Restricting wireless network access within the classroom

by

Andrew Daniel Buschbom

A thesis submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Co-majors: Information Assurance; Computer Engineering

Program of Study Committee:
Morris Chang, Major Professor
Doug Jacobson
Sree Nilakanta

Iowa State University
Ames, Iowa
2007

Copyright © Andrew Daniel Buschbom, 2007. All rights reserved.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LIST OF TABLES</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>viii</td>
</tr>
<tr>
<td>CHAPTER 1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Motivation</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Why There is a Need</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Current Solutions</td>
<td>3</td>
</tr>
<tr>
<td>1.3.1 Banning Laptops</td>
<td>4</td>
</tr>
<tr>
<td>1.3.2 Opening and Closing laptops</td>
<td>4</td>
</tr>
<tr>
<td>1.3.3 Jamming the Wireless Signal</td>
<td>5</td>
</tr>
<tr>
<td>1.3.4 Installing Software on Students Computer</td>
<td>5</td>
</tr>
<tr>
<td>1.3.5 One Access Point Per Classroom</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Improvements</td>
<td>6</td>
</tr>
<tr>
<td>CHAPTER 2. Overview</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Discovering Traffic to Monitor</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1 MAC address List</td>
<td>8</td>
</tr>
<tr>
<td>2.1.2 Localization</td>
<td>8</td>
</tr>
<tr>
<td>CHAPTER 3. Related Work</td>
<td>10</td>
</tr>
<tr>
<td>3.1 Traffic Monitoring</td>
<td>10</td>
</tr>
<tr>
<td>3.1.1 CNAC Implementation</td>
<td>10</td>
</tr>
</tbody>
</table>
3.1.2 Web Interface ... 11
3.2 Sniffing Wireless Traffic ... 13
3.2.1 Hypothesis .. 14

CHAPTER 4. Testing RSS .. 15
4.1 RSSI Overview .. 15
4.1.1 AVS Header .. 17
4.1.2 Prism2 Header ... 17
4.1.3 Radiotap Header ... 17
4.1.4 Monitor Mode .. 18
4.2 Attenuation ... 18
4.3 Testing Hypothesis .. 19
4.3.1 KisMAC .. 19
4.3.2 Measuring RSS ... 20
4.3.3 Results .. 21
4.4 Possible Problems .. 22

CHAPTER 5. Design ... 23
5.0.1 Monitoring System .. 24
5.0.2 Web Interface .. 24
5.0.3 Sniffer ... 25
5.1 Security ... 25
5.1.1 Web Interface .. 25
5.1.2 Sniffer Security ... 25

CHAPTER 6. Conclusion .. 27

CHAPTER 7. Future Work .. 28
7.1 Sniffer ... 28
7.2 Traffic ... 29
APPENDIX A. Additional Material ... 30

A.1 Radio Header Formats .. 30
 A.1.1 AVS ... 30
 A.1.2 Radiotap .. 31
 A.1.3 Prism2 .. 31

BIBLIOGRAPHY ... 36
LIST OF TABLES

Table 4.1 Attenuation Rates of Different Materials 19
Table 4.2 802.11g RSS Percentage of Change 20
Table 4.3 802.11b RSS Percentage of Change 21
Table A.1 802.11 Sniffed Frame Format 30
Table A.2 AVS Frame Format .. 30
Table A.3 Radiotap Header Structure ... 31
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Wireless Classroom Coverage</td>
<td>2</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Possible CNAC locations</td>
<td>12</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>802.11g RSS Readings</td>
<td>20</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>802.11b RSS Readings</td>
<td>21</td>
</tr>
<tr>
<td>Figure A.1</td>
<td>Ethereal Setup to capture packets using Prism2 header.</td>
<td>32</td>
</tr>
<tr>
<td>Figure A.2</td>
<td>Prism2 header capture</td>
<td>32</td>
</tr>
<tr>
<td>Figure A.3</td>
<td>Iowa State University’s Gerdin Business Building Rooms 1148 & 1127</td>
<td>33</td>
</tr>
<tr>
<td>Figure A.4</td>
<td>Iowa State University’s Gerdin Business Building Room 2133</td>
<td>34</td>
</tr>
<tr>
<td>Figure A.5</td>
<td>Iowa State University’s Office and Laboratory Building Room 214a</td>
<td>35</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

This work would not have been possible without the support of a number of individuals. I would like to recognize and thank the following people. Dr. Morris Chang, for all of his guidance, time, and suggestions. Both Dr. Doug Jacobson and Dr. Sree Nilakanta for their participation on my thesis committee and valuable insights. My parents for all of their support and encouragement. My friends for never giving me too hard of a time for constantly staying home to work on my thesis. Finally, Amber for her advice, support, and time correcting my poor grammar.
ABSTRACT

Wireless Local Area Networks (WLANs) are fast becoming the networks of choice. With the availability of cheap wireless solutions, WLANs are seeing exponential growth which is expected to continue in the years to come. Over 50% of college classrooms have wireless network availability. Instructors have discovered that along with the benefits of WLANs there are also many students misusing the wireless network during class. This paper provides a solution to the multiple access point problem and proposes a system that can be used to control wireless network access in the classroom. The wireless network control system is based off of CNAC(7) and uses passive wireless sniffers to determine wireless clients location. The wireless sniffer is placed in the classroom and passively monitors all wireless traffic and records Received Signal Strength(RSS). The sniffing of RSS allows the system to know what wireless clients are broadcasting from inside of the room. This information is then passed onto the monitoring system that is placed on the network in a location that is able to see all network traffic. The system then monitors and filters traffic based on the instructors requirements.
CHAPTER 1. Introduction

1.1 Motivation

The initial motivation for this project came from hearing instructors express their frustrations about students misusing the wireless network during classtime. Instead of using the wireless network to enhance learning, students browse the Internet and chat with friends online while in class. There are many tools available to monitor and restrict wired network access but they have not effectively been applied to the wireless network. With the use of this system, both students and teachers will benefit from a learning environment free from unnecessary distractions.

