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ABSTRACT 
 

The p53 molecular network is a master regulator of how cells respond to DNA-

damaging stresses. Its primary function is to respond to DNA-damage by several options: 

apoptosis, cellular senescence, and temporary arrest of cellular growth for DNA repair. 

The p53  network’s   tight   regulation  of   cellular   fate  after  damage  has  obvious  beneficial  

effects of preventing tumorigenesis, and possible costly effects later in life such as the 

accumulation of damaged cells and other aging phenotypes. Because many reptile species 

have evolved unique organismal stress responses, we tested the related hypothesis that 

the evolutionary dynamics of, and mode of selection on, genes within the p53 network 

differs between reptiles and mammals, and that these differences may underlie the 

evolution of stress response diversity. We analyzed 32 genes of the p53 network in both 

reptiles and mammals to compare the rates of evolutionary change and the modes of 

selection, (i.e., positive or purifying). We utilized transcriptomes of seventeen reptile 

species in order to determine protein-coding nucleotide sequences for these genes in the 

p53 network and performed molecular evolutionary selection analyses. We found that 

several genes involved in apoptosis, DNA repair and damage prevention, and inhibiting 

mTOR, which is an aging pathway, are undergoing different levels of selection in reptiles 

when compared to mammals. We discuss these findings in the context of unique 

adaptations to stressors found in reptiles and propose future functional research.   
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CHAPTER 1. GENERAL INTRODUCTION  
 
 

Introduction  

 

The p53 molecular network is a complex multi-pathway, and critical cellular signaling 

network (Figure 1). The p53 protein acts as a transcription factor to control the expression of many 

genes in its network, which consists of upstream regulators and downstream target genes, all 

revolving around p53. One of network’s   functions is to prevent the formation of tumors 

(tumorigenesis) in organisms by responding to DNA damage in cells. Stresses such as hypoxia, UV 

radiation, and genotoxic agents can be harmful to cells and lead to increased expression of the main 

component of the network: the p53 gene (Maltzman and Czyzyk 1984; Graeber et al. 1994; Tishler 

et al. 1993; Fritsche et al. 1993) (Figure 1).  P53 uses its downstream components, or its target 

genes, to respond to stresses by directing transient cell cycle arrest, permanent cell cycle arrest 

(senescence), or cell death (apoptosis). In effect, it acts as a master regulator of cell responses to 

stress. Through its ability to respond to stress, p53 combats tumorigenesis and protects the organism 

at both a cellular and organismal level.  

 

P53 and cancer 

Tumors occur because of increased cell proliferation due to DNA damage. P53 functions 

to control this proliferation to prevent tumors from occurring. P53 is a site-specific DNA-binding 

protein (Kern et al. 1991) that transactivates genes in its network (Fields and Jang, 1990). 

Therefore, if p53 is mutated, cell growth ensues resulting in tumor formation. 

P53 is one of the most studied tumor suppressors. Tumor suppressors function to 

suppress uncontrolled cell division that could lead to the formation of malignant tumors, most 
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often through regulating gene expression of various target genes. Wild-type p53 suppresses 

tumors via two functional alleles. A majority of tumor suppressors follow the two-hit norm 

(Knudson 1971), in which both alleles must be mutated before a phenotype other than the wild-

type phenotype occurs. However, certain mutations in p53 are exceptions to this rule. A protein 

translated from mutated p53 can have a dominant-negative effect whereby the protein product of 

the mutated p53 allele protein prevents normal functioning of the protein translated from the 

wild-type allele (Hachiya et al. 1994).  

Cancer is a genetic disease, which is a recent discovery (Antoniou et al. 2010, Pineda et 

al. 2010). A high percentage of human cancers show mutation in p53 (Hollstein et al. 1991), 

which identifies it as a critical deterrent to tumorigenesis. As far as its genetic basis, the loss of a 

single functional allele of p53 significantly increases the risk of cancer, and the loss of both 

alleles results in tumor development at a very young age, as seen in mice (Donehower et al. 

1992). The mutant form of p53 sometimes behaves the same way as an oncogene, or a cancer-

causing gene (Walerych et al. 2012). Additionally, tumor development can also occur with null 

alleles for p53, meaning the p53 protein is absent.  

 

P53 and aging 

P53 has long been identified as having a role in tumor suppression. However, it also has 

implications in aging via two different mechanisms. The first is a direct result of mutations to 

p53 in tissues and organs that accumulate over an individual’s  lifetime  that  can  ultimately  lead  to  

certain geriatric cancers that appear late in life (Balducci and Ershler 2005). The second 

interaction of p53 with senescence rates is indirect. There is evidence to suggest that a functional 

p53 network is important for survival of individuals, especially later in life. For example, in 
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mice, Feng et al. 2007 found lower efficiency of p53 response to gamma-irradiation in tissues 

from aging mice. They also reported an overall negative correlation between the rate of decline 

in p53 response and life-span: longer-living mice delayed the decline of p53 activity in an as-yet 

unknown mechanism. Studies delving into this relationship between p53 and lifespan have 

focused on one of the pathways within the multi-pathway p53 network. The mammalian target of 

rapamycin (mTOR) network is a nutrient sensing molecular pathway that influences organismal 

aging. Inhibition of this network increases lifespan in mice (Harrison et al. 2009) whereas 

induction of this network decreases lifespan. P53 can inhibit the mTOR pathway, thereby having 

the effect of increasing lifespan through its regulation of downstream genes PTEN (phosphatase 

and tensin homolog) and TSC2 (tuberous sclerosis 2), both in a specific pathway within the p53 

network (see Figure 1). In addition, the gene MDM2 (mouse double minute 2 homolog) is 

directly upstream of p53 in the network and negatively regulates p53 gene expression, and it is 

also positively regulated by mTOR. This leads to the possibility that slightly decreasing the 

expression of MDM2 could  lead  to  an  increase  of  an  organism’s  lifespan  (Moumen  et  al.  2007).   

In contrast to the beneficial function of p53 as a tumor suppressor, overexpression can 

also lead to faster senescence and shorter lifespan through an mTOR-independent pathway. 

Studies have shown that mutant p53 with increased activity of the protein can lead to shortened 

life span and early aging in mice with aging phenotypes such as reduced longevity, osteoporosis, 

organ atrophy, and reduced stress tolerance (Tyner et al. 2002). The mechanism for this 

phenotype is not known, but Ungwitter and Scrable, 2009 offer some hypotheses. Since several 

different tissues in the mice were observed to undergo degeneration, it shows the general effect 

of p53 on the organism’s ability maintain tissue homeostasis. The inability of regeneration could 

be due to hyperactivity of p53 at promoters of cell cycle arrest genes. Additionally, apoptosis and 
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cellular senescence can lead to depletion of renewable tissue (Rodier et al. 2007). This multi-

pathway effect of p53 on senescence is of great interest to evolutionary biologists because it may 

be an example of an antagonistically pleiotropic gene (reviewed in Promislow and Bronikowski 

2006) with beneficial effects early in life and detrimental effects later in life.  

Sometimes p53 eliminates not only abnormal cells, but also normal cells such as stem 

cells. Stem cells are required for tissue renewal, and this depletion is a characteristic of aging. 

Another way in which p53 is   implicated   in   aging   is   through   its’   cellular   senescence   response.  

Senescent cells are not removed from tissue and thus have the ability to alter the 

microenvironment of tissues, leading to cancer and aging phenotypes (Rodier et al. 2007). 

Excessive p53 cell fate decisions can lead to tissue atrophy and degeneration caused by apoptosis 

and loss of tissue renewal or regeneration caused by senescence (de Keizer et al. 2010). 

However, it is important to note that mice with super-p53 or, extra copies of p53, display 

increased tumor suppression without consequence and may live longer (Matheu et al. 2007). 

Therefore, there is a fine balance between too little p53 and too much p53, and the data on the 

regulation of the p53 network and aging are equivocal. It has been proposed that since p53 is 

beneficial at an early age, but can drive aging phenotypes later in life, that it displays behavior 

consistent with antagonistic pleiotropy (Campisi 2005). This theory holds that effects of alleles 

that are beneficial for an organism early on in life can become deleterious later on. Therefore, 

p53 responses can protect an organism from cancer early in life, but can also promote aging 

phenotypes later on.   

Reptiles, and snakes in particular, experience indeterminate growth and the ability to shut 

down metabolism for long periods of time (Bronikowski 2008). They can also undergo starvation 

resistance, supercooling, freeze tolerance, heat tolerance, and extended hypoxia resistance. In 
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addition, reptiles have an extraordinary variation in life spans and senescence rates, including 

several species whose hibernation phenotypes resemble suspended animation, traits putatively 

involved in the molding of senescence by natural selection (Schwartz and Bronikowski 2010). 

