
This dissertation has been 
microfihned exactly as received 68-10,488 

VAN DIERENDONCK, Albert John, 1938-
MODELING NONSTATIONARY RANDOM PROCESSES 
WITH AN APPLICATION TO GYRO DRIFT RATE. 

Iowa State University, Ph.D., 1968 
Engineering, electrical 

University Microfilms, Inc., Ann Arbor, Michigan 



MODELING NONSTATIONARY RANDOM PROCESSES WITH AN 

APPLICATION TO GYRO DRIFT RATE 

by 

Albert John Van Dierendonck 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of 

The Requirements for the Degree of 

Major Subject: Electrical Engineering 

DOCTOR OF PHILOSOPHY 

Approved : 

In Charge of Major Work 

Head of Major Department 

Iowa State University 
Ames, Iowa 

1968 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



ii 

TABLE OF CONTENTS 

Page 

I. INTRODUCTION I 

II. DEFINITIONS 3 

A. Random Variable 3 

B. Random Processes 4 

C. Linear Dynamical Systesm 5 

III. THEORETICAL INVESTIGATION 7 

A. Formulation of a Model 7 

B. Determination of the Model 10 

C. Criteria 12 

D. Augmentation for "Kalman" Filtering 14 

E. Covariance Functions 16 

IV. NUMERICAL INVESTIGATION 21 

A. Minimization of the Error 21 

B. Numerical Verification 23 

V. APPLICATION TO ACTUAL GYRO DRIFT RATE DATA 26 

A. History 26 

B. Applying the New Model 26 

C. Discussion of Results 32 

VI. SUMMARY AND CONCLUSIONS 52 

VII. LITERATURE CITED 54 

VIII. ACKNOWLEDGMENTS 57 

IX. APPENDIX A - METHOD OF STEEPEST DESCENT 58 

A. Theory of Steepest Descent 58 

B. Step-Size Control 59 



Ill 

Page 

X. APPENDIX B - DISCRETE FILTERS 60 

A. Maclaurin Transform 60 

B. Determination of Weighting Coefficients 62 

XI, APPENDIX C - EXTENDING THE MODEL FOR NON-INTEGER 
VALUES OF TIME 65 



1 

I. INTRODUCTION 

During the last fifteen years, many of the techniques developed to 

handle stationary random processes in filter and control theory have been 

extended or developed to handle nonstationary random processes (3, 6, 7, 

10, 17, 18). The "Kalman" filtering technique developed more recently 

will also handle nonstationary processes (26). 

In both cases, a priori statistics are required. In the first 

case, the a priori statistics are the covariance functions and the mean 

value functions describing the processes. In the case of "Kalman" 

filtering, the a priori statistics are in the form of transition matrices 

and input covariance matrices describing the processes (26). 

The covariance and mean value functions are expectations of a 

function of the random processes. If these processes are ergodic 

covariance stationary random processes, these expectations can be 

estimated with time averages (24). 

The transition and input covariance matrices can be computed from 

these expectations (26). For example if a process has a rational power 

spectral density function, this power spectral density function can be 

factored to determine the filter that a "white noise" process is passed 

through to obtain this process. The transition matrix and input 

covariance matrix describing this process can then be computed from the 

transfer function of the filter. 

Conversely, the covariance function can be computed from the 

transition and input matrices. This is shown in Chapter III of this 

dissertation. 
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Due to the frequent lack of a large ensemble of sample functions of 

a process, and due to the computational difficulties in calculating 

ensemble averages, the need for other techniques is apparent. 

The purpose of this study is to present a technique for estimating 

a priori parameters of a class of random processes from experimental data 

in such a way that time averages can be used. This class of random 

processes is one which can be thought of as passing stationary "white 

noise" through a time-invariant linear filter. This class includes 

those nonstationary processes which are outputs of unstable time-

invariant linear filters, or which are transient outputs of stable 

filters, as well as stationary processes, which are steady-state outputs 

of stable filters. 

Hypothesized examples of these random processes are gyro drift 

rate (8, 14, 15), which motivated this study, and displacement of a 

particle under Brownian motion (27). Another example is a process which 

is a "response of linear networks to suddenly applied stationary random 

noise" (18). 
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II. DEFINITIONS 

A. Randon Variables 

1. Definition of ̂  random variable 

A random variable X is a real finite valued function defined on a 

sample description space S with a probability function P^['] defined on 

a familyof events to which S belongs, where for every Borel set B of 

real numbers the set [s:X(s) is in b} is an event in^/. 

