 1998).  An 

important consideration of this strategy is that that the toxins must be distinct enough that 
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there is a low likelihood of cross-resistance (Gould 1998).  For rootworm management, the 

use of pyramided toxins is combined with the refuge strategy.  A 5% block or blended refuge 

is required when planting a hybrid that produces two toxins targeting rootworm (EPA 

2010c).  Inheritance of resistance and the presence of fitness costs can impact the success of 

an IRM strategy. The greatest delay in the development of resistance is expected when the 

inheritance of resistance is recessive and fitness costs are associated with resistance 

(Gassmann 2012, Tabashnik et al. 2013).   

Fitness Costs to Bt Resistance 

A fitness cost occurs, in the absence of Bt, when individuals with resistance alleles 

have reduced fitness compared to susceptible individuals (Gassmann et al. 2009).  Fitness 

costs function to remove resistance alleles from the non-Bt refuge and delay the evolution of 

resistance (Gould 1998, Crowder and Carrière 2009, Gassmann et al. 2009, Tabashnik et al. 

2013).  The trade-off between resistance to Bt and fitness in the absence of Bt manifests 

when the trait that confers resistance also has a negative effect on the fitness of the insect 

when not exposed to Bt.  For example, the resistance trait may negatively affect food 

assimilation, increase metabolism, cause greater gut permeability to phytochemicals, or 

change the dynamics of tri-trophic interactions (Gassmann et al. 2006, Tabashnik and 

Carrière 2009).   

The dominance of fitness costs impacts the degree to which resistance evolution is 

delayed, with greater delays when the costs are non-recessive, meaning that heterozygote 

fitness is reduced compared to susceptible insects in the absence of Bt toxins (Carrière and 

Tabashnik 2001).  Costs can vary depending on ecological conditions including host plant 

type (Carrière et al. 2005), competition (Raymond et al. 2005), and the presence of 
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entomopathogens (Gassmann et al. 2006, Raymond et al 2007).  One way that fitness costs 

can be detected is by evaluating fitness components such as survival, size, and developmental 

rate of a resistant population in the absence of Bt compared to a susceptible population.  

Alternatively, the stability of resistance in the absence of Bt can be quantified over time.  

Using this method, a decrease in resistance over time indicates a fitness cost that selects 

against resistance in the absence of Bt toxins (Gassmann et al. 2009).  In a review of fitness 

costs, Gassmann et al. (2009) found fitness costs were detected in 34% of experiments that 

tested one or more individual fitness components, as has been done for western corn 

rootworm, and fitness costs were detected in 62% of experiments that tested for declines in 

resistance over multiple generations in the absence of Bt.   

Past studies comparing life-history characteristics using populations of western corn 

rootworm with laboratory-selected and field-evolved Bt resistance have found variation in 

the presence and magnitude of fitness costs.  Meihls et al. (2012) conducted greenhouse, 

field, and laboratory experiments on non-Bt corn with western corn rootworm strains that 

were selected in the greenhouse on Cry3Bb1 corn.  The fitness components of larval survival, 

survival to adulthood, development time, size, fecundity, egg viability, and longevity were 

tested.  The Cry3Bb1-selected colonies had lower fecundity and a shorter average male 

lifespan compared to unselected colonies.  Oswald et al. (2012) conducted laboratory 

experiment that also used laboratory-selected colonies of Cry3Bb1-resistant western corn 

rootworm and measured the fitness components of survival, fecundity, and egg viability.  The 

authors found increased fecundity and development rate for resistant individuals compared to 

susceptible individuals on non-Bt corn.  The presence of nematodes and fungi did not induce 

fitness costs in two laboratory experiments measuring larval survival of strains of western 
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corn rootworm with laboratory-selected resistance to Cry3Bb1 corn (Petzold-Maxwell et al. 

2012, Hoffmann et al. 2014).  Ingber and Gassmann (2015) found variation in fitness costs 

between two strains of western corn rootworm with field-evolved resistance to Cry3Bb1 corn 

in a laboratory experiment.  The fitness components measured were survival to adulthood, 

development time, size, fecundity, egg viability, and longevity.  No fitness costs were 

detected in one of the resistant strains but for the other resistant strain, there were fitness 

costs of increased time to development, decreased survival to adulthood, and decreased 

fecundity.   

Fitness costs are also associated with some of the lepidopteran species that have 

evolved resistance to Bt crops in the field.  Fitness costs are associated with corn earworm 

resistance to Cry1Ac cotton.  Anilkumar et al. (2008), using laboratory-selected strains, 

found fitness costs including increased larval mortality and decreased larval size.  For strains 

of pink bollworm with laboratory-selected resistance to Cry1Ac cotton, Carrière et al. (2001) 

found a fitness cost of reduced survival for two of three resistant strains compared to two 

susceptible strains in the absence of Bt.  Fitness costs for pink bollworm are also affected by 

the presence of entomopathogenic nematodes (Gassmann et al. 2012b).  A fitness cost of 

longer larval development time was detected in a strain of fall armyworm with field-evolved 

resistance to Cry1F maize in a laboratory experiment (Jakka et al. 2014).  However, 

resistance was stable for this strain after 12 generations, suggesting that the delay in 

development did not impose a significant fitness cost in this strain.  Kruger et al. (2014) 

found no fitness cost associated with field-evolved resistance of maize stalk borer to Cry1Ab 

corn among the fitness components of longevity, fecundity, fertility, larval mass and survival, 

and sex ratio.        
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Inheritance of Resistance to Bt 

Another factor that affects the success of the refuge strategy to delay resistance is the 

extent to which the offspring from resistant and susceptible matings can survive on a Bt crop.  

Resistance is expected to develop fastest when inheritance is dominant, meaning that the 

survival of heterozygous individuals on Bt plants is equivalent to homozygous resistant 

insects (Gould 1998, Tabashnik et al. 2008).  At high doses, when the concentration of toxin 

is 25 times greater than required to kill a susceptible individual or a dose that kills 99.99% of 

susceptible individuals, resistance is effectively recessive because nearly all heterozygous 

and homozygous susceptible insects are killed by the Bt toxin (Gould 1998, Tabashnik et al. 

2013).  Corn hybrids that produce Bt toxins for rootworm management do not produce a high 

dose of Bt toxin (Siegfried et al. 2005, Storer et al. 2006, Meihls et al. 2008, Binning et al 

2010), so resistance is not expected to be functionally recessive.  

Studies of western corn rootworm strains with laboratory-selected and field-evolved 

resistance to Cry3Bb1 have found non-recessive inheritance of resistance (Meihls et al. 2008, 

Petzold-Maxwell et al. 2012, and Ingber and Gassmann 2015), which means that delays in 

the evolution of resistance associated with the refuge strategy will be less than if inheritance 

were recessive.  Dominance of resistance can be calculated using survival on Bt corn with the 

equation: h = (heterozygote ï susceptible) / (resistant ï susceptible), where h = 0 is recessive, 

h = 0.5 is additive, and h = 1 is dominant inheritance (Liu and Tabashnik 1997).  Using 

laboratory-selected resistant western corn rootworm in a greenhouse experiment, Meihls et 

al. (2008) calculated inheritance values of h = 0.285 for larval survival and h = 0.296 for 

adult survival.  Petzold-Maxwell et al. (2012), also using western corn rootworm strains with 

laboratory-selected resistance to Cry3Bb1 corn, found sex linkage in a laboratory 
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experiment.  Resistant females × resistant males had an inheritance value of h = 0.19 but 

susceptible females × resistant males had an inheritance value of h = 1.22 because there was 

higher survival on Cry3Bb1 than resistant females × resistant males.  Ingber and Gassmann 

(2015), using two western corn rootworm strains with field-evolved resistance to Cry3Bb1 

corn, found one strain with an inheritance value of h = 0.37.  Another strain had an 

inheritance value of h = 0.27 but survival on Cry3Bb1 corn was not significantly different 

than a susceptible strain in a laboratory experiment.  This suggests that there is variation in 

the inheritance of Cry3Bb1 resistance in strains with field-evolved resistance. 

