Small, anionic, and charge-neutralizing propeptide fragments of zymogens are antimicrobial.

K A Brogden, M Ackermann and K M Huttner

Updated information and services can be found at:
http://aac.asm.org/content/41/7/1615

These include:
Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»
Small, Anionic, and Charge-Neutralizing Propeptide Fragments of Zymogens Are Antimicrobial

KIM A. BROGDEN,1,*, MARK ACKERMANN,2 AND KENNETH M. HUTTNER3
Respiratory and Neurologic Disease Research Unit, National Animal Disease Center, USDA Agricultural Research Service, Ames, Iowa 50010,1 Department of Veterinary Pathology, Iowa State University, Ames, Iowa 50011,2 and Joint Program in Neonatology, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts 021153
Received 19 December 1996/Returned for modification 21 February 1997/Accepted 24 April 1997

Some inactive precursor proteins, or zymogens, contain small, amino terminus, homopolymeric regions of Asp that neutralize the cationic charge of the active protein during synthesis. After posttranslational cleavage, the anionic propeptide fragment may exhibit antimicrobial activity. To demonstrate this, ovine trypsinogen activation peptide, and frog (Xenopus laevis) PYL activation peptide, both containing homopolymeric regions of Asp, were synthesized and tested against previously described surfactant-associated anionic peptide. Peptides inhibited the growth of both gram-negative (MIC, 0.08 to 3.00 mM) and gram-positive (MIC, 0.94 to 2.67 mM) bacteria. Small, anionic, and charge-neutralizing propeptide fragments of zymogens form a new class of host-derived antimicrobial peptides important in innate defense.

Many defensins, hormones, and enzymes are synthesized as inactive precursor proteins, called zymogens. Zymogens consist of an amino terminus-inactivating prefix peptide (called a propeptide) followed by the active portion of the protein molecule (18). The propeptide fragment serves to prevent premature physiologic function of the active portion of the protein, thus protecting host cells from cytotoxic or enzymatic damage during enzyme synthesis and secretion (16, 18). For activation, zymogens are posttranslationally cleaved in a region amino terminal relative to the active site of the protein either before intracellular release of defensin into phagolysosomes (16) or before extracellular release of enzyme or hormone (18). While the synthesis, secretion, and activation mechanisms of these particular proteins have been well described (18), the fate and activity of the cleaved propeptide fragments are unknown in most instances (18). Some zymogen fragments have additional physiological functions in cascade reactions (e.g., peptides cleaved from complement and prothrombin [18, 27]) or in innate defense mechanisms (e.g., antimicrobial activity of gastric inhibitory polypeptide and diazepam-binding polypeptide [1]). The dual role of peptide fragments in innate host immunity has been proposed (3).

Some propeptide fragments of zymogens contain homopolymeric regions of Asp. These anionic regions in the propeptide fragment are conserved among a number of animal species (7, 18), as well as among a number of enzymes, hormones, and cationic proteins within an animal species. Recently, we isolated three small (721.6- to 823.8-Da), anionic peptides (called surfactant-associated anionic peptides or SAAP) from sheep pulmonary surfactant (6). These peptides inhibited the growth of both gram-negative and gram-positive bacteria in 0.14 M NaCl with 2.5 μM ZnCl2. Antimicrobial activity resided in the core Asp hexapeptide homopolymeric region, and growth inhibition by a number of analogs increased with the number of Asp residues in the peptides (6). The amino acid sequences of SAAP are similar to those of charge-neutralizing activation peptides of Group I serine proteases (e.g., ovine trypsinogen activation peptide or TAP) (7, 18), some prohormones (e.g., frog [Xenopus laevis] PYL activation peptide [4, 12]), and prodefensins (16) and contain homopolymeric regions of Asp following a Gly or Ala terminating with Lys (Fig. 1). Preliminary work has shown that SAAP have a genetic basis of origin and may be propeptide fragments of a larger endogenous protein, heretofore unknown. Phage inserts, cloned from a degenerate nucleotide SAAP probe of a genomic sheep library, contained nucleotide sequences from which were derived predicted amino acid sequences of these homopolymeric Asp regions following Gly or Ala which appear to be only part of a much larger gene product. We propose that SAAP and similar small anionic propeptide fragments of zymogens (4, 10, 12, 16, 18) have innate immune functions in addition to their charge-neutralizing role. While the antimicrobial activity of SAAP has been previously described (6), the antimicrobial activities of similar propeptide fragments have not. Therefore, the purpose of this study was to examine the antimicrobial activities of two representative synthetic propeptide fragments, ovine TAP and frog (X. laevis) PYL activation peptide, and to compare their activities with that of SAAP. Analogs of TAP and SAAP were also synthesized to assess the effect of peptide composition on antimicrobial activity.

SAAP (6), ovine TAP (7), and the propeptide fragment of hormone PYL from frog (X. laevis) skin (e.g., H-ADDDDDD-OH, starting 6 amino acids from the NH2-terminal cleavage site for signal peptidase and immediately prior to the 24-amino-acid sequence for PYL [12]) were synthesized by Chiron Mimotopes Peptide Systems, San Diego, Calif., on a grafted polymer surface in a Multipin peptide synthesis format with N-alpha-Fmoc-protected amino acids. Side-chain deprotection and cleavage were carried out by acidolysis.