1.2 Why There is a Need

Wireless Local Area Networks (WLANs) are fast becoming the networks of choice. With the availability of cheap wireless solutions, WLANs are seeing exponential growth which is expected to continue in the years to come. The lack of cables makes WLANs easy to install and allows portability for users without concerns of being disconnected. Bandwidth speeds are increasing and with the implementation of 802.11n are quickly approaching the speed of wired networks. This ease of installation and low price, without a noticeable drop in bandwidth, has led to the wide adaptation of WLAN’s in the classroom.

According to the Campus Computing Project, 51.2% of college classrooms now have wireless network availability. This is up from 31.1% in 2004, with wireless coverage only expected to expand within the next few years across college campuses. 68.8% of colleges surveyed have plans for the deployment of more wireless networks. Data from the 2006 survey reveal that three-fifths (60.5%) of colleges and universities increased their campus IT budgets for wireless
for the current academic year. Figure 1.2 shows the increase of WLANs at various learning facilities.

Figure 1.1 Wireless Classroom Coverage

With wireless networks becoming more prevalent in the classroom, instructors are becoming more and more concerned about keeping their students’ attention. Instead of using the wireless network to facilitate learning, many students use the network to browse the Internet looking at sites such as Facebook or use instant messaging to talk with friends. This misuse of the network has led to some professors banning laptops in the classroom in an effort to help students stay focused on the material being discussed. However, banning laptops eliminates a key learning tool for students. Laptops enable students to use the network to download power point slides, articles, and other information valuable to the students’ learning.

The problem is that students often expect to be entertained during class and if the teacher is not entertaining then the student will often turn to the Internet for entertainment. In the 1970s, author Eda LaShan described a phenomenon known as The Sesame Street Syndrome(1). This syndrome explains that because children have grown up learning via fast-paced and entertaining learning tools such as Sesame Street, they now expect to be entertained as they learn. In a college classroom, a professor has a tough time competing with the entertainment value that the Internet offers. Often, when students are confronted with the issue of misusing laptops
in the classroom, they claim they are multitasking. According to Jordan Grafman, Chief of Cognitive Neurological Science at the National Institute of Neurological Disorders and Stroke in Bethesda, MD, students who multitask during class fare worse than their non-multitasking peers. He states that when students are multitasking they are not actually performing tasks simultaneously, but instead are making decisions about what is more important to attend to at the moment. Grafman goes on to describe students being in a constant Evaluate, Choose, and Move process that has them often choosing the more entertaining route. As a result, instructors struggle for classroom attention because students have unrestricted access to the wireless network.

Kenneth Brown, Associate Professor at the University of Iowa, asked the technology staff at the University to install an Internet kill switch in classrooms. Mr. Brown stated, "I don’t want to ban laptops across the board because increasingly we have a lot of students who are using laptops to take notes, and they seem to get some real advantage out of that.” However, he remains concerned about the kind of distractions that the Internet allows. Mr. Brown compared having the ability to control what students are doing online during class to having the ability to control whether or not a student is reading the newspaper during class.

The problem with wireless networks is that they are deployed to cover the most area without any concern about control. With the mass deployment of wireless networks universities are now facing problems of controlling access to the wireless network.

1.3 Current Solutions

Currently, there are a few solutions being used at universities but they are very limited and provide minimal benefits. These solutions include banning laptops, only allowing students to use laptops during certain times, blocking the wireless signal in the classroom, monitoring software, and only having one access point cover one classroom.
1.3.1 Banning Laptops

The cheapest and easiest way to control students access to the network in the classroom is to ban laptops. However, students gain no benefits from technology when laptops are banned. Not only is this detrimental to students learning, but it also wastes money as universities spend thousands of dollars providing wireless access in classrooms. When laptops are banned students are not able to misuse the network but they are not able to use their laptop for taking notes or viewing presentation slides either.

Banning laptops creates additional problems as some students resist giving up their laptop privileges. For example, Professor June Entman of the University of Memphis’s Cecil B. Humphreys School of Law banned laptops in her class during March of 2006(2). Her unhappy students circulated a petition and even brought the cause to the American Bar Association(ABA) claiming that the ban went against the ABA rule protecting students from "inadequate technological capacities ... that have a negative and material effect" on learning. The case was dismissed and left up to the university to decide on a proper course of action. This action forced the dean and university faculty to look at future solutions as the school will be moving to a new facility downtown that is much more technologically advanced. The issue of using technology in the classroom is an issue that all universities will need to face as technology becomes cheaper.

1.3.2 Opening and Closing laptops

Opening and closing laptops is another easy way to control student usage of the wireless network. With this solution students will only be able to use their laptops during certain parts of the class as specified by the instructor. However, it takes away a lot of benefits that laptops provide. Students are not be able to use their laptops to take notes, it takes away from valuable class time and it is distracting as students have to open and close their laptops several times throughout the class period.
1.3.3 Jamming the Wireless Signal

Some universities have tried jamming the wireless signal in classrooms. The University of California at Los Angeles, the University of Virginia’s Darden Graduate School of Business Administration, and the University of Houston have each investigated the use of devices to block wireless access in the classroom after faculty complaints of out-of-control Web surfing. This solution didn’t work as well as expected at UCLA because the jammers also interfered with wireless access in nearby offices and hallways. In June of 2005, a faculty committee at UCLA concluded that stopping the wireless signals amounted to a technology arms race that couldn’t be won and removed the blocking devices.