The prediction that resistance will develop faster when inheritance is non-recessive is 

also supported in other species with resistance to Bt crops.  In general, resistance is less 

common when it is recessively inherited (Tabashnik et al. 2013).  Resistance is non-recessive 

for corn earworm (Burd et al. 2000), maize stalk borer (Van Rensburg 1999), pink bollworm 

in India (Nair et al. 2016), and fall armyworm (Storer et al. 2010) and they are not exposed to 

a high dose of toxin in the field.  These species have all evolved resistance to Bt toxins as a 

result of repeated exposure in the field.  By contrast, tobacco budworm, a closely related 

species to corn earworm, does experience a high dose of Cry1Ac and has yet to evolve 

resistance in the field (Lutrell et al. 1999, Tabashnik et al. 2008).  Likewise, European corn 

borer (Ostrinia nubilalis Hübner) and southwestern corn borer (Diatraea grandiosella Dyar) 

are exposed to a high dose of Cry1Ab on corn and populations remain susceptible to the 

toxin (Huang et al. 2011).    

Focus of Thesis and Relevance 

This thesis quantifies the inheritance of resistance and fitness costs in two strains of 

western corn rootworm with field-evolved resistance to the Bt toxin Cry3Bb1.  The two 
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strains were collected from fields in Iowa with more than one node of root injury to Cry3Bb1 

corn.  Elma experienced two selections on Cry3Bb1 corn in the field and Monona 

experienced four field selections.  These two strains were also shown to be resistant to 

Cry3Bb1 in plant-based bioassays (Gassmann et al. 2012, Gassmann et al. 2014).  Field-

collected adults were crossed with a non-diapausing Bt-susceptible strain of western corn 

rootworm and selected on Cry3Bb1 corn to facilitate their use in experiments and allow for 

comparison with the susceptible strain.  The inheritance of resistance to Cry3Bb1 was 

investigated by crossing resistant and susceptible western corn rootworm and evaluating the 

survival of their progeny on Bt using diet-based assays and experiments with whole plants 

and seedling mats.  Laboratory and greenhouse experiments were conducted to determine if 

fitness costs were associated with resistance.  This research will give insight into the 

dynamics of the evolution of Bt resistance for western corn rootworm and the persistence of 

resistance in the field.       
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Abstract 

The western corn rootworm (Diabrotica virgifera virgifera LeConte) is an economically 

important pest of corn.  One strategy used to manage western corn rootworm is the planting 

of transgenic corn that produces one or more Cry toxins derived from Bacillus thuringiensis 

(Bt).  Refuges of non-Bt corn function to delay the development of resistance and the greatest 

delay in resistance is expected when the inheritance of resistance is recessive and there are 

associated fitness costs.  We characterized the inheritance of resistance of two strains of 

western corn rootworm with field-derived resistance to the Bt toxin Cry3Bb1 (Elma and 

Monona) and tested for fitness costs of resistance.  Plant-based and diet-based bioassays 

found that inheritance of resistance was non-recessive.  In a greenhouse experiment in which 

larvae were reared on whole corn plants in field soil, no fitness costs of resistance were 

detected for Monona.  In a laboratory experiment with Elma, in which larvae experienced 

intraspecific and interspecific competition for food, a fitness cost of delayed larval 

development was identified, however, no other fitness costs were found. These results 

highlight the potential for rapid evolution of resistance to Cry3Bb1 corn by western corn 

rootworm, and will aid in the development of resistance management strategies for this pest. 

Keywords: Bacillus thuringiensis, Bt corn, Diabrotica virgifera virgifera, resistance 

management, refuge strategy 
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Introduction  

The western corn rootworm (Diabrotica virgifera virgifera LeConte) is a serious pest 

of corn in the United States (Gray et al 2009).  Rootworm larvae feed on the roots of corn, 

reducing yield and making plants more susceptible to lodging, which can complicate harvest 

(Koehler et al. 1985, Dunn et al. 2010).  Pruning of one node of roots from larval rootworm 

feeding is associated with a 17% loss in yield (Dun et al. 2010).  Rootworm management has 

been complicated by the evolution of resistance to several management strategies, including 

organochloride, organophosphate, carbamate, and pyrethroid insecticides (Ball and 

Weekman 1963, Meinke et al. 1998, Pereira et al. 2015), crop rotation (Levine et al. 2002, 

Gray et al. 2009), and corn that produces insecticidal toxins from Bacillus thuringiensis (Bt) 

(Gassmann et al. 2011, Gassmann 2012, Gassmann et al. 2014, Wangila et al. 2015).    

Transgenic crops that produce Bt toxins are used in the management of many 

agricultural pests.  Corn producing the Bt toxin Cry3Bb1 was first commercialized for 

management of larval rootworm in 2003 (EPA 2003).  The planting of Bt corn places 

selective pressure on populations to develop resistance, and laboratory studies have 

demonstrated the capacity of rootworm populations to evolve Bt resistance quickly (Meihls 

et al. 2008, Deitloff et al. 2015).  Populations of western corn rootworm that evolved 

resistance to Bt corn as a result of field exposure were first collected in 2009 from fields in 

Iowa with severe root injury to Cry3Bb1 corn (Gassmann et al. 2011).  Other instances of 

field-evolved resistance to Cry3Bb1, as well as cross-resistance between Cry3Bb1 corn and 

mCry3A corn have since been identified (Gassmann et al. 2012, 2014, Wangila et al. 2015). 

The refuge strategy, in which a portion of the field is planted to a non-Bt host, is one 

approach to manage the development of resistance to Bt crops.  For a corn hybrid expressing 
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a single Bt trait for western corn rootworm, 20% of a field must be planted to non-Bt corn for 

a spatially segregated (i.e., block) refuge and 10% of the field must be non-Bt corn if an 

integrated (i.e., blended) refuge is planted (EPA 2010).  The non-Bt portion of the field, or 

refuge, serves as a source of susceptible individuals that may mate with resistant insects, 

thereby producing heterozygous offspring and reducing the number of homozygous resistant 

individuals (Gould 1998).  The delay in resistance achieved by the refuge strategy is 

expected to be greatest when the inheritance of resistance to Bt is recessive and there are 

associated fitness costs (Gassmann 2012, Tabashnik et al. 2013).     

Fitness costs occur, in the absence of Bt, when individuals with one or more 

resistance alleles have lower fitness compared to susceptible individuals (Gassmann et al 

2009).  Fitness costs remove resistance alleles from the refuge, thereby delaying the 

evolution of resistance (Gould 1998, Crowder and Carrière 2009, Gassmann et al. 2009, 

Tabashnik et al. 2013).  Ecological variables such as host plants (Carrière et al. 2005), the 

presence of entomopathogens (Gassmann et al. 2006, Raymond et al 2007), and competition 

(Raymond et al. 2005) can influence the magnitude of fitness costs.  Fitness costs of 

resistance have been investigated in rootworm populations with laboratory-selected 

resistance (Meihls et al. 2012, Oswald et al. 2012, Petzold-Maxwell et al. 2012, Hoffmann et 

al. 2014) and field-derived resistance (Ingber and Gassmann 2015), with variation found in 

the presence and magnitude of costs among populations.  Further investigations of fitness 

costs and the effect of ecological variables on fitness costs will provide a better 

understanding of the extent to which fitness costs may be associated with Bt resistance in 

western corn rootworm populations.    
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Another factor determining the effectiveness of the refuge strategy to delay resistance 

is the inheritance of resistance traits, in particular, the effective dominance of resistance.  The 

effective dominance of resistance is the degree to which the survival of heterozygous 

resistant insects on a Bt crop resembles that of homozygous resistant insects (Gould 1998, 

Tabashnik et al. 2008).  At a high dose of Bt toxin, which can be defined as either a 

concentration of Bt toxin 25 times greater than is required to kill a susceptible individual or 

that which kills 99.99% of susceptible individuals, nearly all heterozygous and homozygous 

susceptible insects are killed by a Bt crop and resistance is effectively recessive (Gould 1998, 

Tabashnik et al. 2013).  Corn hybrids currently available for rootworm management do not 

produce a high dose of Bt toxin (Gassmann 2012, Andow et al. 2016), so resistance is 

expected to be inherited as a non-recessive trait.  Understanding the ability of heterozygous 

resistant individuals to survive in the Bt portion of the field is important for predicting the 

ability of the refuge strategy to delay the evolution of resistance.         