Peptides were purified on a Vydac (protein) C4 column (0.46 cm by 25 cm; 4-μm particle size; 300-Å core size). Fractions, in 0.1% (vol/vol) orthophosphoric acid in water, were eluted over 15 min with a 0 to 100% gradient of 0.1% (vol/vol) orthophosphoric acid in 60% (vol/vol) acetonitrile in water. Mass spectrometer analysis was performed with a Perkin-Elmer Sciex API III mass spectrometer having an ionspray ion source with ion-counting detection. Peptides were 95 to 99% pure. Analogs of TAP and SAAP (i.e., H-GDDDDDDD-OH, H-ADDDDDD-OH, H-GADDDDD-OH, H-AADDDDD-
OH, H-DDDDK-OH, and H-GDDDK-OH) were similarly prepared.

A panel of conventional gram-negative bacteria (Klebsiella pneumoniae ATCC 10031, Escherichia coli ATCC 12795, Pseudomonas aeruginosa ATCC 27312, and Serratia marcescens ATCC 14756) and gram-positive bacteria (Staphylococcus aureus ATCC 29213 and Streptococcus faecalis ATCC 29212) were used. Pasturella haemolytica serotype A1 strain 82-25, isolated from a sheep with enzootic pneumonia, was also included since both SAAP and TAP are of sheep origin and nearly identical in composition (6, 7). A nonpathogenic eucaryotic organism, Candida krusei ATCC 6258, was also used. All cultures were grown in tryptose broth at 37°C for 3 h, pelleted by centrifugation at 5,900 × g for 15 min at 4°C, and resuspended in 0.14 M NaCl. The suspensions were adjusted in the spectrophotometer (78% transmittance; 600 nm; Coleman model 35; Bacharach Instrument Co.) to contain 1.0 × 10^8 CFU/ml and were diluted 10^3-fold to 10^5 CFU/ml with 0.14 M NaCl (6).

A dilution susceptibility test was used to obtain MICs (28). Since host-derived antimicrobial peptides and their analogs are sensitive to divalent cation concentration (14), salt concentrations (3, 26), pH, and buffer composition (6, 9, 13), the following modifications were necessary to assess antimicrobial activity. Synthetic peptides were diluted twofold in 100 µl of 0.14 M NaCl on styrene plates (Immunol 1; Dymatex Laboratories, Inc., Chantilly, Va.). Then, 0.14 M NaCl with 10.0 µM ZnCl₂ (50 µl) was added since the bactericidal activity of SAAP is strongly dependent upon zinc as a cofactor (6). Finally, bacterial culture (50 µl) was added to each dilution, and the plates were incubated at 37°C for 120 min. Control wells containing only 0.14 M NaCl with 2.5 µM ZnCl₂ and bacteria were included. After incubation, the number of viable bacteria was determined by culturing 150 µl from each well in triplicate (50 µl/spot) on Trypticase soy agar containing 5% defibrinated sheep blood and incubating the plates overnight at 37°C. P. haemolytica mixed with 0.14 M NaCl containing 2.5 µM ZnCl₂ had an average of 100.3 CFU/50-µl spot (standard error, 1.9 CFU/50-µl spot; n = 30 spots) and P. haemolytica mixed with 0.14 M NaCl containing 2.5 µM ZnCl₂ and 0.5 mM H-DDDDK-OH had an average of 101.0 CFU/50-µl spot (standard error, 1.9 CFU/50-µl spot; n = 30 spots).

To assess eucaryotic cytotoxicity, 100 µl of TAP, SAAP, or PYL (6.0 mM each) was added to 900 µl of B-lymphocyte leukemia cells (BL-3; ATCC CRL 8037; 1.1 × 10^5 cells/ml in McCoy’s 5A medium with 10% fetal calf serum) and incubated for 18 h at 37°C with 5% CO₂. Propidium iodide (5 µg/ml) was added, and cell viability was assessed by flow-cytometric analysis (model XL cytometer; Coulter Corp.).

Activation peptides TAP and PYL inhibited the growth of bacteria, but neither peptide was cytocidal for BL-3 cells or C. krusei (Table 1). MICs varied between peptides and among bacterial species but were comparable to the MIC of SAAP. Gram-negative bacteria (e.g., P. haemolytica, E. coli, and K. pneumoniae) sensitive to surfactant-induced killing by normal serum (5) were more susceptible (MIC range, 0.08 to 0.90 mM peptide) than gram-positive bacteria (MIC range, 0.94 to 2.67 mM peptide). The MICs of peptide analogs for P. haemolytica serotype A1 strain 82-25 varied, depending upon the amino acid composition, from 30 to 200 µM (Table 2), similar to the variation previously reported with Asp dipeptide-to-heptapeptide homopolymers (6). Interestingly, gram-negative bacteria (e.g., P. aeruginosa and S. marcescens) resistant to surfactant-induced killing by normal serum (5) were slightly more resistant to all anionic peptides (MIC range, 1.50 to 3.00 mM peptide). The MICs of anionic peptides were comparable to those of other vertebrate antimicrobial peptides (3, 8, 11).