1.3.4 Installing Software on Students Computer

Some companies produce software that can be installed on computers that will allow instructors to monitor and control what students are doing on their computer. Most universities do not own the students’ laptop’s so they cannot force students to use a piece of software. Students would most likely refuse to allow the software to be installed on their personal laptops. If the software was installed it would be difficult to make sure the software was not disabled or modified to allow unrestricted access to the network. Also, there is a wide range of operating systems used by students in a university setting so the software would need to be platform independent. This option is not feasible in a university setting unless the university provides laptops to the students.

1.3.5 One Access Point Per Classroom

Bentley College is currently the only college in the United States with a system that allows them to control wireless access in the classroom. This system is provided by Enterasy and consists of a simple web interface menu displayed on the instructor podium PC. The instructor may select any of the following options:

1. Disable Internet access
2. Disable Bentley e-mail access
3. Disable Internet and e-mail access

4. Disable all access. If Internet access is disabled

5. Allow all access

The system cost $43,500 for initial purchase and there is an annual maintenance contract fee(4). Bentley’s system does not take into account the problem of neighboring access points. This is because each classroom is only covered by one wireless access point, so the system does not have to take into account neighboring wireless access points(WAP). If a student is able to connect to a neighboring WAP then they will have unrestricted network access. Most universities’ wireless networks are set up in such a way to provide maximum coverage and classrooms are usually covered by multiple APs. The system must be improved to handle multiple APs.

1.4 Improvements

Of all the current solutions, Bentley College has the right idea but improvements need to be made. The cost of the system must be reduced, ease of installation improved, and it must be able to handle multiple access points(AP). The solution is neither to ban laptops nor to allow unrestricted network access in the classroom. There must be a compromise as technology can benefit the learning environment if implemented correctly (5). This paper will present a solution to the multiple access point problem through the use of received signal strength(RSS). A complete low cost system that can be integrated with a university’s current infrastructure to control wireless access will also be presented in this paper.
CHAPTER 2. Overview

There are two issues to address when controlling wireless network access in a classroom: locating clients within the classroom and monitoring or modifying the network traffic from the classroom. In the past there has been much work done on the monitoring of network traffic. What has yet to be addressed, however, is the issue of locating wireless clients within specific classrooms.

Due to the design of 802.11, it is difficult to locate users within a specific location. 802.11 was designed to allow users the freedom to move around. If only one AP covered one classroom it would be relatively easy to monitor traffic; however in most university settings wireless clients are able to see multiple APs from one location. Even if a classroom is only covered by one AP, that AP might also provide wireless access to other areas besides the classroom. Thus, monitoring all traffic from that AP could affect other users besides those within the classroom. One of the major problems when designing a system to control wireless network resources in a classroom is finding out what traffic is coming from the classroom. There is always the possibility that several access points cover the classroom and a wireless client can log onto any of the APs.

2.1 Discovering Traffic to Monitor

In order for the system to monitor specific traffic, the system must be provided with a list of MAC addresses to monitor the appropriate traffic. This list of MAC addresses will be the MAC addresses of the wireless clients in the classrooms that will be monitored.

There are a few possible ways to find out what traffic is coming from a specific classrooms. One way is by having a pre-compiled database of MAC associated with users, which would be
correlated with a list of students registered for the class. Other ways include using position
location techniques to determine where clients are located and using Received Signal Strength
(RSS) to tell if traffic is coming from within a classroom.

2.1.1 MAC address List

Another solution is to have a list with MAC addresses associated with students’ usernames,
which could then be correlated with a list of students in the class. This would allow a system
to filter requests from specific MAC addresses during certain times of the day. Unfortunately,
this solution would be fairly easy to circumvent. Because MAC addresses can be changed
easily, students can use a friend’s login credentials or use an entirely different computer.

A solution like this could easily be implemented at Iowa State University as students
already have to register their MAC address when they first access the network. This means
that the student’s MAC is associated with their NetID. Instructors would have access to a
list of students in their class along with the MAC addresses registered to the student’s NetID.
Unfortunately, as stated previously there are several problems with this: MAC addresses can
easily be changed, a student could use a friend’s laptop, or a student could re-register their
laptop with a friend’s NetID. All of this would allow the student to bypass a monitoring system
that was based on a predefined list of MAC addresses. Because of the many ways to circumvent
predefined MAC lists, this solution is inefficient.

2.1.2 Localization

Much work has been done in the area of localization in 802.11 networks. Wireless localiza-
tion work generally focuses on the accuracy of measurements, with the systems accurate within
one to three meters. Bhargava (6) provides an overview of localization techniques, specifically
the use of RSS. After evaluating current localization techniques, the use of RSS was deter-
mined to be the most suitable compared to triangulation. RSS can easily be measured without
disrupting the network by using a passive sniffer. Currently, RSS localization uses multiple
RSS readings to triangulate or create a database of fingerprints. Although these solutions work
well, they are complex and provide more information than is needed for the purpose of wireless network resource control. Accuracy is important in the proposed system but only to the point of determining whether a client is inside or outside of a classroom.

The next section provides an overview of Classroom Network Access Control (CNAC) and wireless sniffing. CNAC is a wireless monitoring system that is based on open source software and provides the basic framework of the proposed monitoring system. Wireless sniffers will also be integrated into the system to locate wireless clients.
CHAPTER 3. Related Work

3.1 Traffic Monitoring

Zhang and Almeroth(7) present a system to monitor wireless traffic in a university setting called CNAC. CNAC was designed with several key points in mind: it can monitor network traffic, it does not change the network topology, and it can be administered and managed by non-technical staff. Their approach was to use a transparent Ethernet bridge with a web-based control panel. An Ethernet bridge was utilized to control and monitor network access because this guaranteed no changes to the current network topology. In order to make the system user friendly a web-based control panel was designed.