 Our study quantified the inheritance and fitness costs of resistance to the Bt toxin 

Cry3Bb1 in two strains of western corn rootworm with field-derived resistance (Monona and 

Elma).  Heterozygous crosses were established between the resistant strains and a susceptible 

strain to assess inheritance of resistance using a variety of bioassays including single-plant 

assays, seedling mat assays and diet-based assays.  We also tested for fitness costs of 

resistance under differing ecological conditions.   One experiment, conducted in a 

greenhouse, tested for fitness costs when larvae were reared on corn plants grown in field 

soil, and a second experiment, conducted in a growth chamber, examined the effect of 

competition on fitness costs.  The data from these experiments will add to the current 
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knowledge about Bt resistance by western corn rootworm and will aid in improving 

resistance management for this pest. 

Methods 

 

Rootworm Strains. In total three strains of western corn rootworm and one strain of 

southern corn rootworm (Diabrotica undecimpunctata howardi Barber) were studied in these 

experiments.  The Susceptible strain is a non-diapausing strain of western corn rootworm that 

was brought into laboratory culture in the mid-1960s (Branson 1976, Kim et al. 2007) and 

was never exposed to Bt corn.  Insects were acquired from the USDA-ARS North Central 

Agricultural Research Laboratory in Brookings, South Dakota to establish the Susceptible 

strain at Iowa State University in October 2009 (F1).  This research used F28 to F35 of 

Standard. 

The Monona and Elma strains are non-diapausing strains of western corn rootworm 

with field-evolved resistance to Cry3Bb1 corn.  In August 2011, adult male western corn 

rootworm were collected from field S5 in Gassmann et al. (2012) to establish Monona and 

field P2 in Gassmann et al. (2014) to establish Elma.  Two hundred field-collected adult 

males were collected to initiate Monona and 142 field-collected adult males were collected to 

initiate Elma.  To generate each strain, field-collected males were crossed with 150 virgin 

females from Susceptible. Monona was subsequently selected on Cry3Bb1 corn and 

backcrossed with Susceptible at a 1:1 ratio twice (F6 and F8) and selected on Cry3Bb1 corn 

without backcrossing four more times (F10, F11, F14, and F15).  Elma was selected on Cry3Bb1 

corn and backcrossed with Susceptible at a 1:1 ratio twice (F4 and F7) and selected on 

Cry3Bb1 corn without backcrossing twice (F10 and F11).  In all other generations, the strains 

were reared on non-Bt corn (Pioneer 34M94, DuPont Pioneer Johnston, IA).  Our assays and 
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experiments used F20 to F26 of Monona and F18 to F20 of Elma.  The adult population size was 

maintained at ca. 2500 adults for the three western corn rootworm strains, and all corn seed 

did not contain any type of pesticidal seed treatment. 

In two experiments, southern corn rootworm (SCR) were used in addition to western 

corn rootworm.  This strain was generated in October 2013 from 381 adult SCR adults that 

were collected from the Sustainable Agriculture Garden at Iowa State University.  All 

generations were reared on non-Bt corn and maintained at a population size of ca. 900 adults.  

SCR F6, F7, F14, and F16 were used in our experiments.     

Strain Rearing. Adult insects were kept in cages (18 × 18 × 18 cm, MegaView 

Science Co. Ltd., Taichung, Taiwan) in an incubator (Percival Scientific, Perry, IA; 25
o 
C 

16:8 [L:D] h photoperiod).  Food provided was a complete adult diet (western corn rootworm 

adult diet, product # F9768B-M, Bio-Serv, Frenchtown, NJ) and corn leaf tissue, and the 

water source was a 1.5% agar solid. A petri dish (150 mm diameter) of moistened sieved 

field soil (<180µm) was used as an oviposition substrate and was replaced two times per 

week.  Larvae were reared on mats of corn seedlings following the methods of Jackson 

(1986) and Ingber and Gassmann (2015).  Adult insects were collected from seedling mats 

and placed into cages.      

Quantifying Inheritance of Resistance to Cry3Bb1. Reciprocal crosses were 

established separately, but in an identical manner between Elma and Susceptible and between 

Monona and Susceptible following Petzold-Maxwell et al. (2012).  First, all adults were 

collected and discarded from seedling mats to remove any adults that may have mated, then 

virgin adults were collected every 2 to 3 h to ensure that the adults had not mated.  Adults 

were held separately in Petri dishes and sex of each insect was determined following 
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Hammack and French (2007).  Virgin adults were then placed in one of four cages: 

Susceptibleǀ × Susceptibleǁ, Susceptibleǀ × Resistantǁ, Resistantǀ × Susceptibleǁ, and 

Resistantǀ × Resistantǁ.  Crosses between Susceptible and Elma were established between 

18 July and 26 September 2014 using F28 and F29 of Susceptible and F18 and F19 of Elma with 

cages maintained at an average population size of 109 ± 34 adults (Mean ± SD).  Crosses 

between Susceptible and Monona were established between 10 December 2014 and 9 

October 2015 using F31 to F35 of Susceptible and F20 to F26 of Monona and maintained at an 

average population size of 133 ± 41 adults.  

Seedling-Mat Bioassay. The seedling mat bioassays were conducted between 21 

August and 21 November 2014 using the Susceptible and Elma crosses and 21 February and 

9 December 2015 using the Susceptible and Monona crosses.  Assays followed Ingber and 

Gassmann (2015). Briefly, seedling mats of either Cry3Bb1 corn or the non-Bt near isoline 

were grown in 0.5 L plastic containers (RD-16 Placon Corporation, Madison, WI) for 7 d in 

an incubator (photoperiod 16:8 [L:D] h), after which time 25 neonate larvae ( <24 h old)  

were placed on the corn root tissue from one of the four strains established with the 

reciprocal crosses.  After 1 wk, the seedling mat, soil and larvae from 0.5 L containers were 

transferred to a corresponding 1 L plastic tray (C32DE; Dart Container Corporation, Mason, 

MI) that was made using same corn hybrid as was used for 0.5 L containers.  After 1 wk, 

trays were checked for adult emergence three times per week and this continued until no 

adults were collected from a replicate for 14 d.  A replicate consisted of a one non-Bt 

seedling mat and one Cry3Bb1 seedling mat for each of the four strains tested.  The 

experiment with the Elma and Susceptible consisted of nine blocks with two replicates per 
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block and the experiment with the Monona and Susceptible consisted of 12 blocks with two 

replicates per block. 

 Single-Plant Bioassay. This experiment was conducted from 29 January to 11 

November 2015 with the crosses established between Susceptible and Monona.  An initial 

single-plant bioassay was conducted following the methods of Gassmann et al. (2011), but 

due to low recovery of the non-diapausing strains, the assay was modified to use older corn 

plants, with more root tissue that more closely resembled seedling mats on which non-

diapausing strains were reared.  The experiment consisted of 12 blocks with each block 

containing two non-Bt and two Cry3Bb1 corn plants per strain established by the reciprocal 

crosses.  Corn plants were grown singly in 1 L plastic containers (Placon#22373; Placon 

Corporation, Madison, WI) filled with 750 mL of potting soil.  Containers received 300 mL 

water just before seeds were planted (depth = 5 cm).  Plants were given 100 mL of water 

three times per week and were fertilized weekly beginning 2 wks after planting (4mg/mL 

Peters Excel 15-5-15 Cal-Mag Special; Everris NA Inc., Dublin, OH).  When plants had 

reached V6 to V8, they were trimmed to a height of 20 cm and 12 neonate larvae (< 24 h old) 

were placed on the base of each plant.  Containers were placed in an incubator (24
o 
C, 65% 

RH, 16/8 L/D) and watered as needed.  After 14 d, the aboveground plant material was 

removed and contents of the container (soil, roots and larvae) were placed on a Berlese 

funnel for 4 d to extract larvae.    