Since many reptiles have the ability to decrease metabolism to negligible levels – and thus enter 

a state of so-called suspended animation, they may be unique among vertebrates in their cellular 

mechanisms of aging (reviewed in Schwartz and Bronikowski 2010). This suggests the 

intriguing possibility that the p53 network, which can be thought of as the main regulator of 

stress-induced DNA-damage repair, is undergoing different strengths and form of selection in its 

network of genes, which may allow for more fine-tuned, or even additional, responses to cellular 

stresses. This, then, is the guiding hypothesis and motivation for this thesis.  

For  my  Master’s  thesis,  I analyzed the evolutionary dynamics and molecular evolution of 

the genes contained within the p53 network. We did this by first generating comparative liver 

transcriptomes across 15 species of ectothermic reptiles, and by comparing pathway evolution 

between reptiles (including birds) and mammals. I examined genes in the pathway individually 

and the pathway as a whole using a large multi-gene dataset. I queried the sequences for 

signatures of selection – both purifying and positive (discussed in Chapter 2), to determine if the 

ancestral reptile branch and whether the entire reptile clade experienced different rates and forms 

of evolution than mammals. I examined the evolution of the p53 network in reptiles, and 

compared it to mammals because p53 network signaling also has implications in aging (Biteau 

and Jasper 2009). I also determined positively selected sites in reptiles, which are sites in a 

nucleotide sequence that have experience diversifying rates of selection. Even though the 

function of the p53 gene  and  its’  regulators  and  many  target  genes  has  been  well  characterized  in  

model systems since its discovery over 30 years ago, it is important to investigate how individual 
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genes within the network and the network as a whole has evolved particularly in diverse 

organisms that have derived stress responses. 

 

THESIS ORGANIZATION  

 

This MS thesis is organized as a brief introduction chapter (this chapter, Chapter 1), 

followed by a data chapter (Chapter 2) written in manuscript format; I end with some general 

conclusions and ideas for future research in Chapter 3. Chapter 2 has several co-authors. I 

performed most of the analyses and writing. Suzanne McGaugh completed the data processing. 

Input for statistical tests of molecular evolution was provided by Suzanne McGaugh and Tonia 

Schwartz.  
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CHAPTER 2. MOLECULAR EVOLUTION OF THE p53 NETWORK IN REPTILES  
 

A modification of a paper to be submitted to Molecular Biology and Evolution 
 

Shikha Parsai1, Suzanne E. McGaugh2 Tonia S. Schwartz3 & Anne M. Bronikowski4 
 
 

 
ABSTRACT 
 
 
 
 The p53 molecular network is a master regulator of how cells respond to DNA-damaging 

stresses. Its primary function is to respond to DNA-damage by several options: apoptosis, 

cellular senescence, and temporary arrest of cellular growth for DNA repair. The p53 network’s 

tight regulation of cellular fate after damage has obvious beneficial effects of preventing 

tumorigenesis, and possible costly effects later in life such as the accumulation of damaged cells 

and other aging phenotypes. Because many reptile species have evolved unique organismal stress 

responses, we tested the related hypothesis that the evolutionary dynamics of, and mode of 

selection on, genes within the p53 network differs between reptiles and mammals, and that these 

differences may underlie the evolution of stress response diversity. We analyzed 32 genes of the 

p53 network in both reptiles and mammals to compare the rates of evolutionary change and the 

modes of selection, (i.e., positive or purifying). We utilized transcriptomes of seventeen reptile 

species in order to determine protein-coding nucleotide sequences for these genes in the p53 

network and performed molecular evolutionary selection analyses. We found that several genes 

involved in apoptosis, DNA repair and damage prevention, and inhibiting mTOR, which is an 

aging pathway, are undergoing different levels of selection in reptiles when compared to 

                                                        
1 Primary researcher and author 
2 Post-doctoral Associate, The Genome Institute, Washington University, St. Louis MO 
3 Collaborating researcher and graduate student, Department of Ecology, Evolution & Organismal Biology, 
Iowa State University 
4 Associate Professor, Department of Ecology, Evolution & Organismal Biology, Iowa State University 



 

10 

mammals. We discuss these findings in the context of unique adaptations to stressors found in 

reptiles and propose future functional research.   

 

Introduction  
 

Tumor   suppressor   protein   53   (hereafter   “p53”)   is   a   53   kDalton   protein   involved   in  

important cellular functions such as apoptosis, DNA repair and damage prevention, and cellular 

senescence. P53 responds to DNA damage in cells, which results in the prevention of tumor 

formation. Stresses such as hypoxia, UV radiation, and genotoxic agents can be harmful to cells 

and lead to increased expression of p53, which leads to the cell undergoing one of these 

alternative fates (Maltzman and Czyzyk 1984; Graeber et al. 1994; Tishler et al. 1993; Fritsche et 

al. 1993) (Figure 1).  Through its gene regulatory function, p53 regulates its downstream 

components in response to stress by directing: transient cell cycle arrest, permanent cell cycle 

arrest (senescence), or cell death and degradation (apoptosis). As such, it acts as a master 

regulator of how a cell will respond to stress with the choices being repair, functional death, or 

apoptosis. All of these processes can prevent the formation of tumors, or tumorigenesis, and 

results in protection of the organism at both a cellular and organismal level. The p53 gene family 

(consisting of p53 and homologs p63 and p73) is an ancient family that exists in protists and 

single-celled organisms, which suggests that the initial function of p53 was to respond to DNA 

damage with its tumorigenesis effects being an epiphenomenon of its DNA-damage induction 

(Lu et al. 2009). 

Many significant discoveries and revelations about the p53 molecular network have been 

made since its initial discovery, all leading to the conclusion that the network is complex and 

encompasses a multi-functional network. The specific p53 gene was thought at first to be an 
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oncogene, or a cancer-causing gene (DeLeo 1979), but was later characterized as a tumor 

suppressor in its wild-type form (Baker et al. 1989). In addition to its induction upon nuclear 

DNA damage, p53 functions in the cytoplasm as well to regulate mitochondria-mediated 

apoptosis (Mihara et al. 2003). P53 – and the p53 network - has also been reported to regulate 

metabolism, fecundity, and development in mice (reviewed in Vousden and Prives 2009).  

The p53 network is complex and consists of many genes, a few of which are p53 gene 

effectors and many that are regulated by p53 through its function as a transcription factor (Figure 

1). The p53 gene is able to auto-regulate itself through MDM2 (mouse double minute 2 homolog) 

and MDM4 (mouse double minute 4 homolog). MDM2 regulates p53 degradation through a 

negative feedback loop, whereas MDM4 controls p53 activity, but is itself not regulated by p53 

(Marine et al. 2006). Upon stress-induced activation by phosphorylation, p53 acts to alter gene 

expression of downstream genes (Levine 1997, Vousden and Lu 2002). For example, upon 

double-stranded DNA breaks, ATM (ataxiatelangiectasia mutated protein kinase) is activated, 

which in turn activates CHK2 (checkpoint kinase 2) (Matsuoka et al. 1998). P53 is then 

phosphorylated by ATM and CHK2, and subsequently leads to either cell cycle arrest or 

apoptosis (Barlow et al. 1997).  

P53 has multiple ways of regulating the cell cycle. It can inhibit cell proliferation and 

growth by transcriptionally activating p21, a cyclin-dependent kinase inhibitor, at both the G1 

(Waldman et al. 1995) and G2 (Bunz et al. 1998) phases of the cell cycle. Transient cell cycle 

arrest allows cells to survive until damage is fixed. However, there may be irreparable damage, 

resulting in the need for permanent cell cycle arrest, also known as cellular senescence. For 

example, p53-induced cellular senescence prevents precancerous lesions from developing into 

malignant tumors (Xue et al. 2007).  
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We chose to study the molecular evolution and evolutionary history of the p53 network in 

reptiles because of their vast suite of unique organismal stress responses, which could involve 

the reshaping of the p53 network. For example, reptiles are able to undergo extended metabolic 

shut-down, starvation resistance, supercooling, freeze tolerance, heat-shock tolerance, and 

extended hypoxia resistance (Schwartz and Bronikowski 2010) – many of which would be 

expected to result in DNA damage. In addition, reptiles have an extraordinary variation in life 

spans and senescence rates. Therefore, an understanding of the evolution of the p53 network in 

reptiles may provide broad insights into the comparative biology of aging and its genetic 

regulation. Though the function of the p53 network has been well characterized in model 

systems, it is important to investigate how individual genes within the network and the network 

as a whole has evolved particularly in diverse organisms that have derived stress responses. Our 

approach is to test for purifying and positive selection in the genes that comprise the amniote p53 

network, and to compare the evolutionary rates of the component genes. 

 

MATERIALS AND METHODS  

 

Molecular Resources 

To perform evolutionary analyses of the genes involved in the p53 network, sequenced 

transcriptomes and their resultant assemblies were utilized (McGaugh et al. 2013 in prep). 