3.1.1 CNAC Implementation

CNAC is a network traffic monitoring system running Linux 2.6 using IPtables and Ebtables to monitor the wireless network traffic. Linux 2.6 was chosen because it already comes with bridge and netfilter functions, which are called the bridge-nf module. The bridge-nf modules in Linux are operating system level programs that provide the needed functions of bridging, monitoring, and filtering of network traffic. As the traffic passes through CNAC it is either filtered by Ebtables or IPtables. Ebtables and IPtables handle different traffic based on the OSI layer that the network traffic belongs to. Ebtables handles Layer 2 traffic while IPtables handles Layers 3 and 4 traffic. Ebtables is less complicated than IPtables, due to the fact that the Ethernet protocol is much simpler than the IP and TCP protocols.

(7) mention that traditional firewalls and classroom network control systems have completely different goals. Firewalls aim to keep certain external traffic from reaching the internal network while CNAC is aimed at limiting internal traffic from leaving the network. Another
major problem with traditional firewalls is that they are considered static and are not intended to be changed frequently. CNAC is different then a firewall because it has the ability to be changed and modified in realtime.

Since CNAC was designed to be transparent, it is possible to install the system virtually anywhere on the network. Figure 3.1.1 shows a conceptual campus network topology. Points A, B, C, and D are all good candidate locations at which to install CNAC. There are advantages and disadvantages to each location. When selecting an installation point for CNAC, it is best to place it at a network traffic aggregation point to see the most traffic. In Figure 3.1.1, Point D has the most amount of aggregation, and Point A has the least. The higher the aggregation level, the broader the network coverage. For example, if CNAC is installed at Point D, one system can cover all classrooms on the campus. But if Point A is selected, only a few classrooms are covered; thus, multiple CNAC systems are needed to achieve full coverage. (7) states that the higher the amount of aggregation chosen, the more impact on the rest of the network. If Point D is selected, not only are the classroom networks affected, but the lab and office networks are affected as well. While most side effects can be corrected through specific rule sets (e.g., rules that consider the source of the packets and whether it is from a classroom or lab) such rule sets become more complicated and prone to error. Therefore, the installation decision needs to take into account the topology of the network in order to properly balance locality and simplicity.

3.1.2 Web Interface

Instructors access CNAC by using a web-based login. After login, the page lists all classrooms that are controllable. The instructor, after selecting the desired classroom, enters the classroom-specific page and is able to set restrictions for the classroom. CNAC was designed with the thought that it would be used by instructors not network administrators. In order to provide both simplicity and flexibility, CNAC has two levels for the user interface, a basic interface and an advanced interface.

The basic version of the interface is not intended to provide a full-fledged rules management
platform; instead, it only provides a few fixed-access control templates. CNAC contains four fixed connection types: allow all traffic, allow web traffic only, allow on-campus traffic only, and block all traffic. Simple requests such as temporarily turning network connectivity on/off, or enabling/disabling all off-campus web traffic can be performed using the basic web interface with a few mouse clicks.

In addition to the basic options, an instructor may want more finer-grained control. For example, during a lecture, an instructor may want to allow web traffic to and from the class web server, but may want to disable all other web traffic. In this situation, the option can be pre-configured and made available as a choice on the basic interface menu, or the instructor can use the advanced interface. The advanced interface simply "wraps" iptables commands, and sends the commands to CNAC. The advanced interface is more sophisticated than the basic interface and provides greater flexibility but also requires more knowledge about CNAC.

The web interface works by invoking a script to execute the corresponding iptables/ebtables command on CNAC. In order for CNAC to receive the web-generated rules, the bridge must be assigned an IP address through which the web-server-side script sends the control commands. This IP address is used to communicate with the web server only which prevents CNAC from receiving unauthorized control commands for other machines.
One drawback of CNAC is that it is unable to handle situations where multiple APs cover a single room. To solve this problem CNAC must be able to receive a list of clients in a classroom. (9) discuss the use of pre-defined MAC address lists, but as discussed earlier this solution can be circumvented quickly. To address the issue of multiple APs we are proposing the use of RSS to locate clients.

3.2 Sniffing Wireless Traffic

In order to capture clients’ RSS, a wireless sniffer will be used. Wireless sniffers have been widely used for research and network management because of their ability to monitor network traffic at the MAC layer and above. Commercial sniffers are often costly, complex, and do not provide the flexibility of open source sniffing applications. Li, Claypool, and Kinicki (8) describe how to build a low-cost sniffer by using open source software and off-the-shelf wireless networking hardware.

(9) use open source sniffers to monitor RSS of clients in order to triangulate their position with a system called Planatir. The sniffers used in Planatir are built on a single board computer platform with a dual Ethernet interface and PCMCIA slot for a wireless card. This hardware can be purchased from Soekris Engineering for 100 to 200 dollars depending on the quantity ordered.

The sniffers operate in passive mode and can monitor all 802.11 channels. In the United States 802.11 uses channel’s one through eleven (10). Ganu et. al. (9) assumed that Planatir would be implemented in an area that had APs using multiple channels. Planatir’s sniffers had the ability to sweep through all channels or remain on one certain channel. The system had to be able to locate two types of clients: clients who had associated with an AP and clients who had not been associated. Clients who were associated were operating on the same channel as the AP they were associated with. Clients unassociated with an AP could be sniffed on a channel ± one from the channel that the clients were broadcasting on. When implementing wireless sniffers the channels in use must be considered because as a sniffer scans channels it will miss some data that is being broadcasted on another channel.
The sniffers used in Planatir mainly captured and monitored unencrypted 802.11 header data. The header information contained things such as; MAC address, SSID, and RSSI. The sniffer’s wireless side is completely passive and all communication with the database is done through Ethernet. The sniffers could be placed anywhere that had an Ethernet jack and power outlet. The same sniffer setup used in Planatir could be used in the system proposed in this paper. The only difference would be how the captured information is used.