Innate extracellular immune mechanisms serve to suppress or reduce growth after microbial infection until nonspecific cellular and specific humoral and cellular immune mechanisms activate. In vivo, the efficacies of anionic peptides will depend upon the site of peptide release, peptide concentration, availability of zinc, comixture with serous fluid or plasma, rate of clearance by lymphatic, circulatory, and urinary systems, deg-

<table>
<thead>
<tr>
<th>Organism</th>
<th>MIC of synthetic peptides (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TAPb</td>
</tr>
<tr>
<td>P. haemolytica</td>
<td>0.16 (0.01)</td>
</tr>
<tr>
<td>E. coli</td>
<td>0.90 (0.16)</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>0.85 (0.08)</td>
</tr>
<tr>
<td>S. aureus</td>
<td>1.08 (0.11)</td>
</tr>
<tr>
<td>S. faecalis</td>
<td>2.67 (0.17)</td>
</tr>
<tr>
<td>C. krusei</td>
<td>>2.77</td>
</tr>
</tbody>
</table>

a MICs followed by parenthetical values are means of six replications (standard error). MICs without parenthetical values are the results of only one replication.

b Ovine trypsinogen activation peptide synthesized from the sequence reported by de Haen et al. (7). Sequence, H-DDDDDDK-OH; molecular mass, 705.7 Da.
c Respiratory-associated anionic peptide synthesized from the sequence previously reported (6). Sequence, H-DDDDDDK-OH; molecular mass, 823.6 Da.
d Propeptide fragment of the hormone PYL from frog (X. laevis) skin. Sequence, H-DDDDDDK-OH; starting 6 amino acids from the NH₂-terminal cleavage site for signal peptidease and immediately prior to the 24-amino-acid sequence for PYL skin (12). Molecular mass, 798.5 Da.
SAAP
innate immune functions on mucosal surfaces, in addition to this report, we show that anionic propeptide fragments inhibit 2.52 to 3.45), and are considerably smaller (pI (18). These propeptide fragments are distinct from plant, in-
systems (25). Antimicrobial activity was found originally in faces (2), and may be an adjunct to preexisting innate defense
activation peptide in frog skin may simply add to the antimi-
radiation by oligopeptidases, and type and concentration of microorganisms encountered. For example, the activation of pancreatic trypsinogen, which is produced by the pancreas acinar cells, is triggered by an enterokinase secreted from the brush border of the small intestine (18). TAP cleaved near the surface of the epithelial cells in the microenvironment of the mucous layer may act alone or in concert with other locally secreted defensins (e.g., Paneth cell defensins or cryptdins [20, 24]) to retard localized bacterial infection and invasion. PYL activation peptide in frog skin may simply add to the anti-
mucous layer may act alone or in concert with other locally
acinar cells, is triggered by an enterokinase secreted from the brush border of the small intestine (18). TAP cleaved near the surface of the epithelial cells in the microenvironment of the mucous layer may act alone or in concert with other locally secreted defensins (e.g., Paneth cell defensins or cryptdins [20, 24]) to retard localized bacterial infection and invasion. PYL activation peptide in frog skin may simply add to the antimicrobial barrier already present in the skin and mucosal epithelium (17, 29).

In sites with limited circulatory drainage, such as the respira-
tory tract, SAAP may have more retention time in situ, may contribute to the anionic microenvironment on alveolar sur-
faces (2), and may be an adjunct to preexisting innate defense systems (25). Antimicrobial activity was found originally in pulmonary surfactant, but SAAP may also occur in the epitel-
llary lumen fluid or airway surface fluid removed from the lung by bronchoalveolar lavage. SAAP in the respiratory lining fluids would provide a barrier refractory to microbial infection and colonization.

The physiology of anionic peptides and charge-neutralizing propeptide fragments of zymogens has generally been ignored (18). These propeptide fragments are distinct from plant, in-
necrotic and vertebrate antimicrobial peptides (3, 15, 19), contain hydrophilic and acidic amino acids, are opposite in charge (pI 2.52 to 3.45), and are considerably smaller (<1 kDa) in size. In this report, we show that anionic propeptide fragments inhibit the growth of bacteria in vitro and we propose that they have innate immune functions on mucosal surfaces, in addition to their charge-neutralizing roles.

We thank Owen Laird, Ginger Shipp, and Jonathan Seagren for technical assistance.

REFERENCES
5. Brodgen, K. A. 1992. Ovine pulmonary surfactant induces killing of Pasteur-
rella haemolytica, Escherichia coli, and Klebsiella pneumoniae by normal se-
7. de Haen, C., H. Neurath, and D. C. Teller. 1975. The phylogeny of trypsin-
related serine proteases and their zymogens. New methods for the investi-
29. Zasloff, M. 1987. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA se-