The probability function of X, P^[ -], defined on every Borel set B 

of real numbers is the probability that an observed value of X is in B 

(24). 

Let X be a k dimensional random variable. Then it may be charac­

terized by its joint distribution function 

F^(x) = P^CX^ 3 i = 1, ' ' k] (2.1) 

where ̂  e (k dimensional real space), and P^['] is the probability 

function of X (23). 

2. Definition of the expectation of a random variable 

If Y = cp(X) is an n dimensional random variable and a function of X 

(a k dimensional random variable), then 

E[(p(X)] = J • • • J 9(x) dF̂ (x) (2.2) 

is the expectation of Y = cp(X), if it exists (23). 
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B. Random Processes 

1. Definition of _a random process 

A random process is defined to be a family of random variables 

[x(t), tel] indexed by a parameter t varying in an index set T (24). 

a. Mean value function Let {x(t), tex] be a k-dimensional 

random process. The mean value function of X(t) is also k-dimensional, 

where 

m^(t) = E[X(t)] (2.3) 

is defined for all t in T, provided that the expectation exists. 

b. Covariance function Let [x(t), teT} be a column k-vector 

random process. The covariance function of X(t) is a kxk matrix defined 

by 

K^(s, t) = E{[x(t) - m^(t)][x(s) - i^(s)]'} 

= cov[X(s) , X(t)] (2.4) 

where (') indicates transpose, and K^(s, t) is defined for all s, t in 

T, provided that the expectation exists. If {x(t), teT} is a scalar 

random process, its variance function is then 

a^(t) = K^(t, t) (2.5) 

c. Ensemble average of _a random process Let {X(t), teT} be a 

random process. Then {x(t), teT} may be written as the collection of 

sample functions X^(t), teT, i = 1, • • • , n. Thus, if = cp(X^(t ) ) ,  

i = 1, • • •5 n, is a function of X^(t)j i = 1, • • •, n, the ensemble 

average of the random process {Y(t), teT} is given as (5) 
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1 
<Y(t)> = lim — S Y. (t) 

n-^ ̂  i=l ^ 

1 
= lim— E cp(X.(t)), teT (2.6) 

n-co ̂  i=i  ̂

C. Linear Dynamical Systems 

1. Definitions (15) 

a. Discrete-time linear dynamical systems A discrete-time 

linear dynamical system D is the system of difference equations 

D) x(t) = A(t, t - 1) x.(t - 1) + B(t, t - 1) u(t) 

v(t) = H(t) x(t), teT (2.7) 

where is the state of the system, is the input to the system, 

is the output of the system, H is the output matrix of the system, 

and the index set T is the set of positive integers. 

1. Transition matrix A of Equation 2.7 is the transition 

matrix of system D. 

2. Input matrix B of Equation 2.7 is the input matrix of 

system D. 

If A, B, and H are constant matrices, system D is said to be time-

invariant. 

b. Continuous -time linear dynamical systems A continuous-time 

linear dynamical system L is the system of differential equations 

L) x(t) = F(t) x(t) + G(t) u(t) 

(2.8) 
X(t) = H(t) x(t), teT 
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where is the state of the system, ueR™ is the input to the system, 

2 6 i s  t h e  o u t p u t  o f  t h e  s y s t e m ,  H  i s  t h e  o u t p u t  m a t r i x  o f  t h e  s y s t e m ,  

and the index set T is the set of positive real numbers. 

1. Stability matrix F of Equation 2.8 is the stability 

matrix of system L. 

2. Input matrix. G of Equation 2.8 is the input matrix of 

system L. 

If F, G, and H are constant matrices, system L is said to be time-

invariant. 

The general solution of Equation 2.8 is 

x(T) =Ô(t, t^) X(t^) + J <P(t, T) G(T) u(T)DT, teT (2.9) 

where, if L is time-invariant, 

F[t - t ] _ 
cp(t, t^) =Cp(t - t^) = e , teT (2.10) 

The exponential function of a matrix F is defined to be 

F[t - t ] = 
e = Z {F[t - t^]} /i!, teT (2.11) 

i=o 

where [F[t - tg]}° = I. 