Diet-Based Bioassay. Diet-based bioassays were conducted between 14 March and 28 

November 2015 and followed Siegfried et al. (2005) using the Susceptible and Monona 

strains, and their reciprocal crosses.  Eggs were incubated in soil (26.7
o
C, 67% RH, 0/24h 

L/D) until hatching began.  Soil was then washed from the eggs, and any remaining debris 
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separated by salt flotation (Chandler et al. 1966).  Eggs were then surface sterilized in a 2% 

bleach solution followed by a 0.085 Lysol solution, after which they placed on a moistened 

coffee filter placed on top of a 1.8% agar solid that was held in 0.5 L container.  Monsanto 

Corporation (St. Louis, MO) provided 96 well plates with diet (Siegfried et al. 2005, Ingber 

and Gassmann 2015), a solution of Cry3Bb1 toxin, and a buffer solution.  Toxin was overlaid 

on the diet at six concentrations, which varied by strain due to anticipated differences in 

susceptibility to Cry3Bb1 among strains.  The concentrations tested were: Susceptible = 

85.40, 42.70, 21.40, 10.70, 5.40, µg Cry3Bb1/cm
2
, and a control with only buffer and no 

toxin; heterozygous = 170.80, 85.40, 42.70, 21.40, 10.70 µg/cm
2
, and a control; Monona = 

341.60, 170.80, 85.40, 42.70, 21.40 µg/cm
2 
and a control.  Each bioassay plate consisted of 

12 larvae per concentration, for a total of 72 larvae per plate.  One neonate larva was placed 

in each well and then covered with an adhesive cover and held in a chamber for 5 d.  After 

five days, the plates were checked for survival (defined as showing movement when 

prodded).  For each plate, survival of at least eight larvae in control wells was used as the 

threshold for a successful plate.  Six out of 12 plates were successful for Susceptible, four out 

of 12 plates were successful for Susceptible ǀ × Monona ǁ, five out of 13 plates were 

successful for Monona ǀ × Susceptible ǁ, and five out of 16 plates were successful for 

Monona.    

Greenhouse Experiment Testing for Fitness Costs.   This experiment used the F21 

of Monona and F32 of Susceptible and occurred from 2 January to 12 June 2015.  Non-Bt 

corn with no seed treatment was grown in a greenhouse to the V5-V8 stage, at which time 25 

neonate larvae (<24h old) were placed on the roots of each plant.  Pots were covered with 

chiffon fabric secured around the outside of the pot with rubber bands and tied around the 
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stalk with a twist tie.  A replicate consisted of one plant with larvae, and 16 replicates each 

were established for the Monona and Susceptible strains.      

Adult insects were collected three times per week beginning 3 wk after larvae were 

added to pots until there were six consecutive days without emergence.  Adults were sexed 

and placed into cages with one cage for all individuals that emerged from the same pot.  Non-

Bt corn plants (08T91CMV, Blue River Hybrids, Ames, IA) were also grown in the 

greenhouse to serve as a food source for adult rootworm.  Cages received chopped corn ear, 

silk, and leaves from these plants as well as 1.5% agar solid as a source of water, and both 

were changed three times per wk.  Each cage contained a petri dish with moistened sieved 

field soil for oviposition, which was changed once per week.  Cages were checked three 

times per wk for dead adults, which were removed and stored in 85% ethanol.  Adult beetles 

were later sexed and their head capsules measured according to the methods of Ingber and 

Gassmann (2015).  Egg viability was quantified at 2, 4, and 6 wks after a cage was 

established by placing 25 eggs on a 1.5% agar solid and checking for hatch 5 d per wk until 

there were no newly hatched larvae on three consecutive days.   

Competition Experiment Testing for Fitness Costs. This experiment was 

conducted between 12 August and 26 November 2014 and used F19 and F20 of Elma, F29 and 

F30 of Susceptible, and F6 and F7 of (SCR).  The experiment was a fully crossed design with 

three factors: food availability, presence or absence of SCR as a competing species, and 

strain of western corn rootworm (Susceptible or Elma).  Seedling mats were prepared in 0.5 

L plastic containers with either low or high food availability achieved by adding either five 

or 10 kernels of non-Bt corn, 60 mL of DI water, and 200 mL of a 50% field-collected soil 

and 50% potting soil mixture.  After 1 wk, seedling mats received 25 neonate larvae from 
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either Elma or Standard.  At that time, half of the seedling mats also received 25 neonate 

SCR larvae.  After 7 d, small seedling mats were transferred to larger seedling mats that 

consisted of either 10 or 20 kernels per tray of non-Bt corn (corresponding to low or high 

food availability, respectively), 60 mL of DI water, and 500 mL of soil, all of which was 

placed in a 1 L plastic tray.  Larger seedling mats were allowed to grow for 7 d before 

smaller seedling mats were transferred.  Adult western corn rootworm were collected and 

separated into cages following the same methods as the greenhouse experiment.  For each 

combination of strain × food availability × presence or absence of SCR, there was one 

replication per block and a total of 10 blocks. 

Data were collected and adults maintained as in the greenhouse experiment, with the 

exception of how food was provided.  In this experiment, we simulated the reduced food 

availability that adult rootworm experience as corn matures in the field.  For four weeks, 

each cage received adult rootworm diet, non-Bt corn leaf, and a 1.5% agar solid changed 

three times per week.  Then, for the next two weeks, agar was always present but adult diet 

was only provided for 1d per wk.  After that, cages received only agar and corn leaf.  

Interaction of Western and Southern Corn Rootworm.  This experiment was 

conducted between 24 July 2015 and 6 January 2016 to determine the potential for larval 

predation by western and southern corn rootworm and used F29 to F31 of Susceptible and F14 

to F16 of SCR.  Larvae were obtained from seedling mats and placed onto moistened filter 

paper in 65 mm petri dishes with either two or four pieces of non-Bt corn root (2.5 cm in 

length). These dishes were sealed with Parafilm M (Bemis, Oshkosh, WI) to prevent the 

larvae from escaping. Eight to 12 dishes were established for each of 10 larval treatments that 

tested various combinations of western corn rootworm larvae and SCR larvae (Table 1).  
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After 2 d, the number of live, dead, and missing larvae was recorded.  Western corn 

rootworm and SCR larvae were distinguished morphologically based on Mendoza and Peters 

(1964).   

Data analysis. All data were analyzed with SAS 9.3 (SAS Institute Inc., Cary, NC).  

For the seedling-mat and single-plant bioassays, data were analyzed with a mixed-model 

analysis of variance (ANOVA) (PROC MIXED).  Fixed effects were strain, hybrid, and the 

interaction of strain and hybrid.  Random effects were block and all interactions with fixed 

effects.  For these and all analyses using mixed-model ANOVA, the significance of random 

effects was tested with a log-likelihood statistic (-2 RES Log Likelihood) based on a one-

tailed ɢ
2
 test with one degree of freedom (Littell et al. 2006).  A random effect was included 

in the model if it was significant at P < 0.25 or if higher order interactions including the 

effect were significant.   

For the seedling-mat and single-plant bioassays, pairwise comparisons were first 

made between the two heterozygous crosses using the CONTRAST statement with a p value 

of 0.05 to determine if the strains could be combined.  Corrected survival on Cry3Bb1 corn 

in these bioassays was calculated as the complement of corrected mortality based on Abbott 

(1925).  Resistance ratios were the quotient of corrected survival on Cry3B1 corn for the 

resistant strain divided by Susceptible.  Dominance of resistance (h) was calculated based on 

phenotype using corrected survival on Cry3Bb1 corn with the equation: h = (heterozygote ï 

susceptible) / (resistant ï susceptible), where 0 = recessive, 1 = dominant, and 0.5 = additive 

inheritance (Liu and Tabashnik 1997).   

For the diet-based bioassay, corrected larval mortality for each plate was calculated 

based on Abbottôs correction (Abbott 1925).  Data were analyzed with a probit analysis, 
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which determined LC50 values, 95% fiducial limits, and goodness-of-fit based on Pearson ɢ
2
 

(PROC PROBIT).  

For the fitness costs experiment with plants grown in the greenhouse, data on 

proportion survival to adulthood and egg viability were compared between strains with a 

model I ANOVA (PROC GLM).  In the analysis of development rate, head capsule width, 

and adult lifespan, a mixed-model ANOVA was used.  Fixed effects were strain, sex, and the 

interaction of strain and sex, and the random effect was cage × strain × sex, which was the 

mean square error term for the analysis.  Egg production was analyzed with repeated 

measures ANOVA based on a split-plot design.  Fixed effects were strain, week and week × 

strain and the random effects of cage nested within strain and week × cage (strain), which 

were the mean square error terms for the analysis.   