3.2.1 Hypothesis

Current position location techniques are too complex and expensive to be installed in most university settings. Another issue is that current position location techniques focus on locating a client within a few meters, when all this system needs to do is determine whether or not a client is inside or outside of the classroom. With the use of sniffers and RSS it is plausible that clients can be localized to a classroom. Based on previous RSS localization work(6) it is reasonable to assume that a sniffer can be used to capture all 802.11 traffic and then compare RSS to determine if a client is located within a classroom.

The use of a sniffer has several benefits to the other proposed location techniques. These benefits include constantly monitoring clients broadcasting from the room, which removes worries of students changing MAC addresses or using other students’ laptops. The hardware can be purchased for less than one hundred dollars and the software is open source. The next section provides more detail on RSSI and its ability to determine client location.
CHAPTER 4. Testing RSS

802.11 is susceptible to interference from different objects in the environment. This causes the Received Signal Strength (RSS) to drop depending on the location of the sniffer. RSS is a measure of the energy observed by the physical layer at the antenna of a receiver. In IEEE 802.11 networks, the RSS indication (RSSI) value is used when performing medium access control clear channel assessments and in roaming operations. The strength of RF signals undergoes some attenuation during transmission after leaving the sender’s radio. This signal strength deterioration is governed by a variety of factors, such as RF interferences, the distance between communicating nodes, and obstacles.

The walls of a classroom should decrease the RSS of clients outside of the classroom by a large enough margin that clients can be determined to be inside or outside the classroom. In order to determine if the RSS drops by a significant amount, a wireless sniffer was used to measure the RSS strength of clients inside and outside of different classroom environments. There are several ways to measure RSS. (11) describes the four units of measurement that can be used to represent RSS. These measurements are: mW (milliwatts), dBm("db"-milliwatts, RSSI (received signal strength indicator), and a percentage signal strength measurement. The proposed system will rely on the use of RSSI, which will be converted to a percentage.

4.1 RSSI Overview

The IEEE 802.11 standard(10) states that; ”The received signal strength indicator (RSSI) is an optional parameter that has a value of 0 through RSSI Max. This parameter is a measure by the PHY sublayer of the energy observed at the antenna used to receive the current PPDU. RSSI shall be measured between the beginning of the start frame delimiter (SFD) and the end
of the PLCP header error check (HEC). RSSI is intended to be used in a relative manner. Absolute accuracy of the RSSI reading is not specified.”

The last two sentences of the above passage are particularly important as they signify that there is neither a stipulated accuracy required for the RSSI nor a relationship with any particular energy level which is measured in mW or dBm. Thus, individual vendors can provide their own levels of accuracy, granularity or range for the RSSI values. Although different manufactures use different RSSI scales, this is irrelevant for the purpose of this system because all of the 802.11 packets will be captured by the same wireless card. All RSSI measurements will be based on the same standard of measurement. In the event that different cards are used to monitor RSSI, the RSSI would need to be converted to a percentage to ensure that the measurements are consistent.

To convert RSSI to a percentage, the RSSI for a particular packet is divided by the RSSI$_{Max}$ value and then multiplied by 100 to derive a percentage. For example, a 50% signal strength with a Symbol card converts to an RSSI of 16 (because their RSSI$_{Max} = 31$). Atheros, with RSSI$_{Max}=60$, has a RSSI=30 at 50% signal strength. Cisco uses an RSSI$_{Max} = 100$, so 50% is RSSI=50. Examples such as these illustrate how the use of a percentage for signal strength provides a reasonable metric for use in network analysis and site survey work. Using percentages allows a reasonable comparison between environments even though different vendors’ wireless cards were used to take the measurements. Ultimately, the generalized nature of a percentage measurement allows the integer nature of the RSSI to be overlooked.

RSSI is an eight-bit field in the 802.11 header and a vendor-specific value because each vendor has the liberty to choose their own scale for its measurement. For example, Orinoco cards have a RSSI Max of 127, Cisco cards have an RSSI Max of 100, and Symbol cards use an RSSI Max of 60. In order to view a client’s RSSI the complete 802.11 header must be captured by the receiving station. The complete 802.11 header is visible only when packets are captured in the monitor mode. There are currently three different header formats that can be used to capture RSSI information: the Absolute Value System (AVS) WLAN header, the Prism2 header, and the Radiotap header format. These header formats are often difficult to use due to
lack of documentation. The next section provides an overview of the information available on the three header formats. Unfortunately, minimal documentation is provided for the AVS and Prism2 headers. The Radiotap header is better documented as it is a newer implementation.

4.1.1 AVS Header

The AVS header is an extra header that is created by the wireless driver when operating in monitor mode. It adds only 64 bytes to the standard 802.11 frames. The AVS header was introduced by Absolute Value Systems for the linux-wlan-ng drivers. Linux-wlan-ng drivers are used by Prism54 and several other wireless cards.

Appendix A.2 displays the format of the AVS header. ssi_signal in the AVS is the field that will be used to monitor RSS. ssi_signal can have three different outputs: "None", "Normalized RSSI" or "dBm" depending on what is specified in the ssi_type field. "None" indicates that the underlying WLAN device does not supply any signal strength and the ssi_* values are unset. "Normalized RSSI" values are integers in the range [0-1000] where higher numbers indicate a stronger signal. "dBm" values indicate an actual signal strength measurement quantity and are usually in the range [-108 - 10].

4.1.2 Prism2 Header

The Prism2 header adds 144 bytes to the beginning of each 802.11 packet. Prism2 headers are generated by the wireless driver, and contain information such as received signal strength (RSSI), capture device, channel, and other signal/noise quality information. A.1.3 shows actual packet capture with Prism2 header information.