3. Transition matrix <p of Equation 2.9 is the transition 

matrix of system L. 

A time-invariant transition matrix may also be found from Laplace 

transforms by 

Cp(t) =X"^[[sI - F]"^} (2.12) 

_p-l 
where3^ denotes inverse Laplace transform (12). 
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III. THEORETICAL INVESTIGATION 

A. Formulation of a Model 

The type of model used to describe a random process depends on the 

application which motivated the modeling. In this case, the application 

of primary interest is one where gyro drift rate is part of an overall 

process which is to be estimated by means of a "Kalman" filter. 

The "Kalman" filter utilizes Equation 2.7 or Equations 2.8 and 2.9 

in a recursive scheme to weight in an optimum way past information along 

with a present noisy measurement to estimate the state of the system. 

In this scheme we utilize the vector difference equation 

2%+! Sn + n - 0, 1, 2 • • • (3.1) 

whereC^^ is a transition matrix and ̂  is an input vector, which is the 

response due to a "white noise" driving function that is independent of 

If the system is a discrete-time system, 

= B(n+ 1, n) u(n), n = 0, 1, 2, • • • (3.2) 

where {u(t), teT] is an independent random sequence. If the system is 

a continuous-time system, 

2^ = .f u(T)dT, n = 0, 1, 2, • • • (3.3) 

t 
n 

where {u(t), tel] is a "white noise" random process. In either case, 

^n " g/], n = 0, 1, 2, - ' ' (3.4) 

is the input covariance matrix. From this we can see that the input 

covariance matrix can be found if the input matrix and transition 
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matrix are known. 

In this case, the gyro drift rate is an input. It is 'Hù a '"'whitt 

noise" process nor is it an independent random sequence. However, : 

we can express this correlated process in the form of Equation 3-1, we 

can augment the total system such that all inputs to it are either 

"white noise" processes or independent random sequences (26). 

The original approach to the problem of modeling a nonstationary 

process was to somehow model it using time averages, and then worry 

about transforming whatever model we have to the form of Equation 3.1. 

Due to fact that experimental data are rarely in continuous form, and 

that computer solutions force us to consider a discrete form, the model 

that proved to be very susceptible to the use of time averages is that 

of a constant coefficient ordered difference equation with an ergodic 

covariance stationary random input sequence. That is, the susceptible 

model is of the form 

a^X(t) + a^X(t - 1) -r • • • + a^K(t - k) = N(t), teT (3.5) 

where T is the set of positive integers, {x(t), teT} is the discrete 

process being investigated, and {N(t), teT] is the input sequence. The 

time averaging is discussed in the next section. 

We can rewrite Equation 3.5 in the matrix form 

X(t) = AX(t - 1) + bN(t), teT (3.6) 

where 

X(t - k + 1) 

x( t )  =  teT (3.7) 

X(t - 1) 

X(t) 
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Fo 1 

0 

0 

1 

A = 

k̂l k̂2 

and 

b = 

0 

b. 

The entries of A and b are 

k(k-i+l) 
= _ ai 

and 

\ = r" 
o 

0 

0 

kk =J 

(3.8) 

(3.9) 

(3.10) 

If {N(t), tel] is an independent random sequence. Equation 3.6 is 

of the form of Equation 3.1, where 

Cp = A 
^n 

" kN(c) 

(3.11) 

and 

t = n + 1, n = 0, 1, 2, • • • 

Furthermore, it can be shown that A has the necessary properties of a 
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transition matrix for integer values of t and n. In particular 

A(t, C -8) = A(a) = [A(l)f = [A(t, t - l)f (3.12) 

where Q is a positive integer and A(o) = A(t, t) = I. 

B. Determination of the Model 

The model to be determined for a sequence {x(t), teT] is that of 

Equation 3.5. This is done by finding the order k, the constants 

(a^, , a^), and the sequence {N(t), teT}, which best describe the 

random sequence [X(t), teT}. When dealing with experimental data we, 

of course, do not know how well this model will fit the process at hand; 

so we will simply try it, empirically, and see what results. 