Briefly, for each species, a single liver transcriptome was sequenced using Illumina HiSeq 2000 

with TruSeq chemistry using paired-end sequencing, with a read size of 100 nt. The sequenced 

species included four turtles, a crocodilian, six snake, and six lizard species (Table 1, see Figure 

2 for a phylogenetic tree based on non-p53 characters). Additional reptile gene sequences were 
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obtained from Genbank and ENSEMBL for a lizard (carolina anole, Anolis carolinensis) and a 

turtle (Chinese softshell, Pelodiscus sinensis), as well as a number of birds, mammals, fish, and 

amphibians (Table S1.1 and S1.2).  

 

Data processing  

 Original reads were processed using the FastX-Toolkit version 0.0.13.2, 

(http://hannonlab.cshl.edu/fastx_toolkit/), Cutadapt (Martin 2011) and Trimmomatic (Lohse et 

al. 2012). Fastx_trimmer was used to remove the first base, as Illumina personnel indicate that 

this base can be unreliable (Gary Schroth pers comm.). Cut-adapt was used to trim adapters from 

the  3’  ends  of  reads  with  an  allowed  error  rate  of  0.01.  Trimmomatic  was  used  to  remove  reads  

with sliding windows of 6bp that had average quality scores of 30 or less and was used to 

remove all reads less than 30 bp in length.  

 

Gene sequences 

The KEGG pathway database was used to identify genes in the p53 network. Of the 68 

genes determined to define the complete p53 molecular network, we were able to reliably 

identify 32 of these with sufficient completeness in our transcriptomes. Table S2 lists the genes 

included in this study and their general functions in the context of the pathway. Genes not 

included were either not present in the liver transcriptomes, or were recovered to some extent, 

but without sufficient quality and sequence length for inclusion. Each reptile species had reads 

organized into one file of forward reads and another file of reverse reads, referring to the 

sequenced ends of a DNA strand. Each file was converted from fastq to fasta using the 

FastXtoolkit. The fasta format was then converted into a Blast database using Blast+. 

http://hannonlab.cshl.edu/fastx_toolkit/
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The following methods were used for sequence retrieval from our transcriptomes. We 

obtained the amino acid sequence of Gallus gallus (chicken) from GenBank for each gene. The 

standalone Blast+ version 2.2.28 (Camacho et al. 2009, Altschul et al. 1990) was used to perform 

a tblastn search (an amino acid query against a nucleotide database). This was done individually 

for each gene. The chicken amino acid sequence was blasted against each forward and reverse 

database of reads. The IDs of matched reads were then extracted and combined into one file. 

Redundant matches were removed and a Biopython script was used to retrieve fastq sequences 

based on the file of these matched gene IDs, resulting in one file of forward matches and one file 

of reverse matches in fastq format. Both files of matches were converted to fasta format. These 

files were then combined and program CAP3 (Huang and Madan, 1999) was used to assemble 

the partial gene matches. All assembled gene sequences were then blasted to the NCBI database 

for confirmation of gene identity. All commands and scripts are provided in the supplemental 

information.  

Sequences for each assembled gene from our transcriptomes were downloaded into 

Geneious Pro 5.4.3 (Drummond et al. 2011) and aligned to visualize overlapping regions among 

species. This was especially important for some cases in which the whole coding sequence 

region was not acquired. For all analyses below, we analyzed each gene separately and then 

combined all genes together in a multi-gene dataset, which consisted of all 32 genes. For the 

phylogenetic analyses we incorporated 64 species including reptiles (n=23), mammals (n=33), 

fish (n=6), and frogs (n=2). For the PAML analyses we only tested reptiles and mammals, 

consisting of 56 species total.  
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Phylogenetic analysis 

We constructed a phylogenetic tree via the multi-gene dataset to confirm the quality of 

our sequences. We constructed a consensus Bayesian gene tree for the multi-gene dataset, which 

consisted of 24,201 nucleotides distributed across 32 genes for each of the 64 species. All reptile 

nucleotide sequences for each gene were translated into amino acid sequences in Geneious, with 

the correct frame determined by using the chicken sequence as a reference. We combined these 

reptile amino acid sequences in a file with mammal, frog, and fish amino acid sequences (n=64). 

Amino acid sequences for each gene were aligned with MSAProbs version 0.9.3 (Yongchao et 

al. 2010). The alignments were manually edited with Jalview to remove large gaps without 

altering the coding frame of any sequences (Waterhouse et al. 2009). The amino acid alignment 

and nucleotide sequences were then entered into Pal2Nal (Suyama et al. 2006) resulting in a 

nucleotide alignment based on the protein alignment. For each gene the best substitution model 

was chosen according to the AIC model values generated by jModeltest version 2.1.2 (Posada 

2008) (Table S3). Models of evolution are sets of assumptions about the process of nucleotide 

substitution to describe different probabilities of change from one nucleotide to another. 

MrBayes version 3.1.2 (Huelsenbeck et al. 2003) was used for the Bayesian phylogenetic 

analysis of the alignment. The run parameters within MrBayes consisted of four Markov chains 

and two runs saving the current tree every 100 generations for 5 million generations, or until the 

standard deviation between the two runs reached .01 or less. The analysis was run with 32 

partitions based on the substitution model of each gene. A 50% majority-rule consensus tree with 

posterior probabilities at each node was generated after discarding the first twenty-five percent of 

trees to allow for sampling error.  

 



 

16 

Statistical tests of molecular evolution  

The codeml program in PAML version 4.7 was used (Yang 2007) to test for varying rates 

of molecular evolution between reptiles and mammals. For the combined gene data, and for each 

gene individually, we input the accepted phylogenetic relationship of amniote vertebrates 

(tolweb.org/tree) (Figure 2). Selection at the molecular level is diagnosed with a metric, omega 

(ω),   calculated   as   the   number   of   nonsynonymous   mutations   (dN)   over   the   number   of  

synonymous mutations (dS) in a protein coding sequence. A nonsynonymous mutation results in 

a change in the amino acid coded by a nucleotide triplet, whereas a synonymous mutation results 

in the same amino acid. Under neutral evolution the rate of nonsynonymous and synonymous 

mutations is expected to be equal, thus dN/dS=1. Values that are significantly smaller than 1 

indicates purifying selection (i.e., the selective removal of deleterious alleles), and values that are 

significantly greater than 1 indicates positive selection, or a shift in allele frequency.  

 

Branch models 

 To test for varying evolutionary rates among branches (i.e., lineages) within the tree the 

unrooted tree of reptiles and mammals was used. The branch leading to the reptiles (ancestral 

reptile branch) in  the  “foreground”  (i.e.,  here  foreground  refers  to  the  branch  tested)  and  all  other  

branches, which includes the rest of the reptile branches and all mammal branches in the 

background (Figure 2). In practice, this is equivalent to asking whether selection acted along the 

branch leading to reptiles - irrespective of whether it was followed by selection along each of the 

subsequent reptile lineages. Two models were applied to this tree: the null model in which one ω 

ratio was computed across all branches (including those in the background and those in the 

foreground), versus a model which allowed the central reptile branch to have a unique 
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(significantly different) ω  than  all  the  other  branches.  Likelihood  ratio  tests  (df=1)  were  used  to  

test between models. This was repeated for each gene. We then repeated this model fitting with 

the entire reptile clade in the foreground. Thus we had a comparison between the ancestral reptile 

vs. all other branches, and the reptile clade vs. all remaining (mammalian) branches (Figure 2). 

By setting the ancestral reptile branch in the foreground we ask whether selection was operating 

along the branch leading to reptiles, but not necessarily continuing past the bifurcation of that 

branch (see Figure 2). By setting the reptile clade in the foreground we asked whether selection 

pressure(s) was present along the branch that lead to reptiles and all diversification of reptiles.  

Branch models are useful for testing the level of purifying selection, and whether certain 

branches of a tree are more constrained than other branches. This is so because branch models 

compute ω averaged across all sites for the branches in question. Thus, branch models provide 

evidence of either relaxation of purifying selection due to loss of or diminished protein function 

or reduced efficacy of purifying selection in removing deleterious mutations. Since the branch 

test has little power to detect positive selection we also implemented branch-site models, which 

allow  ω  to  vary  among  sites.   

 

Branch-site models 

 To complement the branch models described above, branch-site models were applied to 

each gene individually and to the combined data set (Yang and Nielsen, 2002). In general 

branch-site models do allow ω to vary among nucleotide sites, rather than averaging across sites. 

Positive selection often operates episodically on a few linages of a phylogenetic tree (Zhang 

2000). Similar to the branch models, with branch-site models we can specify the branch or 

branches that we wish to test for an ω   value   different   from   another   set   of branches. The 
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background branches share the same distribution of dN/dS among sites, whereas different values 

of dN/dS can be applied to sites in the foreground branch or branches.  

The branch-site test specifically compares a model that allows for positively selected sites 

within a protein or proteins in the foreground branch or clade (Yang 2007) with a model in 

which ω   is   fixed   equal   to   one   (null  model).  The null model allows the foreground branch or 

branches to have some sites that evolve without selection constraint (ω=1)   which   are   under  

purifying selection in the background (Yang et al. 2005). The alternative model allows for the 

foreground branch or branches to have sites under positive selection. For each gene, we set either 

the ancestral reptile branch or the entire reptile clade in the foreground as was done for the 

branch models. 