For the experiment measuring the effect of competition on fitness costs, data were 

analyzed with a mixed-model ANOVA.  The analysis of data on proportion survival to 

adulthood and egg viability used the fixed effects of strain, number of kernels, SCR (present 

vs. absent), and all interactions.  The fixed effects of strain, number of kernels, SCR, sex, and 

all interactions were used in the analysis of development rate, head capsule width, and adult 

lifespan.  Random effects were block and all interactions of block with fixed effects.  Egg 

production was analyzed by repeated measures ANOVA with the fixed effects of strain, 

week, SCR, kernels and all interactions among these factors.  Random effects were block all 

its interactions with fixed effects.  Cage (strain × kernels × SCR presence × block) and week 

× cage (strain × kernels × SCR presence × block) were additional random effects and were 

not pooled regardless of significance because they would serve as mean square error terms if 

other random effects were pooled.  
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The interaction of western and southern corn rootworm was analyzed with a model I 

ANOVA.  Of the 2,020 larvae used in this experiment, 91 were missing and 57 were dead 

after 2 d.  The proportion missing data were transformed with the arcsine of the square root 

function.  Data on the proportion of western corn rootworm and SCR larvae missing were 

analyzed separately and factors included the number of roots, treatment (see Table 1), and the 

interaction between these factors.  Planned pairwise comparisons were made between 

controls (second or third instar western corn rootworm only or second or third instar SCR 

only) and the other treatments if that treatment contained the same instar and species of 

larvae.   

Results 

Quantifying inheritance of resistance to Cry3Bb1 For the seedling-mat bioassay 

with Elma, there was a significant interaction between strain and corn hybrid for survival to 

adulthood (df = 3,125; F = 27.22; P <0.001) (Table 2; Fig. 1a).  Survival of the heterozygous 

strains was similar on non-Bt corn (0.86 ± 0.023and 0.84 ± 0.022; mean ± SE; df = 1,125; F 

= 0.35; P = 0.5543) but different on Cry3Bb1 corn (0.44 ± 0.035 and 0.35 ± 0.050; df = 

1,125; F = 4.87; P = 0.0291).  Consequently, the two heterozygous strains were not pooled.  

The four genotypes (resistant, susceptible and the two heterozygous strains) had equivalent 

survival on non-Bt corn (P > 0.15) but differed in their survival on Bt corn.  Survival on 

Cry3Bb1 corn was greatest for Elma and there was no difference in survival on non-Bt corn 

compared to Cry3Bb1 for this strain (df = 1,125; F = 2.39; P = 0.1246), suggesting complete 

resistance (Fig. 1a).  Survival of the Susceptibleǀ × Elmaǁ and Elmaǀ × Susceptibleǁ 

strains were significantly greater than Susceptible on Cry3Bb1 corn (Susceptibleǀ × Elmaǁ: 

df = 1,125; F = 17.84; P < 0.0001; Elmaǀ × Susceptibleǁ: df = 1,125; F = 4.09; P = 0.0452), 
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indicating non-recessive inheritance for these strains.  Both strains had lower survival on 

Cry3Bb1 corn compared to Elma (Susceptibleǀ × Elmaǁ: df = 1,125; F = 61.19; P < 0.0001; 

Elmaǀ × Susceptibleǁ: df = 1,125; F = 96.57; P <0.0001), indicating that resistance was not 

dominant.  The corrected survival to adulthood on Cry3Bb1 corn was 0.93 (0.76 ÷ 0.82) for 

Elma, 0.52 (0.45 ÷ 0.86) for the Susceptibleǀ × Elmaǁ strain, 0.43 (0.36 ÷ 0.84) for the 

Elmaǀ × Susceptibleǁ strain, and 0.35 (0.29 ÷ 0.81) for Susceptible.  This yielded a 

resistance ratio for Elma of 2.74 (0.93 ÷ 0.35) and inheritance values of 0.29 based on the 

Susceptibleǀ × Elmaǁ strain and 0.14 based on the Elmaǀ × Susceptibleǁ strain. 

For the seedling-mat bioassay with Monona, there was a significant interaction 

between rootworm strain and corn hybrid (df = 3, 81; F = 9.69; P < 0.0001).  However, no 

difference in the survival of the two heterozygous strains on non-Bt (0.65 ± 0.072 and 0.64 ± 

0.111; df = 1,81; F = 0.01; P = 0.9258) or Cry3Bb1 corn (0.38 ± 0.062 and 0.35 ± 0.094; df = 

1,81; F = 0.29; P = 0.5927) was detected so strains were pooled into a single heterozygous 

strain for all analyses.  Using the single heterozygous strain, there was a significant 

interaction between strain and corn hybrid (Table 2; Fig. 1b).  There was no difference 

among the three strains on non-Bt corn (p > 0.15) but the genotypes differed in survival on 

Cry3Bb1 corn.  Monona had the highest survival on Cry3Bb1 corn and survival was 

equivalent between the Bt and non-Bt hybrids (df = 1,13; F = 0.45; P = 0.5163), indicating 

complete resistance.  Survival on Cry3Bb1 corn was lowest for Susceptible and significantly 

lower compared to survival on non-Bt corn (df = 1,13; F = 50.55; P < 0.0001).  Survival of 

heterozygous on Cry3Bb1 was significantly greater than Susceptible (df = 1,13; F = 6.42; P = 

0.0249), indicating non-recessive inheritance of resistance, but significantly lower than 

Monona (df = 1,13; F = 13.76; P = 0.0026) indicating that resistance was not dominant.  
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Corrected survival to adulthood on Cry3Bb1 corn was 0.91 (0.62 ÷ 0.68) for Monona, 0.52 

(0.33 ÷ 0.63) for Heterozygous, and 0.20 (0.14 ÷ 0.70) for Susceptible.  The resistance ratio 

for Monona is 4.55 (0.91 ÷ 0.20) and the inheritance is 0.45.    

With the single-plant bioassay using Monona, there was a significant interaction 

between strain and corn hybrid (df = 3,107; F = 3.03; P = 0.0325).  Because there was no 

difference in larval survival between the two heterozygous strains on non-Bt (0.56 ± 0.050 

and 0.63 ± 0.068; df = 1,107; F = 0.58; P = 0.4476) or Cry3Bb1 corn (0.41 ± 0.076 and 0.44 

± 0.065; df = 1,107; F = 0.07; P = 0.7978), they were combined into one heterozygous strain 

for all analyses.  There was a significant interaction between strain and hybrid when the 

heterozygous strains were combined (Table1; Fig. 1c) with equivalent survival of the strains 

on non-Bt corn (P > 0.15 in all cases), indicating no difference in vigor.  Survival of Monona 

on Cry3Bb1 corn was not significantly different compared to survival on non-Bt corn (df = 

1,135; F = 1.30; P = 0.2571), indicating complete resistance.  On Cry3Bb1 corn, survival was 

significantly different between Susceptible and heterozygotes (df = 1,135; F = 12.52; P = 

0.0006), indicating non-recessive inheritance of resistance.  Survival of the heterozygous 

strain on Cry3Bb1 corn was not significantly different compared to Monona (df = 1, 135; F = 

0.02; P = 0.8930), indicating that resistance was dominant.  Corrected larval survival was 

0.83 (0.43 ÷ 0.52) for Monona, 0.70 (0.44 ÷ 0.63) for heterozygous, and 0.34 (0.21 ÷ 0.61) 

for Susceptible.  This produced a resistance ratio for Monona of 2.44 (0.83 ÷ 0.34) and 

inheritance of 0.73.  

In the diet-based assay with Monona (Table 3; Fig. 2) the heterozygous strains were 

once again pooled.  We were able to calculate LC50 values and 95% fiducial limits for the 

Susceptible strain and heterozygous strains but not for Monona, because mortality never 
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exceeded 50% (Table 3; Fig. 2).  There was a significant difference, as evidenced by non-

overlapping 95% fiducial limits, between the LC50 values for the susceptible and 

heterozygous genotypes (Table 3), indicating non-recessive inheritance of resistance.  

Greenhouse assessment of fitness costs. In the experiment with Monona and 

Susceptible, strain and its interaction with sex were not significant for any of the variables 

measured (Table 4; Fig. 3).  This suggests an absence of fitness costs of Cry3Bb1 resistance 

in Monona.  There was a significant effect of sex on development rate with males emerging 

before females (Table 4; Fig. 3d).  There was also a significant effect of week on fecundity 

with egg production decreasing with time (Fig. 3f).  