4.1.3 Radiotap Header

The radiotap header was originally designed for Berkley Software Distribution. The work on the Radiotap header was done by BSD wireless hackers and is more future-proof and hardware-independent than the AVS and Prism2 headers, although it is a little harder to parse because it's variable-length. The Radiotap header provides information about the wireless connection.
The most important information shows the rate at which the packet was captured and the channel in which the card was tuned when the packet was captured.

4.1.4 Monitor Mode

Raw monitor mode/rfmon is a sniffing mode that allows the wireless card to report radio headers from the 802.11 layer. Without this mode, sniffing is only possible on the data layer of the associated network and the wireless sniffer will not be able to capture packets from all wireless nodes in its range. Also if the card is not in monitor mode, the network interface converts the 802.11 header into a fake 802.3 ethernet header, which strips off any RSS information that will be needed. Many open source sniffers, such as Kismet and Airsnort, require rfmon support for 802.11 data capture. Appendix A.1.3 contains a screen capture of Ethereal running in monitor mode using Prism2 headers.

Not all wireless cards have the ability to be placed in monitor mode/rfmon. Some cards require special drivers to be placed into monitor mode. An example of special drivers is the Orinoco monitor-mode patches from the Shmoo Group, which enable an Orinoco wireless card to be put into monitor mode. Once an Orinoco wireless card is in monitor mode, it receives raw packets and makes them available to an application-layer program via the PF PACKET interface used by the packet-capturing library.

4.2 Attenuation

Wireless networks must abide by the laws of physics, which is an advantage when identifying wireless clients. As wireless signals propagate through the air, they lose strength while encountering natural and manmade obstacles. Typical office obstacles such as doors, windows and walls offer fairly well-known levels of attenuation, and are in addition to the path loss. Table 4.1 shows examples of attenuation commonly found in buildings.

Attenuation of the wireless signal benefits the proposed system because it provides a distinguishable characteristic between clients in a room and clients outside of the classroom. (8) lists one disadvantage of using a passive sniffer to measure RSSI as the measurement being depen-
dent on the location of the sniffer. This is because the sniffer’s position can greatly affect the amount of obstacles and distance the wireless signal encounters, which causes higher amounts of attenuation. The perceived disadvantage actually improves the ability of the wireless sniffer to identify wireless clients in the same room. This is possible because the attenuation of the walls may decrease the RSSI enough to determine which clients are outside of the classroom and which clients are inside.

4.3 Testing Hypothesis

In order to test if there is a distinguishable difference between RSS inside and outside of a classroom, the RSSI of known clients was sniffed both inside and outside of the room. The sniffing platform was an Apple MacBook running OS X 10.4.8 and RSS was measured using KisMAC 0.21a. Both 802.11b and 802.11g cards were tested. An Apple Airport Extreme was used to test 802.11g and an Lucent Orinoco Gold was used to test 802.11b. The RSS was measured in dBm since this is the only measurement available with KisMAC.

4.3.1 KisMAC

KisMAC is an OS X based GUI version of Kismet. KisMAC is an 802.11 layer2 wireless network detector/sniffer that can sniff 802.11b, 802.11a, and 802.11g traffic (12). KisMAC has the ability to be implemented in passive mode which makes it completely invisible and it sends no probe requests.

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount of Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasterboard Wall</td>
<td>3dBm</td>
</tr>
<tr>
<td>Office Window</td>
<td>3dBm</td>
</tr>
<tr>
<td>Wooden Door</td>
<td>3dBm</td>
</tr>
<tr>
<td>Cinder Block Wall</td>
<td>4dBm</td>
</tr>
<tr>
<td>Glass Wall with Metal Frame</td>
<td>6dBm</td>
</tr>
<tr>
<td>Metal Door</td>
<td>6dBm</td>
</tr>
<tr>
<td>Brick Wall</td>
<td>8dBm</td>
</tr>
<tr>
<td>Concrete Wall</td>
<td>10-15 dBm</td>
</tr>
</tbody>
</table>
4.3.2 Measuring RSS

RSS was measured at four locations, (see Appendix A for floorplans of the locations). Room 1148 is a large lecture hall, Room 1127 is a computer lab with desktops and monitors at each seat, Room 2133 is a standard class room with only desks and chairs, and Room 214a is a conference room with only one large table. The record RSS values can be seen in Figure’s 4.3.2 and 4.3.2.

![Graph showing RSS measurements in dBm for Room 1148, Room 1127, Room 2133, and Room 214a.](image)

Figure 4.1 802.11g RSS Readings

Table 4.2 802.11g RSS Percentage of Change

<table>
<thead>
<tr>
<th>Room</th>
<th>Percentage of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room 1148</td>
<td>48.7</td>
</tr>
<tr>
<td>Room 1127</td>
<td>21.7</td>
</tr>
<tr>
<td>Room 2133</td>
<td>60</td>
</tr>
<tr>
<td>Room 214a</td>
<td>43</td>
</tr>
</tbody>
</table>
The percentage of change can be seen in Table 4.2.

![Figure 4.2 802.11b RSS Readings](image)

The percentage of change can be seen in Table 4.3.

<table>
<thead>
<tr>
<th>Room</th>
<th>Percentage of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room 1148</td>
<td>68.7</td>
</tr>
<tr>
<td>Room 1127</td>
<td>45.7</td>
</tr>
<tr>
<td>Room 2133</td>
<td>67.6</td>
</tr>
<tr>
<td>Room 214a</td>
<td>74</td>
</tr>
</tbody>
</table>

4.3.3 Results

Due to attenuation, the RSS of clients outside of the classroom drops noticeably compared to those inside. 802.11g clients had an average drop of 43.4% when measured outside of the classroom compared to the RSS of clients inside. 802.11b clients’ RSS drops by an average of
64% when the RSS is measured outside of the classroom. This is an important finding because it provides a way to identify wireless clients inside the classroom and solves the problem of multiple access points.