To test between the null and alternative models, a LRT was used as described above. 

When positive selection was indicated, the Bayes Empirical Bayes (Yang et al. 2005) output was 

used to identify the specific sites undergoing positive selection and to calculate the posterior 

probability that these sites were under positive selection (Yang 2007). 

 

RESULTS 

 

Phylogenetic analysis 

The Bayesian phylogenetic analysis of the multi-gene dataset resulted in a tree consistent 

with modern systematic understanding of the relatedness among these species (based on other 

DNA sequences and morphological characters, (tolweb.org/tree) (Figure 3). This provides strong 

support for the quality of our sequences and bioinformatics methods. The posterior probability 

values at the nodes indicate strong support for the branch splits, providing further support for this 
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tree. The Bayesian tree for reptiles was divided into the two major clades: with snakes and 

lizards grouped together and turtles, crocodilians, and birds, as expected. That our concatenated 

multi-gene set matches the species phylogeny exactly indicated that with the deep time portrayed 

here we do not need to address incomplete lineage sorting and/or introgression that can be an 

issue with more recent divergence.   

 

Branch models 

When we placed the reptile ancestral branch in the foreground, we found a significantly 

different ω for this branch than the rest of the branches in the tree when the input data were all 

genes. This branch experienced significantly stronger purifying selection (ω=0.114, P=.0005, 

χ²=12.00) than the remainder of the branches (Table 2). When this analysis was repeated for each 

individual gene, 8 out of 32 genes supported the assignment  of  a  significantly  different  ω  ratio  to  

the ancestral reptile branch than the rest of the branches with six out of these eight having a 

significantly lower   ω ratio and two having a significantly higher ratio. These six genes with 

significantly  lower  ω  are: CYTOC (cytochrome C), CASP9 (caspase 9), p53R2, COP-1 (caspase 

recruitment domain-containing protein 16), Cyclin G2, and APAF-1 (apoptotic peptidase 

activating  factor  1).  The  other  two  genes  that  had  significantly  higher  ω  in  reptiles  than  mammals  

along the ancestral reptile branch are MDM2 and PERP (p53 apoptosis effector related to PMP-

22).  

 When the entire reptile clade was placed in the foreground, we did not find a significant 

difference between ω  values assigned to reptile and mammal branches for the multi-gene dataset. 

When genes were individually analyzed, 23 out of 32 genes had a significantly better fit to the 

alternative model, which assigned a different ω  to the reptile clade. Out of these 23 genes 14 had 
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significantly  greater  ω  values  than  mammal  branches.  However,  all  ω  values,  as  noted  in  Table  1,  

were much lower than 1, indicating purifying selection along all branches in all genes.  Thus, a 

greater ω  value assigned to reptiles than mammals does not indicate positive selection, as these 

values are still lower than 1. Several genes had significantly lower assignment of ω  to  reptiles  

than mammals, which indicates stronger purifying selection in reptiles for those genes. For 

example, PTEN and TSC2 both have a significantly lower   ω   ratio   in   reptiles,   and   both   are  

involved in inhibition of mTOR, an aging pathway. Three DNA repair and damage prevention 

genes were also significantly different: P48 (damage-specific DNA-binding), p53R2 

(ribonucleoside-diphosphate reductase subunit M2 B), and Sestrin-1 (p53 regulated protein 

PA26). P48 and p53R2 have   a   significantly   lower   ω   than   in   mammals,   and   Sestrin-1 has a 

significantly   higher   ω   than   in   mammals.   Other   genes   of   interest   are   Cyclin G2 and WIP-1 

(protein phosphatase 1D), which are both involved in p53 negative feedback. Both of these had a 

significantly lower ω in reptiles.  

 

Branch-site models 
 
 For the concatenated multi-gene dataset, placing the ancestral reptile branch in the 

foreground and only allowing for positive selection along this branch resulted in ω  significantly 

greater than 1 (see Table 3). Individual gene analysis resulted in 6 out of 32 genes with positively 

selected sites and ω  greater than 1. These genes were p53, MDM2, a negative regulator of p53; 

FAS (tumor necrosis factor receptor superfamily 6), PERP, and BID (BH3-interacting domain 

agonist), all of which regulate apoptosis; and TSAP6 (tumor suppressor activated pathway-6), 

which regulates exosome mediated secretion. MDM2 has several sites under positive selection, 

but only two are located in specific domains: one in the acidic domain and one in the zinc finger 
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domain. Positively selected sites in p53 are all located in the DNA binding domain. PERP has 

positively selected sites in its transmembrane region. BID only has one domain, therefore all its 

positively selected sites are located there. FAS has a positively selected site in the tumor necrosis 

factor receptor domain. TSAP6 has positively selected sites in its one and only domain.   

 For the multi-gene dataset, allowing positive selection across the reptile clade was 

uninformative. However, when analyzed individually, 4 out of the 32 genes (PTEN, p53R2, 

Cyclin G2, and Sestrin-1) resulted in ω   values   significantly   greater   than   1,   which indicates 

positive selection of those genes across the reptile clade (see Table 3). The two positively 

selected sites of PTEN are located in both the phosphatase and C2 domains. P53R2, Cyclin G2, 

and Sestrin-1 all have one domain in their proteins, and all positively selected sites in these genes 

are located in that single domain. The overall results of selection analysis are provided in Table 

4. 

 With these tests of positive selection we are not concerned with deep time sequence 

divergence. High sequence divergence can lead to alignment problems, which can then lead to 

false positives (Fletcher and Yang 2010). However, we note that our genes are highly conserved 

and align well across the range of species we are interested in. Therefore we are not concerned 

about dS saturation.  

 

 
DISCUSSION 
 
 

Many functional studies have been performed on the p53 gene in model organisms such 

as mice, but very little information is available on p53 network components as a whole. We can 

find information on each gene in the network if we scan the literature for each gene individually, 
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but it is surprising that no network studies have been undertaken since this network plays a key 

role in cellular physiology. By taking a network approach I created a multi-gene dataset of all the 

genes in the network that I could obtain sequences for and did a comparison between reptiles and 

mammals using branch models. I found that the ancestral reptile branch experienced a 

significantly larger amount of purifying selection than the rest of the branches in the tree. I was 

able to identify genes that are highly conserved in reptiles in comparison to mammals, which 

indicates that these are critical for proper functioning. I also identified genes in reptiles only that 

are undergoing neutral evolution, meaning that these genes are able to tolerate mutations. Lastly 

I identified genes in reptiles with positively selected sites, which are those experiencing 

diversifying selection. By pinpointing genes in the p53 network that experience a different rate 

of selection in reptiles than mammals, this study proves to be a gateway to many future studies 

that will examine specific causes as to why reptiles experience different rates of aging than 

mammals.  

The p53 gene family (consisting of p53 and paralogs p63 and p73) family exists in 

protists and single-celled organisms, which indicates that the initial function of p53 was to 

respond to DNA damage, with its tumorigenesis effects being an epiphenomenon to its DNA-

damage induction (Lu et al. 2009). All three family members contain an N-terminal 

transactivation domain, followed by a DNA-binding domain, and an oligomerization domain 

responsible for the folding of p53 as a tetramer (Figure 4). The DNA-binding domain is 

conserved, whereas the transactivation and oligomerization domains are more diverged. The 

most frequently observed genetic alterations in human cancers are mutations in p53. Most of 

these are missense mutations in tumor cells located in the DNA-binding domain of p53 (Cho et 
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al. 1994). Additionally, phylogenetic analysis of the p53 gene has uncovered positive selection in 

codons influencing the binding of p53 to DNA in mammals (Pintus et al. 2005). 