Effect of competition on fitness costs. Survival to adulthood was affected both by 

food availability and presence of SCR, indicating an effect of competition on survival.  

Proportion survival to adulthood was greatest in seedling mats with high food availability 

and no SCR (Fig. 4b).  However, for survival there was not a significant effect of strain or 

interaction of strain with other factors, indicating that a fitness cost affecting survival was not 

present (Table 6; Fig 4b).  There was a significant effect of strain on development rate (Table 

6).  On average, Elma emerged about 1.49 d later than Susceptible, indicating a fitness cost 

of resistance (Fig. 4a).  Neither strain nor any interaction with strain were significant for size, 

adult lifespan, fecundity or egg viability, indicating that no fitness costs were associated with 

these life-history components (Table 5; Fig. 4).  There was a significant effect of week and 

an interaction between week and number of kernels for fecundity.  Initially egg production 

was greater from insects with 10 vs. 5 kernels (week 3: 5 kernels = 272 ± 155 eggs per cage; 

10 kernels = 1073 ± 118) but this difference decreased over time (week 5: 5 kernels = 30 ± 

156; 10 kernels = 246 ±121). 
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In the larval predation experiment, there was no significant interaction of treatment 

with number of roots for proportion surviving western corn rootworm (df = 6,131; F = 0.46, 

P = 0.8380).  There was also no effect of treatment (df = 6,131; F = 2.14; P = 0.0530).  There 

was no significant treatment × number of roots interaction for proportion surviving SCR (df 

= 6,116, F = 0.8, P = 0.5685), but there was a significant effect of treatment (df = 6,116, F = 

2.88, P = 0.0119).  There were significantly fewer surviving SCR larvae in the treatment with 

five second instar western corn rootworm larvae and five second instar SCR larvae compared 

to the control of 10 second instar SCR larvae (Table 1; df = 1,116, F = 4.99; P = 0.0275) and 

in the treatment with 5 second and 5 third instar SCR larvae compared to the treatment with 

10 third instar SCR larvae (df = 1, 116; F = 4.17; P = 0.0435).  Overall, there was some 

evidence of larval predation, particularly of SCR larvae, but the proportion of surviving 

larvae was never below 85% and was typically greater than 90% (Table 1).  

Discussion 

 Our study investigated the inheritance of resistance and associated fitness costs for 

two strains of western corn rootworm with field-evolved resistance to Cry3Bb1 corn.  For 

these strains, resistance was non-recessive and minimal fitness costs were detected.  Past 

studies have also documented non-recessive inheritance of Bt resistance for western corn 

rootworm (Meihls et al. 2008, Petzold-Maxwell et al. 2012, and Ingber and Gassmann 2015) 

while the presence of fitness costs has varied among strains and experiments (Petzold-

Maxwell 2012, Oswald et al. 2012, Hoffmann et al. 2014, Ingber and Gassmann 2015).  

These findings, and those of other studies, suggest that field-evolved resistance to Cry3Bb1 

corn by western corn rootworm was likely facilitated by non-recessive inheritance of 
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resistance traits and similar fitness between resistant and susceptible insects in refuges 

(Gassmann 2012, Tabashnik et al. 2013).   

Fitness costs of Bt resistance function to remove resistance alleles from a population 

in the absence of Bt toxins.  When fitness costs are minimal, resistance alleles may 

accumulate in the refuge population because of selection within Bt fields and subsequent 

dispersal into refuge populations (Gould 1998).  By contrast, when fitness costs are present, 

the selection against resistance alleles in the refuge can delay or reverse the evolution of 

resistance in a population (Carrière and Tabashnik 2001).  This would occur if such a cost 

removes resistance alleles in the refuge to a greater extent than the alleles are selected for in 

the Bt portion of the field (Gassmann et al. 2009).  In our experiments, no fitness costs were 

detected for Monona (Fig. 3) in a greenhouse experiment, but there was a fitness cost of 

increased time to development for Elma in our competition experiment (Fig. 4a).  Ingber and 

Gassmann (2015) also identified a fitness cost of delayed larval development for one strain 

(Cresco) of western corn rootworm with field-evolved Cry3Bb1 resistance.  Conversely, 

Oswald et al. (2012) identified no fitness costs of resistance to Cry3Bb1 in laboratory-

selected resistant western corn rootworm strains and found that resistant lines had an 

increased the rate of larval development compared to unselected strains.  Results with other 

strains of Cry3Bb1-resistant western corn rootworm have ranged from finding no fitness 

costs associated with resistance (Petzold-Maxwell et al. 2012, Hoffmann et al. 2014, Ingber 

and Gassmann 2015) to costs that affected survival (Ingber and Gassmann 2015) and 

fecundity (Meihls et al. 2012, Ingber and Gassmann 2015).   

Compared to western corn rootworm, more research with fitness costs of Bt 

resistance has been conducted on lepidopteran pests, especially the diamondback moth 
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(Plutella xylostella Linnaeus) and the pink bollworm (Pectinophora gossypiella Saunders) 

(Gassmann et al. 2009).  Fitness costs have been observed for both of these species.  Carrière 

et al. (2001) found an average of 51.5% reduction in survival of Bt resistant pink bollworm 

on non-Bt cotton compared to susceptible strains.  Likewise, a fitness cost of reduced 

survival and a decrease in resistance over multiple generations in the absence of Bt toxins 

were associated with resistance to Cry1Ac in the diamondback moth (Tabashnik et al. 1994).  

A review of studies by Gassmann et al. (2009) found fitness costs in 34% of experiments that 

tested fitness components and costs in 62% of experiments that tested for declines in 

resistance over multiple generations.  Future studies that test for a decline in resistance over 

time in strains of western corn rootworm with field-derived resistance should be conducted to 

better understand fitness costs of Bt resistance in the western corn rootworm.  

Resistance is expected to develop faster as the effective dominance of resistance, i.e., 

the survival of heterozygous individuals on Bt plants compared to homozygous resistant 

insects, increases (Gould 1998, Tabashnik et al. 2008).  We found non-recessive inheritance 

of resistance for both the Elma and Monona strains with our plant-based assays (Fig. 1).  

Others have also identified non-recessive inheritance in Cry3Bb1-resistant strains (Meihls et 

al. 2008, Petzold-Maxwell 2012, Oswald et al. 2012, Hoffmann et al. 2014, Ingber and 

Gassmann 2015), suggesting that non-recessive inheritance is common for western corn 

rootworm.  In the diet-based bioassay, the LC50 values of the Susceptible and heterozygous 

strains were within the range found by Siegfried et al. (2005) for laboratory and field strains 

and there was a significant difference in LC50 values between the Susceptible strain and 

heterozygous resistant individuals (Table 3).  Again, this suggests non-recessive inheritance 

of resistance.  The relationship between dominance and dose likely affects the effective 
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dominance of Cry3Bb1 resistance for western corn rootworm.  When insects are not exposed 

to a high dose of toxin, as is the case with Cry3Bb1 and western corn rootworm, the effective 

dominance of resistance increases, and resistance is expected to evolve more quickly (Gould 

1995, Tabashnik et al. 2004, Tabashnik and Carrière 2009).   

Evidence from field-evolved resistance in other insect species supports the 

predictions of the effect of dominance on the rate of resistance development.  In other species 

targeted by Bt crops, resistance is less common for cases where resistance is recessively 

inherited (Tabashnik et al. 2013).  For example, the corn earworm (Helicoverpa zea Boddie) 

has non-recessive inheritance (Burd et al. 2000) and evolved resistance to Cry1Ac cotton 

faster compared to the closely-related tobacco budworm (Heliothis virescens Fabricius) 

(Lutrell et all. 1999, Tabashnik et al. 2008).  In addition to western corn rootworm and corn 

earworm, two other species with non-recessive inheritance, the maize stalk borer (Busseola 

fusca Fuller) (Van Rensburg 1999) and fall armyworm (Spodoptera frugiperda Smith) 

(Storer et al. 2010) developed resistance and on Bt crops that failed to produce a high dose of 

toxin (Tabashnik et al. 2013).  