If we knew the input sequence {N(t), teT}, this would be a problem 

of system identification. However, in this case, [N(t), teT} is not 

known, although its covariance function is hypothesized to be 

Kjj(s, t) = CT^Ô (s, t) 

2 = CT , s = t 

= 0, S t (3.13) 

for ail t, seT, where 6(s, t) is the Kronecker delta. Furthermore, 

Kjj(s, t) = K^(s - t) 

= 

= cr^Ô(v, o), veT (3.14) 

where v = s - t. 

Thus, since {N(t), tel} has these properties, so does the left hand 

side of Equation 3.5. First of all, from Equation 3.14, we have 
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k k 
K^(v) = cov[ 2 a^X(t - i), 2 a^X(t + v - i)] 

x=o i=o 

k k 
= E[ S 2 a.a.X(t - i) X(t + v - j)], vsT (3.15) 

i=o j=o ^ j 

But, 

k k 
E[ 2 2 a.a.X(t - i) X(t + v - j)] 
i=o j=o ^ ^ 

k k 
= 2 2  a . a . E [x(t - i) X(t + v - j)], veT (3.16) 
i=o j=o ^ ^ 

In general, {x(t), teT} is a nonstationary random sequence. Thus, 

the expectation in Equation 3.16 must be an ensemble average (5). As 

stated in Chapter I, we wish to avoid estimating the statistics of a 

random process by ensemble means. 

However, because of the ergodicity of {N(t), teT}, the covariance 

function of Equation 3.15 may be estimated by a finite-time average 

using just one sample function of {N(t), teT} (24). That is, 

K»(v) « K,^ (v) = 2 N(t) N(t + v) 
1 1 teT^ 

. k k 
= — 2 2 2 a.a.X(t - i) X(t + v - j), 

1 tsT^ i=o i=o ^ ^ 
veT (3.17) 

for large T^, where T^ is the range of summation on t. 

If the a^'s and the order k in Equation 3.5 were known exactly, 

and if a Gaussian sequence is assumed, then (v) in Equation 3.17 
1 

would converge in the mean to K^(v) as T^ approaches infinity. For T^ 

sufficiently large, the variance of the error for each v is on the 
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order of — (19). 
1 

But the s^'s and order k in Equation 3.5 are not known. However, 

if we choose an order k and constants (a^, ', a^^, we can express 

the error of this choice, plus the error due to the finite-time averaging, 

as a function of v by 

^ k k 
E (v) = K^(v) - — £ ES a a X(t - i) X(t + v ), veT 
h h teT^ i=o j=o ^ j J 

= (3.18) 

The estimation error due to the finite-time averaging is fixed for 

a fixed T,. Thus, it is a lower bound for E (v), veT. The problem is 
1 

to minimize the error E (v) for all v with the proper choice of the 
1 

a_'s and the order k in Equation 3.5. This can be accomplished by a 

gradient technique on an appropriate error function. This will be 

discussed in Chapter IV. 

C. Criteria 

The error for each v in Equation 3.18 is obviously non-increasing 

with each higher order k, when minimized by the proper choice of 

(a^, ' ' a^^. Thus, a criterion is necessary to select a satisfactory 

order k. An excellent criterion is to choose a model of order k that 

results in a satisfactory estimation of K^(v), veT, of Equation 3.14, 

with the proper choice of (a^, • • •, a^^. 

This criterion will vary with different application. For instance, 

if the sampling rates, time constants, etc. of the system application 

are such that the covariances at the certain covariance times v 4 o are 
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not critical to system operation, the covariance estimations ^(v) 

at these times may be significantly greater than zero, and the criterion 

may be relaxed. 

Otherwise, the goodness of ^^v), v ̂  o, can be measured as 

follows. Suppose the sequence {N(t), teT} was truly a sequence of 

Gaussian random variables with zero mean and a covariance function 

described by Equation 3.14. Then the estimated correlation function 

p(v) = , veT (3.19) 

may be transformed to the function 

(3.20) 

whicb^^às^S^'^Student's" t distribution with T, - 2 degrees of freedom 

(22). Therefore, for large T^, the probability 

.  T  -  2 ^  
P. = P[|p(v)| > e] = P[|T(v)| > e( 5-)'^] 
® 1 -

T - 2 , 
= 2 - 2 0[G(-^ t)'"], veT (3.21) 

1 - e 

is the probability that the absolute value of p(v) is greater than 

e > o, where 0(x) is the distribution function of a standard normal 

random variable. 