Genomic analysis of the cartilaginous fish Callorhinchus milli (elephant shark) revealed a 

homolog for each of the three members of the p53 family, indicating that these three distinct 

proteins existed at least 420 million years ago (Lane et al. 2011). A p53 ancestral gene existed in 

choanoflagellates, sea anemones, and amoebas (Lu et al. 2009, Beyli et al. 2010).  In these 

lineages, p53 and its network is responsible for the protection of germ-line gametes against DNA 

damage. Early in the vertebrate lineage, the ancestor gene was duplicated, resulting in a gene 

most closely related to p53. It was at this point the gene gained the additional role of tumor 

suppression – specifically by gaining the additional function of altering cell fate and thereby 

preventing the accumulation of transcribed mutations in somatic tissues. One possible 

evolutionary hypothesis for this added function of cell cycle arrest and/or apoptosis is that 

organisms that had a mutation for p53 function that resulted in additional function would have 

lower incidences of cancer would thus leave more offspring. Thus, mutations in p53 that not only 

initiated damage repair, but could also prevent cells from dividing would have been selectively 

advantageous and would therefore have a greater likelihood of being maintained in populations 

(Yang et al. 2002). This would be particularly beneficial in advanced vertebrates with increased 

rates of tissue regeneration. There is a second duplication of the ancestor gene resulting in the 

genes p63 and p73. Both of these genes gained additional transcriptional regulation functions as 

vertebrates evolved. P63 became involved in skin and organ development, and p73 developed a 

role in the immune and nervous systems.  
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Phylogenetic analysis 

  Given that a phylogenetic analysis of genes in our study resulted in a tree that was 

concordant with extant relationships among these species, this indicates that our bioinformatics 

pipeline was indeed yielding the correct genes. The implications for molecular evolution studies 

are that we might not expect a priori to find evidence of divergent selection operating at these 

loci given their somewhat conserved nature. One could further evaluate the individual gene-trees 

and their relationship to the species tree for additional insights and complementary analyses of 

molecular evolution across species. In addition, had we all 68 genes in our analysis, we might 

have found a discordant tree in the sense that our pipeline could only identify transcripts that 

were close to the reference sequence, and it is probable that we missed some transcripts that are 

in this pathway, were transcribed, but whose sequences are divergent enough to result in low 

BLAST likelihoods.  

 

Branch models 

 The null model of one ω   ratio   along   all   branches  was rejected when we analyzed the 

ancestral reptile branch for the multi-gene dataset. One possible reason is that the network as a 

whole has experience significantly stronger purifying selection pressure than mammals prior to 

the diversification of reptiles. This remains an intriguing hypothesis for future work that 

incorporates the entire pathway (not possible in the current undertaking), and that seeks to 

understand specific sites within the indicated genes and their specific roles in protein function. It 

is also very important to analyze all the genes individually since it is possible for a majority of 

conserved genes to overshadow a few genes undergoing positive evolution. There are several 

genes in the p53 network for which our analyses provided evidence of either purifying or 
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positive selection. When we examined the ancestral reptile branch for individual genes, we found 

8 out of 32 genes  that  supported  a  unique  ω  value  for  the  reptile  branch.  Six  out  of  these  8 genes 

exhibit  a  lower  ω  assigned  to  the  reptile  branch  than  all  the  other  branches.  CYTOC, CASP9, and 

APAF-1 function in apoptosis. Apoptosis is very important in removing cells that have the 

potential to become cancerous so that they may not ultimately form tumors. Additionally, if there 

are cells that are irreparable but have not transformed into cancer cells yet, apoptosis is necessary 

for the removal of these cells. P53R2, functioning in DNA repair and damage prevention, 

exhibits  a  lower  ω  along  the  reptile  branch.  COP-1 and Cyclin G2 both function in p53 negative 

feedback, which, as indicated earlier, is necessary for control of appropriate levels of p53 within 

cells.  

Our analysis of the concatenated multi-gene data set under the branch models revealed 

that placing the entire reptile clade in the foreground with a different ω  ratio  than  mammals  was  

not  significantly  better  than  the  null  model  of  one  ω  ratio  along  all  branches in both reptiles and 

mammals. For  the  individual  genes,   tests  revealed  support  for  ω within the reptile clade that is 

significantly different from that of mammals. First, in the branch models, 23 genes (out of 32) 

supported an interpretation that their ω ratio is significantly different from that of mammals in 

reptiles with magnitudes that indicated purifying selection. Branch models examine selective 

pressures averaged across all codons within a gene. In this context, two genes in the mTOR 

pathway of the network (Figure 1) were implicated. PTEN and TSC2 function to inhibit the 

mTOR pathway, a pathway that increases aging. The mTOR pathway is hyperactive in many 

cancers, and it is able to reduce apoptosis and allow proliferation of cells. Inhibition of the 

mTOR pathway has been shown to increase lifespan in mouse models of aging (Harrison et al. 

2009).  The  ω  ratios  in  the  branch  models  for  all  genes  indicate  purifying  selection,  which is the 
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selective removal of alleles that are deleterious. For both PTEN and TSC2, the reptile clade was 

assigned   a   significantly   lower   ω   ratio,   indicating   the intriguing possibility that some reptiles 

undergo slower senescence than mammals, which may indicate that they are better able to handle 

DNA stress than mammals. Removal of deleterious alleles could lead to the optimization of 

PTEN and TSC2 with concomitant inhibition of the mTOR pathway in reptiles. P48 and p53R2 

are two out of the three genes we analyzed that are involved in DNA repair and damage 

prevention. Both of these genes were shown to be under purifying selection as well. One 

hypothesis as to why reptiles (including birds) can live longer is that they may have more 

efficient DNA repair than some mammals. That these loci are intolerant of mutations suggests it 

may be fruitful to examine them in functional detail in reptile models. Cyclin G2 and WIP-1 are 

two out of the tree genes we analyzed that function to provide p53 negative feedback. These two 

genes  also  have  lower  ω  ratios  assigned  to  the  reptile  clade.  Studies  have  shown  that  increased  

levels of p53 can lead to aging phenotypes due to hyperactivity of p53 at the promoters of cell-

cycle arrest genes (Tyner et al. 2002). Therefore, it is very important to closely regulate the 

levels of p53 to optimize cellular control on the one hand, yet avoid premature senescence, 

throughout the accumulation of senescent cells, on the other. 

  

Branch-site models 

Through branch-site models we can place either the reptile clade or the branch leading to 

reptiles in the foreground and determine positively selected sites. Placement of just the ancestral 

reptile branch in the foreground resulted in the identification of positively selected sites for the 

concatenated multi-gene analysis, and also the individual gene analyses. Six out of 32 genes 

rejected the null model when placing only the ancestral reptile branch in the foreground. These 
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genes are p53 tumor suppressor; MDM2, a negative regulator of p53; FAS, PERP, and BID, all 

functioning in apoptosis; and TSAP6, functioning in exosome mediated secretion. P53 has been 

discussed in-depth already, and we note that all positively selected sites of reptiles in this gene 

are located in its DNA-binding domain. Therefore, it could be that the binding of p53 and   its’  

regulators functions differently in reptiles than mammals. TSAP6 functions in exosome mediated 

secretion. The gene has been shown to enhance exosome production in cells undergoing a p53 

response to stress (Yu et al. 2006). Part of the p53-mediated response is secreting proteins to 

nearby undamaged cells that might not be damaged and can produce a more coordinated 

response to cellular stresses. Perhaps this positive selection in recruiting help from other cells 

allows reptiles to efficiently respond to DNA stress. Tight regulation of p53 is important for 

normal cell growth. MDM2 inhibits p53 transcriptional activation (Momand et al. 1992) by 

ubiquitylating p53 and subsequently leading to its proteosomal degradation. This regulation 

keeps p53 levels low in cells that are not stressed (Wade et al. 2013). One of the positively 

selected sites found in MDM2 is located in the acidic domain and another in the zinc finger 

domain. Both domains are involved in p53 degradation (Iwakuma and Lozano 2003), indicating 

that perhaps MDM2 in reptiles is able to regulate p53 differently than in mammals. 

With the concatenated multi-gene data, we cannot reject the null model when we place 

the reptile clade in the foreground. However, in the individual gene analysis, 4 out of 32 genes 

rejected the null model when placing the reptile clade in the foreground. Therefore, we can state 

that the sites identified in the alternative model for these genes are suggested to have signatures 

of positive selection. These genes are: PTEN, which inhibits mTOR; p53R2 and Sestrin-1, which 

function in DNA repair and damage prevention; and Cyclin G2, which functions in p53 negative 

feedback. These genes are also all found to be undergoing stronger purifying selection compared 
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to mammals in the branch models, noting that across all the sites these genes are more conserved 

than mammals and are still experiencing positive selection in specific sites. 
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TABLES 
 
Table 1. Reptile species for which we sequenced liver transcriptomes.  
 
Common name Species name  
Common snapping turtle Chelydra serpentina  
Stinkpot turtle Sternotherus odoratus  
African sideneck turtle Pelusios castaneus  
Ornate box turtle Terrapene ornate  
Brown anole lizard Anolis sangreii  
Alligator lizard Elagria multicarnata  
Fence lizard Sceloporus undulates  
Bearded dragon Pogona vitticeps  
Brown skink Scincella lateralis  
Leopard gecko Eublepharis macularis  
House snake Lamprophis fulginosus  
Cottonmouth snake Agkistrodon pisivorus  
Sunbeam snake Xenopeltis unicolor  
Viper boa Candoia aspera  
Western terrestrial garter snake Thamnophis elegans - 

Lakeshore 
 

Western terrestrial garter snake Thamnophis elegans – 
Meadow 

 

American alligator Alligator mississipiensis  
 
 
 
Table 2. Test of variable evolutionary rates among lineages based on branch models. M0=null 
model. Clade M2=alternative model placing all reptile branches in the foreground. Branch 
M2=placing only the reptile branch in the foreground. Lnl:log likelihood. BG = background, FG 
= foreground. ** Pr < .05, *** Pr < .01.  
 