There were differences in the magnitude of resistance and inheritance between the 

two strains, with Elma having a resistance ratio of 2.74 and Monona having a resistance ratio 

of 4.55 in the seedling-mat bioassays.  This, along with differing resistance ratios in other 

western corn rootworm strains with field-evolved resistance (Ingber and Gassmann 2015) 

may have resulted from differences in the intensity of selection each strain experienced in 

either the field or the laboratory.  There were also differences among our three assay types 

used to measure inheritance.  While results from the two plant-based bioassays with Monona 

both indicate non-recessive inheritance, heterozygotes in the seedling-mat bioassay differed 
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from the resistant strain for survival on Cry3Bb1 corn and had a calculated inheritance value 

of 0.45 (Fig. 1b), but by contrast, there was no difference between heterozygous and resistant 

genotypes for survival on Cry3Bb1 corn in single plant bioassays with an inheritance value 

of 0.75 (Fig. 1c).  This difference between these two bioassays may be related to exposure to 

Cry3Bb1, with higher exposure in the seedling mat assay than the single-plant assay.  This 

hypothesis is supported by higher corrected survival of the susceptible strain on Bt corn in 

the single-plant experiment (0.34) compared to the seedling mat experiment (0.20).  Another 

possibility is that additional mortality of the heterozygotes on Cry3Bb1 corn occurred in later 

larval instars or during pupation, a phenomenon that the single-plant bioassay, which 

measured larval survival, would have missed.  In general, the proportion survival of 

susceptible insects on V5 to V6 Bt corn plants is 0.00 to 0.04 (Gassmann et al. 2014), which 

is lower than survival for V6 to V8 corn plants used in this study.  However, due to low 

survival of the non-diapausing strains of studied here on V5 to V6 plants, it was not possible 

to use the same assay that is applied to evaluate field populations.  

Our findings of non-recessive inheritance and a lack of major fitness costs in western 

corn rootworm strains with field-derived resistance to Cry3Bb1 suggests that the refuge 

strategy alone is likely insufficient to delay resistance development.  This highlights the need 

for more diversified management of western corn rootworm through an integrated pest 

management approach including rotation among management strategies.  The use of diverse 

approaches such as pyramiding of multiple Bt toxins, use of soil-applied insecticide with 

corn lacking rootworm-active Bt toxins, and crop rotation may help to delay the evolution of 

resistance to current and future Bt traits for management of western corn rootworm.  
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Tables 

 

Table 1: Relative survival of western corn rootworm (WCR) and SCR larvae  

Treatment         

WCR
a
  SCR

a
  Roots N

b
  

Proportion WCR 

Survival (±SE)  

Proportion SCR 

Survival (±SE) 

10 small - 
2 12 0.9985 (±0.0038) - 

4 12 0.9992 (±0.0038) - 

10 large - 
2 12 0.9803 (±0.0038) - 

4 12 0.9915 (±0.0038) - 

- 10 small  
2 9 - 0.8550 (±0.0075) 

4 9 - 0.9107 (±0.0075) 

- 10 large 
2 12 - 0.9652 (±0.0056) 

4 12 - 0.9707 (±0.0061) 

5 small + 5 

large 
- 

2 12 0.9971 (±0.0038) - 

4 12 0.9935 (±0.0038) - 

- 
5 small + 5 

large 

2 8 - 0.9201 (±0.0084) 

4 8 - 0.9056 (±0.0084) 

5 small   5 small   
2 8 0.9966 (±0.0057) 0.9495 (±0.0084) 

4 10 0.9914 (±0.0046) 0.9137 (±0.0067) 

5 small 5 large 
2 8 0.9700 (±0.0057) 0.9966 (±0.0084) 

4 8 0.9866 (±0.0057) 0.9866 (±0.0084) 

5 large 5 small 
2 8 0.9472 (±0.0057) 0.8888 (±0.0084) 

4 8 0.9795 (±0.0057) 0.9927 (±0.0084) 

5 large 5 large 
2 12 0.9718 (±0.0041) 0.9961 (±0.0061) 

4 12 0.9295 (±0.0038) 0.9909 (±0.0056) 
a
 small refers to 2

nd
 instar larvae and large refers to 3

rd
 instar larvae 

b 
number of replicates  
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Table 2: Mixed-model analyses of variance for Susceptible vs Monona and Susceptible vs 

Elma survival on Cry3Bb1 vs non-Bt corn 

 

 

 

 

 

 

 

 

 

 

 

a
Random effects included in the model were block (df = 1, ɢ

2
 = 2.2 , P = 0.1380),  

block × hybrid (df = 1, ɢ
2
 = 0.1 , P = 0.7518), block × strain (df = 1, ɢ

2
 = 0.1 , P = 0.7518), 

and block × hybrid × strain (df = 1, ɢ
2
 = 2.2, P = 0.1380)  

b
The random effect of block (df = 1, ɢ

2
 = 6.9 , P = 0.0086) was included in the model  

c
See Fig. 1 

d
Refers to the Susceptible, resistant, and heterozygous strains 

   

Experiment Effect
c
 df F P 

Elma seedling mat Strain
d
 3,125 26.22 <0.0001 

 Hybrid 1,125 355.68 <0.0001 

 Strain ×  Hybrid 3,125 27.22 <0.0001 

Monona seedling mat
a
 Strain 2,13 6.98   0.0087 

 Hybrid 1,11 41.05 <0.0001 

 Strain × Hybrid 2,13 10.32   0.0021 

Monona single plant
b
 Strain 2,135 3.72   0.0268 

 Hybrid 1,135 30.14 <0.0001 

 Strain × Hybrid 2,135 4.11   0.0185 
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Table 3: Goodness of fit and LC50 values for diet-based bioassays with Cry3Bb1 

Strain df ɢ
2
 P LC50

a
 (95% FL) 

Susceptible  3 1.57 0.6653 6.09 (2.22 to 10.01) 

Heterozygous 3 1.01 0.3892 26.90 (14.09 to 41.37) 

Monona   3  2.63   0.0480  > 341.60 
 a
Measured in µg/cm

2 
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 Table 4: Analysis of variance for Susceptible and Monona life-history traits 

Analysis Effect df F P 

Development rate
a
 Strain

b
 1,58 0.03 0.8651 

 

Sex 1,58 11.14 0.0015 

 

Strain × Sex 1,58 0.03 0.8537 

Survival Strain 1,30 0.18 0.6713 

Size
c
 Strain 1,58 0.69 0.6913 

 

Sex 1,58 0.02 0.9018 

 

Strain × Sex 1,58 0.25 0.6186 

Adult lifespan
d
 Strain 1,58 0.52 0.4746 

 

Sex 1,58 3.02 0.0877 

 

Strain × Sex 1,58 0.70 0.4059 

Egg viability Strain 1,30 0.71 0.4072 
a
The random effect of cage × strain × sex (df = 1, ɢ

2
 = 103.1, P < 0.0001) was included in the 

model  
b
Strains were Susceptible or Monona 

c
The random effect of cage × strain × sex (df = 1, ɢ

2
 = 4.7, P = 0.0302) was included in the 

model  
d
The random effect of cage × strain × sex (df = 1, ɢ

2
 = 19.2, P < 0.0001) was included in the 

model  
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Table 5: Repeated measures analysis of variance for fecundity   

Experiment Effect df F P 

Susceptible vs Monona
a
 Strain 1,30 0.42 0.5212 

 

Week 8,227 37.03 <0.0001 

 

Strain x Week 8,227 1.09 0.3720 

Susceptible vs Elma
b
 Strain 1,2 0.01 0.9273 

 

No. kernels 1,2 3.05 0.2228 

 

SCR  1,2 0.86 0.4522 

 

Strain x No. kernels 1,2 1.51 0.3437 

 

Strain x SCR  1,4 0.06 0.8260 

 

No. kernels x SCR  1,2 0.36 0.6084 

 

Strain x No. kernels x SCR  1,4 0.04 0.8564 

 

Week 6,169 14.54 <0.0001 

 

Strain x Week 6,169 0.79 0.5797 

 

No. kernels x Week 6,169 4.86 0.0001 

 

SCR presence x Week 6,169 0.56 0.7636 

 

Strain x No. kernels x Week  5,169 0.79 0.5594 

 

Strain x SCR  x Week 6,169 0.66 0.6856 

 

No. kernels x SCR x Week 5,169 0.59 0.7074 

  Strain x No. kernels x SCR x Week 5,169 0.02 0.9998 
a
The random effects of cage (strain) (df = 1, ɢ