4.4 Possible Problems

There are still problems with sniffing the RSS to localize clients. One way to circumvent this system is to intentionally cause interference to reduce RSS below the cut off point. The system would then think that the client is broadcasting from outside of the room due to the low RSS. The wireless client could also reduce the transmit power of their wireless card so that the RSS appeared to be coming from outside of the classroom.
CHAPTER 5. Design

This is a general overview of how the proposed system can be designed and implemented in various university settings. Client traffic can be monitored because the software is open source, the system is highly customizable, and clients can be identified to a specific classroom. At a university, the proposed system will work as follows. Instructors will first inform the university's Information Technology (IT) department that they are planning to monitor traffic during their classtime. The IT department will take a sniffer to the classroom and compare RSSI inside and outside of the classroom. These RSSI will then be converted to a percentage and the IT department will come up with a cutoff point where anything above a certain RSS will be monitored. For example, if all clients tested within the classroom have an RSSI of 35% or above and clients outside of the classroom have an RSSI of 28% or below, the IT department would set the cutoff point at 32%. This means that if the sniffer detected a MAC address with an RSSI higher than 32%, it would send that MAC address to the wireless network control system. Ideally, in the future an algorithm will be implemented to compare RSS and will automatically come up with a cutoff point in real time. Once the sniffer has been configured by the IT department, it will be given to the instructor to be used during classtime. For instance, in Figure 4.3.2 the system would parse the list for all clients with an RSS above 30dBm. The sniffer will be connected to the network through an Ethernet port. The list of MAC addresses will then be sent to a database, which will be used by the system responsible for applying rules to the network traffic. These rules will be defined by the instructors. The following sections provide a brief overview of each part of the system.
5.0.1 Monitoring System

The monitoring part of the system will be based on the work of (7). The university IT department will evaluate the current network topology and decide on the appropriate placement of the traffic monitoring system. As discussed earlier, there are generally a few places that the system can be placed, depending on the network topology. Once the system is installed, a few things will need to be configured that were not discussed in (7), such as when to start and stop monitoring traffic and how to determine what traffic to monitor.

The monitoring system will be setup to start monitoring the traffic of a classroom during a time specified by the professor. The network monitoring system will connect to a database containing a list of classrooms and MAC addresses that are inside of those classrooms (this database will automatically be updated by the sniffer). For example, if a sniffer is placed in Room 1132, it will monitor the classroom and determine clients inside of the classroom. Once a client is determined to be in the classroom, the sniffer will connect to the database and enter the clients MAC address into the table for Room 1132. The network monitoring system will also contain a stop time specified by the professor and, when this time is reached, the network monitoring system will clear all MAC addresses from the classroom.

5.0.2 Web Interface

A few issues not addressed in the paper are having multiple web-pages and rulesets for multiple classes. The IT department will make a unique webpage for each classroom, allowing only the instructor of that class to log on. This will enable each class to have its own set of rules. The instructor will log on to a web interface and select what traffic to allow and traffic to block. Normally, this will be done before class, but can also be changed and modified in realtime. If an instructor decides to allow student access to a specific website when all web traffic has been blocked, they can add the website to an approved list of websites during classtime. This ability to modify the system in realtime will allow instructors to have complete control of the wireless network in their class.
5.0.3 Sniffer

Instructors will be issued a sniffer from the IT department, which will link the MAC address and the IP of the sniffer to the classroom. When the system receives the list of MAC addresses, it will know which rule set it needs to apply to these MAC addresses. The instructor will bring the sniffer to class and plug it into an Ethernet jack in the classroom. The sniffer will then monitor RSSI and report the findings to the system controlling traffic. The concern of students modifying their MAC addresses or using a friend's laptop will be eliminated because as soon as the 802.11 signal is determined to be coming from the room, that MAC will be blocked.

5.1 Security

Security is an important issue that must be taken into consideration. The proposed system deals with user and location information, which could be considered a privacy concern. If someone is able to gain access to the system, they could affect network traffic for the whole university. To ensure the security of the network, the web interface must be password protected, the database must only accept access control lists from the sniffers, and the sniffers themselves must be secured.

5.1.1 Web Interface

The web interface will need to be password protected. CNAC currently has instructors login and then select their class. In order to provide a more secure environment, instructors will have their own passwords and only be able to access the webpage specifically for their classes. This prevents an instructor from accidentally selecting a class that is not theirs.

5.1.2 Sniffer Security

The monitoring system and database will have a predefined access control list that only accepts connections from sniffers that are assigned static IP addresses. The database will also be password protected, along with an ACL. Without these precautions, it is possible for anyone
to upload MAC addresses to the database. The sniffer itself will need to be password protected so that only authorized users can log in and change the sniffers settings.
CHAPTER 6. Conclusion

This paper has provided a cost efficient and flexible system that can be used to monitor wireless networks in the classroom, there are still other distractions technology provides. There is the possibility that students can use cellphones to access the Internet. This system does not prevent students from using resources that are already on their computer. For example, students will still be able to watch DVDs or play games that are already installed on their computer. This system still relies on the instructor to also monitor the classroom.

The goal of this system was to provide instructors with the ability to control wireless network access in the classroom. Through testing, it was determined that clients can be located within a classroom using RSS. This location information can be used to specify the network traffic that will be monitored. The work presented in this paper with the use of CNAC provides a complete system to monitor wireless traffic in the classroom. The solution is neither to ban laptops nor allow unrestricted network access in the classroom. There must be a middle ground as technology can benefit the learning environment if implemented correctly. The system proposed in this paper provides an effective way to monitor wireless traffic and allow students the benefits provided by wireless technology.