 

Gene Lnl  �& 
All  
M0 

Clade M2 
 

Branch M2 

 
-312281.64 
-312281.30 

 
-312275.63 

 
0.138 

FG = .137 
BG = .139 
FG = .114 
BG = .139 

p53 
M0 

Clade M2 
 

Branch M2 

 
-9460.30 
-9458.58 

 
-9459.51 

 
0.095 

FG =.103  
BG=.084 
FG = .212 
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Table 2 continued 

BG - .093 
MDM2  

M0 
Clade M2*** 

 
Branch M2** 

 
-12587.46 
-12581.42 

 
-12584.68 

 

 
0.139 

FG = .160 
BG = .118 
FG = .237 
BG = .135 

MDM4  
M0 

Clade M2*** 
 

Branch M2 

 
-13553.79 
-13539.64 

 
-13552.93 

 
0.221 

FG = .267 
BG = .170 
FG = .301 
BG = .218 

ATM  
M0 

Clade M2*** 
 

Branch M2 

 
-7266.33 
-7255.91 

 
-7265.38 

 
0.082 

FG = .108 
BG =  .060 
FG = .132 
BG = .081 

PTEN 
M0 

Clade M2** 
 

Branch M2 

 
-7061.30 
-7058.33 

 
-7061.30 

 
0.046 

FG = .037 
BG =  .057 
FG = .047 
BG = .046 

P21 
M0 

Clade M2*** 
 

Branch M2 

 
-3196.21 
-3188.34 

 
-3196.08 

 
0.126 

FG  = .182 
BG = .090 
FG = .164 
BG = .124 

CHK2 
M0 

Clade M2 
 

Branch M2 

 
-7415.65 
-7415.55 

 
-7415.10 

 
0.123 

FG = .120 
BG = .126 
FG = .162 
BG = .123 

ATR 
M0 

Clade M2** 
 

Branch M2 

 
-5966.00 
-5963.94 

 
-5965.99 

 
0.054 

FG = .045 
BG = .063 
FG = .057 
BG = .054 

PERP 
M0 

Clade M2*** 

 
-9332.02 
-9328.14 

 
0.143 

FG = .166 
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Table 2 continued 

 
Branch M2** 

 
-9329.78 

 

BG = .124 
FG = .287 
BG = .140 

THBS1 
M0 

Clade M2*** 
 

Branch M2 

 
-14086.82 
-14060.53 

 
-14085.84 

 

 
0.072 

FG = .102 
BG = .051 
FG = .107 
BG = .071 

CASP 3 
M0 

Clade M2 
 

Branch M2 

 
-5700.33 
-5700.23 

 
-5699.38 

 

 
0.180 

FG = .185 
BG = .175 
FG = .102 
BG = .183 

Cytochrome C 
M0 

Clade M2 
 

Branch M2 

 
-3851.19 
-3851.17 

 
-3849.09 

 

 
0.109 

FG = .111 
BG =  .107 
FG = .034 
BG = .113 

CASP 9 
M0 

Clade M2 
 

Branch M2** 

 
-12279.15 
-12277.87 

 
-12276.89 

 

 
0.213 

FG = .200 
BG = .229 
FG = .094 
BG = .216 

IGFBP3 
M0 

Clade M2*** 
 

Branch M2 

 
-4781.65 
-4775.56 

 
-4781.35 

 

 
0.080 

FG = .115 
BG = .066 
FG = .110 
BG = .079 

FAS 
M0 

Clade M2 
 

Branch M2 

 
-6358.88 
-6357.20 

 
-6358.14 

 

 
0.443 

FG = .504 
BG = .3989 
FG = .191 
BG = .449 

PIDD 
M0 

Clade M2*** 
 

Branch M2 

 
-11646.46 
-11638.89 

 
-11646.13 

 

 
0.149 

FG = .187 
BG = .129 
FG = .187 
BG = .148 

SCOTIN   
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Table 2 continued 

M0 
Clade M2*** 

 
Branch M2 

-7255.66 
-7246.22 

 
-7254.39 

 

0.242 
FG = .315 
BG = .192 
FG = .128 
BG = .246 

EI24 
M0 

Clade M2 
 

Branch M2 

 
-5500.71 
-5500.64 

 
-5500.56 

 

 
0.050 

FG = .052 
BG = .048 
FG = .065 
BG - .050 

P48 
M0 

Clade M2** 
 

Branch M2 

 
-4661.94 
-4659.56 

 
-4660.71 

 

 
0.142 

FG = .118 
BG = .165 
FG = .047 
BG = .145 

TSAP6 
M0 

Clade M2 
 

Branch M2 

 
-23119.09 
-23119.02 

 
-23118.88 

 

 
0.118 

FG = .116 
BG = .119 
FG = .102 
BG = .118 

p53R2 
M0 

Clade M2*** 
 

Branch M2*** 

 
-9917.56 
-9912.30 

 
-9911.23 

 

 
0.070 

FG = .057 
BG = .085 
FG = .021 
BG = .074 

TSC2 
M0 

Clade M2** 
 

Branch M2 

 
-12187.31 
-12185.10 

 
-12187.02 

 

 
0.061 

FG = .055 
BG = .068 
FG = .046 
BG = .062 

Cyclin D1 
M0 

Clade M2*** 
 

Branch M2 

 
-6626.95 
-6622.84 

 
-6626.80 

 

 
0.056 

FG = .039 
BG = .064 
FG = .042 
BG = .056 

Cyclin E1 
M0 

Clade M2** 
 

Branch M2 

 
-11542.67 
-11540.64 

 
-11542.13 

 
0.104 

FG = .115 
BG = .094 
FG = .076 
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 BG = .105 
CD82 

M0 
Clade M2*** 

 
Branch M2 

 
-15336.15 
-15327.94 

 
-15335.89 

 

 
0.271 

FG = .318 
BG = .232 
FG = .221 
BG = .272 

SIAH-1 
M0 

Clade M2** 
 

Branch M2 

 
-6468.97 
-6466.25 

 
-6468.81 

 

 
0.00094 

FG = .0001 
BG = .0020 
FG = .0001 
BG = .0001 

Sestrin-1 
M0 

Clade M2*** 
 

Branch M2 

 
-12771.05 
-12766.67 

 
-12770.98 

 

 
0.064 

FG = .073 
BG = .053 
FG = .058 
BG = .064 

COP-1 
M0 

Clade M2 
 

Branch M2** 
 
 

 

 
-12050.01 
-12048.27 

 
-12047.93 

 

 
0.016 

FG = .014 
BG = .020 
FG = .004 
BG = .017 

Cyclin G2 
M0 

Clade M2*** 
 

Branch M2** 

 
-9524.32 
-9519.54 

 
-9521.96 

 

 
0.088 

FG = .071 
BG = .103 
FG = .039 
BG = .090 

BID 
M0 

Clade M2*** 
 

Branch M2 

 
-7725.57 
-7721.90 

 
-7724.70 

 

 
0.397 

FG = .459 
BG = .341 
FG = .232 
BG = .402 

WIP-1 
M0 

Clade M2*** 
 

Branch M2 

 
-8456.28 
-8452.39 

 
-8456.25 

 

 
0.061 

FG = .053 
BG = .076 
FG = .066 
BG = .061 

APAF-1   
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Table 2 continued 

M0 
Clade M2*** 

 
Branch M2 

-11759.81 
-11746.81 

 
-11746.06 

 

0.177 
FG = .189 
BG = .162 
FG = .094 
BG = .179 
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Table 3. Test of variable evolutionary rates among lineages based on branch-site models. Reptile clade=placement of all reptile 
branches in the foreground. Reptile branch=placement of the branch leading to reptiles in the foreground. Lnl:log likelihood. ωBG = 
background ω, FG = foreground ω. Sites=positively selected sites ** Pr < .05, *** Pr < .01.  
 