2
 = 72.2, P < 0.0001) and week × cage (strain) 

(df = 1, ɢ
2
 = 0, P = 1) were included in the model  

b
Random effects included in the model were cage (strain × no. kernels × SCR × block) (df = 

1, ɢ
2
 = 1.6, P = 0.2059), week × cage (strain Ĭ no. kernels Ĭ SCR Ĭ block) (df = 1, ɢ

2
 = 6.3, P 

= 0.0121), block (df = 1, ɢ
2
 = 2.7, P = 0.1003), block Ĭ strain (df = 1, ɢ

2
 = 3, P = 0.0833), 

block Ĭ no. kernels (df = 1, ɢ
2
 = 3.8, P = 0.0513), block Ĭ SCR (df = 1, ɢ

2
 = 2.9, P = 0.0886), 

block Ĭ strain Ĭ no. kernels (df = 1, ɢ
2
 = 5.6, P = 0.018), block × SCR × no. kernels (df = 1, 

ɢ
2
 = 4, P = 0.0455)  
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Table 6: Mixed-model analysis of variance for Susceptible and Elma life-history traits  

Analysis Effect
 

df F P 

Development rate
a
 Strain

b 
1,69 8.66 0.0044 

 

No. kernels 1,9 11.95 0.0072 

 

Sex 1,69 16.87 0.0001 

 

SCR  1,69 0.75 0.3890 

 

Strain × No. kernels 1,69 3.00 0.0878 

 

Strain × Sex 1,69 2.90 0.0929 

 

Strain × SCR  1,69 2.96 0.0900 

 

No. kernels × Sex 1,69 8.17 0.0056 

 

No. kernels × SCR  1,69 1.25 0.2667 

 

Sex × SCR  1,69 4.62 0.0352 

 

Strain × No. kernels × Sex  1,69 0.63 0.4306 

 

Strain × No. kernels × SCR  1,69 0.13 0.7151 

 

Strain × Sex × SCR  1,69 0.29 0.5944 

 

No. kernels × Sex × SCR  1,69 0.21 0.6479 

 

Strain × No. kernels x Sex × SCR  1,69 1.92 0.1698 

Survival
c
 Strain 1,50 0.54 0.4644 

 

No. kernels 1,50 124.58 <0.0001 

 

SCR  1,50 34.20 <0.0001 

 

Strain × No. kernels 1,50 0.02 0.8831 

 

Strain × SCR  1,50 0.08 0.7827 

 

No. kernels × SCR  1,50 1.33 0.2540 

 

Strain × No. kernels × SCR  1,50 0.21 0.6466 

Size
d
 Strain 1,6 0.04 0.8497 

 

No. kernels 1,52 1.48 0.2298 

 

Sex 1,52 1.42 0.2383 

 

SCR  1,6 2.42 0.1711 

 

Strain × No. kernels 1,52 0.04 0.8355 

 

Strain × Sex 1,52 0.02 0.8840 

 

Strain × SCR  1,6 0.50 0.5079 

 

No. kernels × Sex 1,52 1.10 0.2987 

 

No. kernels × SCR  1,52 0.06 0.8132 

 

Sex × SCR  1,52 1.00 0.3225 

 

Strain × No. kernels × Sex  1,52 0.03 0.8702 

 

Strain × No. kernels × SCR  1,52 0.00 0.9667 

 

Strain × Sex × SCR  1,52 0.51 0.4795 

 

No. kernels × Sex × SCR  1,52 0.01 0.9118 

 

Strain × No. kernels × Sex × SCR  1,52 0.45 0.5068 
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Table 6 (cont.) 

Analysis Effect df F P 

Adult lifespan
e
 Strain 1,6 0.68 0.4420 

 

No. kernels 1,18 2.57 0.1266 

 

Sex 1,43 3.44 0.0706 

 

SCR  1,6 0.46 0.5214 

 

Strain × No. kernels 1,43 0.17 0.6850 

 

Strain × Sex 1,43 0.00 0.9857 

 

Strain × SCR  1,6 0.12 0.7460 

 

No. kernels × Sex 1,43 4.23 0.0458 

 

No. kernels × SCR  1,43 1.95 0.1699 

 

Sex x SCR  1,43 1.85 0.1811 

 

Strain × No. kernels × Sex  1,43 0.01 0.9432 

 

Strain × No. kernels × SCR  1,43 1.01 0.3207 

 

Strain × Sex × SCR  1,43 0.75 0.3900 

 

No. kernels × Sex × SCR  1,43 3.78 0.0585 

 

Strain × No. kernels × Sex × SCR  1,43 0.27 0.6082 

Egg Viability
f
 Strain 1,1 0.21 0.7277 

 

No. kernels 1,1 2.44 0.3627 

 

SCR  1,7 2.73 0.1426 

 

Strain × No. kernels 1,1 0.17 0.7541 

 

Strain × SCR  1,7 0.26 0.6258 

 

No. kernels × SCR  1,7 7.40 0.0298 

  Strain × No. kernels × SCR
f
  0 - - 

a
Random effects included in the model were block (df = 1, ɢ

2
 = 1.3, P = 0.2542) and block × 

no. kernels (df = 1, ɢ
2
 = 2.6, P = 0.1069)  

b
Strains were Susceptible or Elma       

c
The random effect of block (df = 1, ɢ

2
 = 17.2, P < 0.0001 ) was included in the model  

d
Random effects included in the model were block (df = 1, ɢ

2
 = 0.7, P = 0.4028), block × 

strain (df = 1, ɢ
2
 = 0, P = 1.000), block × SCR (df = 1, ɢ

2
 = 0.1, P = 0.7518), and block × 

strain × SCR (df = 1, ɢ
2
 = 2.5, P = 0.1138)  

e
Random effects included in the model were block (df = 1, ɢ

2
 = 0, P = 1.000), block × strain 

(df = 1, ɢ
2
 = 0, P = 1.000), block × no. kernel (df = 1, ɢ

2 
= 0.9, P = 0.3428), block × SCR (df 

= 1, ɢ
2
 = 0, P = 1.000), and block × strain × SCR (df = 1, ɢ

2
 = 4.2, P = 0.0404) 

f
Random effects included in the model were block (df = 1, ɢ

2
 = 0.1, P = 0.7518), block × 

strain (df = 1, ɢ
2
 = 0, P = 1.0000), block × no. kernels (df = 1, ɢ

2
 = 0, P = 1.0000), block × 

strain × no. kernels (df = 1, ɢ
2
 = 1.7, P = 0.1923) 

g
The strain × no. kernels × SCR interaction could not be calculated because Elma cages with 

5 kernels and SCR did not lay enough eggs to test egg viability  
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Figures 

Fig. 1. Survival to adulthood on Cry3Bb1 corn and non-Bt corn for (a) the seedling-mat 

bioassay with Elma (Cry3Bb1 resistant) and Susceptible, (b) the seedling-mat bioassay with 

Monona (Cry3Bb1 resistant) and Susceptible, and (c) larval survival in the single-plant 

bioassay with Monona and Susceptible. Bar heights represent sample means and error bars 

are the standard error of the mean.   

Fig. 2. Larval mortality in diet-based bioassays for the Susceptible, Monona (Cry3Bb1 

resistant), and heterozygous strains. Data were adjusted for mortality with Abbottôs 

correction.  Points represent means, error bars are the standard error of the mean, and the 

curve is the plot of the probit analysis.  

Fig. 3.  Comparisons of life-history data for Susceptible and Monona (Cry3Bb1 resistant) 

strains on non-Bt corn. Bar heights represent sample means and error bars are the standard 

error of the mean. Data are presented for (a) developmental rate, (b) proportion survival to 

adulthood, (c) adult size, (d) egg viability, (e) adult lifespan, and (f) fecundity.  

Fig. 4. Comparisons of life-history data for Susceptible and Elma (Cry3Bb1 resistant) strains 

on non-Bt corn at high or low larval food availability (5 vs 10 kernels in the initial seedling 

mats) and in the presence and absence of competition from southern corn rootworm (SCR). 

Bar heights represent sample means and error bars are the standard error of the mean. Data 

are presented for (a) developmental rate, (b) proportion survival to adulthood, (c) adult size, 

(d) egg viability, (e) adult lifespan, and (f) fecundity.  

  



59 

 

 

Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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