Equation 3.21 will give us an idea of how good our correlations 

would be if our model were perfect, thus, in a sense, supplying us with 

a measure of goodness. For example, if we choose an e that results in a 

) , veT T(v) = p(v)( 
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negligible for the sample size used, we should make sure that a 

high percentage of the applicable correlations are within the bounds 

|p(v)l ^ e, and that the correlations not within these bounds are not 

much greater than e. 

D. Augmentation for "Kalman" Filtering 

1. Definition of the augmented system 

If a random sequence {x(t), tel} is described by Equations 3.7 

through 3.10, where this sequence is the input to a system, this system 

can be augmented such that X(t) becomes a state vector of the system, 

and all of the system inputs are "white noise" sequences (26). -That 

is, the system is augmented to the form 

(3X5, §-1) V\(§, 

_X(§)_ 0 cgc. 

Y(§-1) "z(5. 5-1) 

+ , §GT 

_X(§-1) _w(§, §-i)_ 

(3.22) 

where, in the § domain, the m-vector 

Y(§) =cp(§, § - 1) Y(§ - 1) +AC§, : - 1) x(§ - 1) + Z(5, § - 1) 

and (3.23) 

X(§) =©(§, § - 1) X(§ - 1) + W(§, S - 1), §eT 

^(§, § - 1) is zn m-vector of other "white noise" input sequences. 

The problem with this form is that the sequence in Equations 3.7 

through 3.10 is defined for integer values of t only. This is, of course, 

normalized from the sampling rate at which the sample sequence X(t) was 

measured. If the scale factor d_ of § is an integer (C%) multiple of 
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the scale factor of t (normalized from the sampling rate), then 

a 
©(§, § - 1) = A , §eT (3.24) 

and 

w(§, 5 - 1) = M(S), §eT (3.25) 

is an independent random vector sequence with a covariance matrix 

-<3-1 . 
= a 2 A^b b' A'^ 

- j=o 
(3.26) 

which is the input covariance matrix of the vector difference equation 

(% -1 . 

X(§) = - 1) + S A-JbN(§ - j), §GT 
j=o 

(3.27) 

which is the same as 

X(t) = A^X(t -a) + Z A^bN(t - j), t = a, 20:, 
j=o 

The coupling matrix which couples X(§) into the system is 

a-1 . 
(3.28) 

Ml,  S - 1) = 

Îk 

§eT (3.29) 

0 * • • • 0 Y , mk 

with one not equal to zero. 

However, if the scale of § is not an integer multiple of the scale 

of t,0(§, § - 1), W(§, § - 1) and A(§ > § - 1) are not of this form. 

Therefore, they must be defined in another way. This is discussed in 

detail in Appendix C. 
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E. Covariance Functions 

If the difference equation model has been determined, we have, by 

using the method described in Section D of this chapter, the model of 

{X(t), teT] in a form necessary to be used in the "Kalman" filtering 

technique. It is not, however, of the form used in the filtering 

techniques of Wiener (5), Boonton (3), Darlington (6), Koschmann (17), 

Davis (7), Lampard (18), Fried land (10), etc., where the covariance 

function of the sequence {X(t), teT} is utilized. 

1. Numerical determination 

If only the numerical values of the covariance function K^(s, t) of 

the random sequence [x(t), tel] are necessary for each s, teT, we can 

determine this covariance function directly from Equation 3.6. This 

equation can be recursively reduced to the form 

t 1 X(t) = A X(o) + S A^bN(t - j), teT (3.30) 
j=o 

where A° = I (the identity matrix). 

The covariance function of {X(t), teT] is a matrix, and is given by 

K^(s, t) = cov[X(t), X(s)] 

r i o s-1 
= COV[A X(o) + S A-^bN(T - j), A X(o) + Z A bN(s - j)] 

j=o j=o 

(3.31) 

for s, teT. Since [N(t), tel} is an independent random sequence, with 

zero-mean. Equation 3.31 becomes 
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K^(s, t) = COV[Â X(O), A® X(o)] 

t-1 . s-1 
+ cov[ S A^bN(t - j), 2 A'^W(s - j) 

j=o j=o 

= E[Â (X(O) - (X(o) - ir^(o))' A'^] 

t-1 s-1 -
+ E[ S S A^b b'A' N(t - j) N(s - i )] (3.32) 

j=o i=o 

for s, teT. Letting = E[ (X(o) - m^(o)) '], we have 

t-1 s-1 . . 
K^(s, t) = A^ (A')S + E Z A^b b'A' E[N(t - j) N(s - i)], 
- ° j=o i=o 

s, teT (3.33) 