 

Gene Foreground Model Lnl  �&�)�* �&�%�* Sites 
All  Reptile clade 

 
Reptile 
branch 

Null 
Model A 

Null 
Model A 

-302412.92 
-302412.92 

 
 

 
1.00 

 
.056 

 

p53 Reptile clade 
 

Reptile 
branch** 

Null 
Model A 

Null 
Model A 

-9156.30 
-9156.30 

-9190.99 
-9188.93 

 
1.00 

 
13.149 

 
.053 

 
.059 

 
 
16G 0.51; 18L .56; 42A 
.51; 48 Q .57; 112 E .60; 
164 D .989 

MDM2  Reptile clade 
 

Reptile 
branch*** 

Null 
Model A 

Null 
Model A 

-12434.42 
-12434.42 
-12456.82 
-12449.48 

 

 
1.00 

 
26.385 

 

 
.102 

 
.108 

 
 
 
117T .98; 12- .973; 123- 
.97; 131 - .90; 136R .63; 
152N .88; 153Y .53; 
155R .78; 156Q .86; 
190S .73; 216D .70; 
265I .97 

MDM4  Reptile clade 
 

Reptile 
branch 

Null 
Model A 

Null 
Model A 

-13235.47 
-13235.47 
-13311.09 
-13310.02 

 

 
1.00 

 
18.373 

 
.100 

 
.128 

 

ATM  Reptile clade 
 

Null 
Model A 

-7053.63 
-7053.63 

 
1.00 

 
.030 
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Table 3 continued 

Reptile 
branch 

Null 
Model A 

-7094.55 
-7092.82 

 

 
13.289 

 
.042 

PTEN Reptile 
clade** 

 
Reptile 
branch 

Null 
Model A 

Null 
Model A 

-7037.65 
-7040.12 
-7040.12 
-7038.57 

 

 
14.490 

 
23.947 

 
.037 

 
.037 

185H .63; 214H .84 

P21 Reptile clade 
 

Reptile 
branch 

Null 
Model A 

Null 
Model A 

-3132.05 
-3132.05 
-3158.07 
-3156.71 

 

 
1.00 

 
802.559 

 
.073 

 
.102 

 

CHK2 Reptile clade 
 

Reptile 
branch 

Null 
Model A 

Null 
Model A 

-7356.26 
-7356.26 
-7376.09 
-7375.08 

 

 
1.00 

 
2.336 

 
.091 

 
.102 

 

ATR Reptile clade 
 

Reptile 
branch 

Null 
Model A 

Null 
Model A 

-5906.33 
-5906.33 
-5905.63 
-5905.39 

 

 
1.00 

 
2.625 

 
.036 

 
.036 

 

PERP Reptile clade 
 

Reptile 
branch*** 

Null 
Model A 

Null 
Model A 

-8832.93 
-8832.93 
-8922.92 
-8918.55 

 

 
1.00 

 
46.163 

 
.042 

 
.058 

 
 

77S .85; 94C .98; 98C 
.99 

THBS1 Reptile clade 
 

Reptile 
branch 

Null 
Model A 

Null 
Model A 

-13775.80 
-13775.80 
-13851.91 
-13851.08 

 

 
1.00 

 
2.609 

 
.030 

 
.040 

 

CASP3 Reptile clade Null -5535.36    
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Table 3 continued 

 
Reptile 
branch 

Model A 
Null 

Model A 

-5535.36 
-5552.82 
-5552.43 

 

1.00 
 

44.619 

.075 
 

.088 
CYTOC Reptile clade 

 
Reptile 
branch 

Null 
Model A 

Null 
Model A 

-3735.03 
-3733.40 
-3735.03 
-3735.03 

 

 
3.8023 

 
1.00 

 
.055 

 
.054 

 

CASP9 Reptile clade 
 

Reptile 
branch 

Null 
Model A 

Null 
Model A 

-11838.49 
-11838.49 
-11867.26 
-11867.26 

 

 
1.00 

 
1.00 

 
.078 

 
.088 

 

IGFBP3 Reptile clade 
 

Reptile 
branch 

Null 
Model A 

Null 
Model A 

-4727.87 
-4727.87 
-4734.74 
-4733.12 

 

 
1.00 

 
9.217 

 
.056 

 
.061 

 

FAS Reptile clade 
 

Reptile 
branch** 

Null 
Model A 

Null 
Model A 

-6023.77 
-6023.77 
-6064.06 
-6061.41 

 

 
1.00 

 
999.000 

 
.087 

 
.129 

 
 

14E .90; 30S .79; 25L 
.91; 49A .83; 54A .68; 
55K .54; 57H .96; 91S 
.94 

PIDD Reptile clade 
 

Reptile 
branch 

Null 
Model A 

Null 
Model A 

-11444.8 
-11444.87 
-11479.35 
-11478.97 

 

 
1.00 

 
15.002 

 
.087 

 
.103 

 

 

SCOTIN Reptile clade 
 

Reptile 

Null 
Model A 

Null 

-7167.66 
-7167.66 
-7193.71 

 
1.00 

 

 
.139 
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Table 3 continued 

branch Model A -7193.59 
 

3.865 .183 
EI24 Reptile clade 

 
Reptile 
branch 

Null 
Model A 

Null 
Model A 

-5500.62 
-5500.71 
-5500.67 
-5500.67 

 

 
11.273 

 
1.00 

 
.050 

 
.050 

 

P48 Reptile clade 
 

Reptile 
branch 

Null 
Model A 

Null 
Model A 

-4620.99 
-4620.99 
-4631.37 
-4631.37 

 

 
1.00 

 
1.00 

 
.091 

 
.110 

 

TSAP6 Reptile clade 
 

Reptile 
branch*** 

Null 
Model A 

Null 
Model A 

-22773.10 
-22773.10 
-22853.32 
-22848.15 

  

 
1.00 

 
248.047 

 
.073 

 
.082 

 
 

45S .53; 106E .50; 335V 
.60; 337L .98; 489T .97 

p53R2 Reptile 
clade*** 

 
Reptile 
branch 

Null 
Model A 

Null 
Model A 

-9827.04 
-9830.77 
-9830.77 
-9830.77 

 

 
6.10 

 
1.00 

 
.051 

 
.051 

147T .64; 150E .91; 
211H .51; 217L .98 

TSC2 Reptile clade 
 

Reptile 
branch 

Null 
Model A 

Null 
Model A 

-12140.60 
-12140.60 
-12151.78 
-12151.50 

 

 
1.00 

 
3.54 

 
.054 

 
.056 

 

Cyclin D1 Reptile clade 
 

Reptile 
branch 

Null 
Model A 

Null 
Model A 

-6609.26 
-6609.26 
-6612.58 
-6612.58 

  

 
1.00 

 
1.40 

 
.050 

 
.052 

 

Cyclin E1 Reptile clade 
 

Reptile 

Null 
Model A 

Null 

-11426.38 
-11426.38 

 
1.00 

 

 
.070 
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Table 3 continued 

branch Model A -11441.34 
-11441.28 

 

1.93 .075 

CD82 Reptile clade 
 

Reptile 
branch 

Null 
Model A 

Null 
Model A 

-14524.76 
-14524.76 
-14587.57 
-14587.57 

 

 
1.00 

 
1.00 

 
.089 

 
.103 

 

SIAH-1 Reptile clade 
 

Reptile 
branch 

Null 
Model A 

Null 
Model A 

-6468.97 
-6468.97 
-6468.97 
-6468.97 

 

 
11.054 

 
3.64 

 
.001 

 
.001 

 

Sestrin-1 Reptile 
clade*** 

 
Reptile 
branch 

Null 
Model A 

Null 
Model A 

-12661.39 
-12679.90 
-12679.90 
-12679.90 

  

 
4.98 

 
1.00 

 
.048 

 
.048 

28A .80; 32Q .72; 219E 
.61; 224T .81; 228T .87; 
236S .73; 256V .99 

COP-1 Reptile clade 
 

Reptile 
branch 

Null 
Model A 

Null 
Model A 

-12047.85 
-12047.85 

 

 
32.839 

 
7.186 

 
.015 

 
.015 

 

Cyclin G2 Reptile 
clade** 

 
Reptile 
branch 

Null 
Model A 

Null 
Model A 

-9461.38 
-9464.35 
-9464.57 
-9464.35 

 

 
19.92 

 
1.00 

 
.071 

 
.071 

1T .61; 25N .98; 68Q 
.82 

BID Reptile clade 
 

Reptile 
branch** 

Null 
Model A 

Null 
Model A 

-7563.23 
-7563.23 
-7603.12 
-7600.25 

 

 
1.00 

 
34.83 

 
.184 

 
.237 

 
 

24A .59; 29P .66; 40M 
.91 

WIP-1 Reptile clade Null -8323.23    



 

46 43 

Table 3 continued 

 
Reptile 
branch 

Model A 
Null 

Model A 

-8323.23 
-8337.13 
-8336.64 

 

1.00 
 

3.60 

.038 
 

.039 

APAF-1 Reptile clade 
 

Reptile 
branch 

Null 
Model A 

Null 
Model A 

-11477.08 
-11477.08 
-11511.11 
-11511.11 

 

 
1.00 

 
1.00 

 
.090 

 
.106 
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Table 4. Overall results of our PAML analyses for branch models and branch-site models 
for which we examined the reptile ancestral branch and the entire reptile clade.  
 