There are areas with this system that still need extended work; however, due to time constraints they were not able to be expanded upon. A complete system needs to be fully implemented and tested in order to determine if the system works correctly and efficiently.
CHAPTER 7. Future Work

Each part of the proposed system needs to be fully implemented and documented. The system needs to then be evaluated for effectiveness and whether or not there is any performance degradation to the network. After the system has been fully tested and implemented an algorithm needs to be developed for determining RSS of clients inside the classroom, a portable platform for the sniffer needs developed, and uses for the system in the business world need to be researched.

7.1 Sniffer

The sniffer needs the ability to automatically determine RSSI that are inside and outside of the room. There needs to be an algorithm designed to do this, one which might take the low and high end of all captured RSSI and start looking for a gap where the RSSI dropped by 15% (if one is not found, 16% could be tried). Once a gap is found, determine whether or not it is in the bottom 25%. If the gap is in the bottom 25% it would probably be safe to assume that the cut-off point has been determined. If the gap is in the upper 80%, it would be reasonable to assume that this would not be a good cut off point.

Another goal is to implement the sniffer on a standard wireless router using a modified version of the Openwrt firmware. This would allow the sniffer to be in a small and convenient form-factor, allowing for easy portability. A wireless router would also already contain a wireless card to be used for sniffing and an Ethernet port to provide network connectivity to transmit data to the server. Another benefit of the wireless router is its low cost and availability.
7.2 Traffic

More research needs to be done on how traffic would be filtered, modified, and monitored. Besides filtering and modifying traffic, an instructor might want to monitor and log the traffic. If the network traffic is only monitored and logged, it is transparent to the students and seems less intrusive but still gives the instructor the opportunity to review logs and see if students are following network use policies. Research about privacy concerns, how much storage is needed for log files, and who would review the logs also needs to be conducted.
APPENDIX A. Additional Material

A.1 Radio Header Formats

A.1.1 AVS

Table A.1 802.11 Sniffed Frame Format

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CaptureHeader</td>
<td>0</td>
<td>AVS capture metadata header</td>
</tr>
<tr>
<td>64</td>
<td>802.11Header</td>
<td>[10-30]</td>
<td>802.11 frame header</td>
</tr>
<tr>
<td>??</td>
<td>802.11Payload</td>
<td>[0-2312]</td>
<td>802.11 frame payload</td>
</tr>
<tr>
<td>??</td>
<td>802.11FCS</td>
<td>4</td>
<td>802.11 frame check sequence</td>
</tr>
</tbody>
</table>

Table A.2 AVS Frame Format

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>version</td>
<td>uint32</td>
</tr>
<tr>
<td>4</td>
<td>length</td>
<td>uint32</td>
</tr>
<tr>
<td>8</td>
<td>mactime</td>
<td>uint64</td>
</tr>
<tr>
<td>16</td>
<td>hosttime</td>
<td>uint64</td>
</tr>
<tr>
<td>24</td>
<td>phytype</td>
<td>uint32</td>
</tr>
<tr>
<td>28</td>
<td>channel</td>
<td>uint32</td>
</tr>
<tr>
<td>32</td>
<td>datarate</td>
<td>uint32</td>
</tr>
<tr>
<td>36</td>
<td>antenna</td>
<td>uint32</td>
</tr>
<tr>
<td>40</td>
<td>priority</td>
<td>uint32</td>
</tr>
<tr>
<td>44</td>
<td>ssi_type</td>
<td>uint32</td>
</tr>
<tr>
<td>48</td>
<td>ssi_signal</td>
<td>int32</td>
</tr>
<tr>
<td>52</td>
<td>ssi_noise</td>
<td>int32</td>
</tr>
<tr>
<td>56</td>
<td>preamble</td>
<td>uint32</td>
</tr>
<tr>
<td>60</td>
<td>encoding</td>
<td>uint32</td>
</tr>
</tbody>
</table>
Table A.3 Radiotap Header Structure

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/* set to 0 */</td>
<td>it_version</td>
<td>uint8_t</td>
</tr>
<tr>
<td></td>
<td>it_pad</td>
<td>uint8_t</td>
</tr>
<tr>
<td>/* entire length*/</td>
<td>it_len</td>
<td>uint16_t</td>
</tr>
<tr>
<td>/* fields present */</td>
<td>it_present</td>
<td>uint32_t</td>
</tr>
</tbody>
</table>

A.1.2 Radiotap

Supported list of radiotap header fields

c enum ieee80211_radiotap_type

IEEE80211_RADIOTAP_TSFT = 0,
IEEE80211_RADIOTAP_FLAGS = 1,
IEEE80211_RADIOTAP_RATE = 2,
IEEE80211_RADIOTAP_CHANNEL = 3,
IEEE80211_RADIOTAP_FHSS = 4,
IEEE80211_RADIOTAP_DBM_ANTSIGNAL = 5,
IEEE80211_RADIOTAP_DBM_ANTNOISE = 6,
IEEE80211_RADIOTAP_LOCK_QUALITY = 7,
IEEE80211_RADIOTAP_TX_ATTENUATION = 8,
IEEE80211_RADIOTAP_DB_TX_ATTENUATION = 9,
IEEE80211_RADIOTAP_DBM_TX_POWER = 10,
IEEE80211_RADIOTAP_ANTENNA = 11,
IEEE80211_RADIOTAP_DB_ANTSIGNAL = 12,
IEEE80211_RADIOTAP_DB_ANTNOISE = 13,
IEEE80211_RADIOTAP_FCS = 14,
IEEE80211_RADIOTAP_EXT = 31 ;

A.1.3 Prism2
Figure A.1 Ethereal Setup to capture packets using Prism2 header.

Figure A.2 Prism2 header capture.
Figure A.3 Iowa State University's Gerdin Business Building Rooms 1148 & 1127
Figure A.4 Iowa State University’s Gerdin Business Building Room 2133
Figure A.5 Iowa State University’s Office and Laboratory Building Room 214a
BIBLIOGRAPHY