 Multi-gene Individual genes 
Branch Clade: 

Not significant 
Ancestral: 
Significant, 
lower ω  in 
reptiles 

Clade: 
Lower �& in 
reptiles: 
PTEN, ATR, 
P48, p53R2, 
TSC2, Cyclin 
D1, SIAH-1, 
Cyclin G2, 
WIP1 
 
Higher �&��in 
reptiles: 
MDM2, 
MDM4, ATM, 
P21, PERP, 
THBS1, 
IGFBP3, PIDD, 
SCOTIN,    
Cyclin E1, 
CD82, Sestrin-
1, BID, APAF-
1 

Ancestral: 
Lower �& in 
reptiles: 
CYTOC, CASP 
9, p53R2, COP-
1, Cyclin G2, 
APAF-1 
 
Higher �&��in 
reptiles: 
MDM2, PERP 
 

Branch-site Clade: 
Not significant 

Ancestral: 
MDM2, 
MDM4, PTEN, 
ATM, CHK2, 
PERP, ATR, 
THBS1, PIDD, 
P48, TSAP6, 
p53R2, TSC2, 
Cyclin D1, 
Cyclin E1, 
WIP1, 
IGFBP3 

Clade: 
PTEN, p53R2, 
Cyclin G2, 
Sestrin-1 

Ancestral: 
p53, MDM2, 
FAS, PERP, 
TSAP6, BID 
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FIGURES  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 1. P53 pathway components.
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Figure 2. Species tree. Cladogram of reptile species indicating branches set in foreground for 
models. Star indicates branches labeled when placing the ancestral reptile branches in the 
foreground. All reptile branches diverging from the ancestral branches (and including the 
ancestral branches) indicate placing the reptile clade in the foreground. Branch lengths do not 
represent evolutionary distance. 
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Lizards 

Archosaurs 
 

Turtles 

 
 
Figure 3. Consensus p53 molecular network tree from Bayesian analysis produced in 
program MrBayes. Posterior probabilities are indicated at interior nodes. See text for 
details. 
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Figure 4. Domains of the human p53 protein.  
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SUPPLEMENTAL MATERIALS  
 
Table S1.1 & S1.2: 
Available upon request.  
 
Table S2. Genes analyzed in this study and their general function in the context of 
the p53 network.  
 

Gene Function 
p53 Tumor suppressor 

MDM2 Negative regulator of p53 
MDM4 Negative regulator of p53 
ATM Interacts with CHK2 and phosphorylates p53 
ATR Interacts with CHK1 and phosphorylates p53 

CHK2 Interacts with ATM and phosphorylates p53 
p21 Cell cycle G1 arrest 

Cyclin-D1 Cell cycle G1 arrest 
Cyclin-E1 Cell cycle G 1arrest 

FAS Apoptosis 
PIDD Apoptosis 
BID Apoptosis 

Cytochrome C Apoptosis 
APAF-1 Apoptosis 

Caspase 9 Apoptosis 
Caspase 3 Apoptosis 

EI24 Apoptosis 
Scotin Apoptosis 
PERP Apoptosis 

SIAH 1 p53 negative feedback 
CD82 Inhibition of angiogenesis and metastasis 

THBS1 Inhibition of angiogenesis and metastasis 
DDB2 DNA repair and damage prevention 
p53R2 DNA repair and damage prevention 

Sestrin-1 DNA repair and damage prevention 
PTEN Inhibition of mTOR pathway 
TSC2 Inhibition of mTOR pathway 

IGFBP3 Inhibition of mTOR pathway 
TSAP6 Exome mediated secretion 
COP-1 p53 negative feedback 

Cyclin G2 p53 negative feedback 
WIP-1 p53 negative feedback 
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Table S3. Genes and their evolutionary models of substitution using program jModeltest. 
Most genes preferred the GTR model, which allows for variable base frequencies. The 
K80 model represents equal base frequencies along with one transition rate and one 
transversion rate. The HKY model represents variable base frequencies along with one 
transition rate and one transversion rate. The SYM model represents equal base 
frequencies and a symmetrical substitution matrix (A to T = T to A). The gamma 
distribution (G) represents rate variation among sites and proportion of invariable sites (I) 
represents positions that do not evolve. 
 

Gene Substitution Model 
p53 GTR+I+G 

MDM2 GTR+I+G 
MDM4 GTR+I+G 
ATM K80+I+G 
ATR HKY+I+G 

CHK2 GTR+I+G 
p21 GTR+I+G 

Cyclin D1 GTR+I+G 
Cyclin E1 GTR+I+G 

FAS GTR+I+G 
PIDD GTR+I+G 
BID GTR+I+G 

Cytochrome C GTR+G 
APAF-1 GTR+I+G 

Caspase 9 GTR+I+G 
Caspase 3 GTR+I+G 

EI24 GTR+I+G 
SCOTIN GTR+G 

PERP GTR+I+G 
SIAH-1 HKY+I+G 
CD82 GTR+I+G 

THBS1 GTR+I+G 
DDB2 HKY+I+G 
p53R2 GTR+I+G 

Sestrin-1 SYM+I+G 
PTEN GTR+I+G 
TSC2 GTR+I+G 

IGFBP3 GTR+I+G 
TSAP6 GTR+I+G 
COP-1 GTR+I+G 

Cyclin G2 HKY+I+G 
WIP-1 GTR+I+G 
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Workflow �± commands and scripts for retrieving sequences from liver transcriptomes  
 
Convert fastq files (both R1 and R2 for each species) to fasta: 
fastq_to_fasta –Q33 –i Species1_Read1.fastq –o Species1_Read1.fasta 
fastq_to_fasta –Q33 –i Species1_Read2.fastq –o Species1_Read2.fasta 
 
Create blast database: 
ncbi-blast-2.2.28+/bin/makeblastdb -in Species1_Read1.fasta -dbtype nucl  -parse_seqids 
-out Species1_Read1.database 
 
ncbi-blast-2.2.28+/bin/makeblastdb -in Species1_Read2.fasta -dbtype nucl  -parse_seqids 
-out Species1_Read2.database 
 
Blast: 
ncbi-blast-2.2.28+/bin/tblastn –query  Chicken_GeneX.fasta -db 
Species1_Read1.database -outfmt 6 –out GeneX_Species1_R1.out 
 
ncbi-blast-2.2.28+/bin/tblastn –query  Chicken_GeneX.fasta -db 
Species1_Read1.database -outfmt 6 –out GeneX_Species1_R2.out 
 
Retrieve hit IDs of R1: 
cat GeneX_Species1_R1.out | cut -f 2| sort -u > GeneX_Species1_R1_HITIDS 
               
Retrieve hit IDs of R2: 
cat GeneX_Species1_R2.out | cut -f 2| sort -u > GeneX_Species1_R2_HITIDS 
 
Concatenate hit IDs: 
Cat GeneX_Species1_R1_HITIDS GeneX_Species1_R2_HITIDS > 
GeneX_Species1_HIT_IDs 
 
Remove redundant hits: 
awk '!x[$0]++' GeneX_Species1_HIT_IDs > GeneX_Species1_HITIDS_FINAL 
 
Biopython script to extract reads from both fastq (R1 and R2) files: 
#!/usr/bin/env python 
import os 
import sys 
from Bio.SeqIO.QualityIO import FastqGeneralIterator 
 
input_file = "Original file of fastq reads" 
id_file = "File of Hit IDs" 
output_file = "output" 
 
wanted = set(line.rstrip("\n").split(None,1)[0] for line in open(id_file)) 
print "Found %i unique identifiers in %s" % (len(wanted), id_file)
 
 
count = 0 
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handle = open(output_file, "w") 
for title, seq, qual in FastqGeneralIterator(open(input_file)) : 
    if title.split(None,1)[0] in wanted: 
        handle.write("@%s\n%s\n+\n%s\n" % (title, seq, qual)) 
        count += 1 
handle.close() 
 
print "Saved %i records from %s to %s" % (count, input_file, output_file) 
if count < len(wanted): 
    print "Warning %i IDs not found in %s" % (len(wanted)-count, input_file) 
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CHAPTER 3. GENERAL CONCLUSIONS 
 
 The ability of an organism to respond to stress is an important determinant of how 

it ages and its lifespan. Most reptiles experience little deterioration as they age, and my 

thesis provides evidence of genes in the p53 network that could be a cause of differing 

aging processes in reptiles and mammals. Overall, I conclude that all genes in the 

pathway are undergoing purifying selection along branches since they exhibit ω lower 

than 1 in both reptiles and mammals. However, the branch models are useful when 

making comparisons between reptiles and mammals. Some genes in reptiles have 

significantly lower ω ratios along their branches, indicating either relaxation of purifying 

selection in mammals due to loss of or diminished protein function, or reduced efficacy 

of purifying selection removing deleterious mutations. I found several genes that were 

assigned a significantly lower ω   in reptiles than mammals, and these genes can 

potentially explain the reason why reptiles and mammals display different aging 

phenotypes. Through all the models I tested I found several genes that consistently 

displayed differing evolutionary rates from mammals, either through purifying selection 

along branches or positive selection in amino acid sites. Most of these genes are 

implicated in inhibiting mTOR, an aging pathway, DNA repair and damage prevention, 

and apoptosis, all of which are extremely necessary to handle DNA stress.  

 In the future, studies that examine branches and clades within the reptiles will be 

important in pinpointing if and which specific reptile species are experiencing different 

rates of selection from the rest of the reptiles. Since we were not able to examine all 

genes in the network it will also be useful to determine rest of these sequences and re-

analyze the network. 