Using Equation 3.13, we have 

„ t-1 s-1 . 
Ky(s, t) = A^V (A')= + a S S A^b b' A'^ô(t - j, s - i) 
^ ° j=o i=o 

„ mxn(,t-i,s-i; ^I.- ; 
= A^V^CA') + a S a' ' ^ bb'A'^, s, teT 

° j=o 

= (A')" + _ teT 
J=o 

(3.34) 

Equation 3.34 is the covariance function of the vector sequence 

{X(t), teT}. The (k, k)^^ entry of this matrix is the covariance function 

of the random sequence {x(t), teT}. 

Note that if A is a convergent matrix, that is, if A has all its 

eigenvalues within the unit circle (9), 

K.(s, t) eaC ÂL̂ -sIr E Â b'A'̂ ], s. t€T (3.35) 
- j=o 
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for large s and t- This represents a covariance stationary process. 

2. Closed form determination 

To determine the covariance function in closed form, we may use the 

procedure in Appendix B to find h(t), t = 0, 1, 2, • • •, the discrete 

filter relating the output y of the filter to its input u, where 

t 
y(t) = 2 h(j) u(t - j), t = 0, 1, 2, • • • (3.36) 

j=o 

If the output of the filter is the random sequence {x(t), teT} and 

the input is the independent random sequence {N(t), tel} with zero 

mean, the covariance function of {x(t), teT], using the same procedure 

in determining Equation 3.34, is given by 

min (s , t) „ 
K^(s, t) = E CT h(t - j) h(s - j), s, teT (3.37) 

j=o 

If the discrete filter is of the form given in Appendix B, Equation 

B.21, where 

h(t) = S c (p )=, t = 0, 1, 2, ' ' ' (3.38) 
i=l 

Equation 3.37 becomes 

min(s, t) „ k k t s -i 
K^(s, t) = Z a S E (Pm) ^^i^m^ 

j=o i=l m=l 

- k k min(s, t) 
s, teT 

1=1 m=l j=o 

(3.39) 

If PiP„ * 1, 
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min(s,t) . min(s,t) ^ 

j!. 

,  1  .min(s,t)+l ^ 

PjPm 1_ 

If PiPm = 

^ - PiPm 

inin(s,t) 
2 (pj^p^) ^ = miii(s,t) + 1 (3.41) 
j=o 

Thus, Equation 3.39 becomes 

KX(s, c) = p: CiCmCp.)%(%,)= 
I'm 

i=l m=l " "" •" "" ^i^m 

t, seT (3.42) 

where, if a p.p =1 for some i and m , 

l i m  ( P , P . ) -  P i P „  
p.p-1 1 _ p p min(s, t) + 1 (3.43) 

Also, if no P^Pjjj = 1, and if we let 

''im ' 1 -%°'p = \i' i. » • 1. • • k 0-44) 

then 



20 

2 k k 
t, SET (3.45) 

If IP̂ I <1 for all i. Equation 3.45 becomes 

i=l m=l 
, t, seT (3.46) 

for large t and s. This represents a covariance stationary process. 

An advantage in this closed form method is evident from the fact 

that the covariance function of Equation 3.34 must be calculated for 

each s and t in T, resulting in a very large number of arithmetic 

operations. 
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IV. NUMERICAL INVESTIGATION 

A. Minimization of the Error 

As stated in Section B of Chapter III, the problem is to minimize 

the error E (v) of Equation 3.18 in some sense for all v, with the 
^1 

proper choice of the a^'s and order k. 

An average of the square of E (v) was chosen because of simplicity. 
^1 

That is 5 

E = E [E, (v)]̂  (4.1) 
^2 vGTg ^1 

where T^ is the range of the summation over v. 

2 
E would be minimized if its gradient were zero with V^E positive 

2 ~ 
definite, where.^E is the second directional derivative in the direction 

a normal to VE (11). That is, set 

VE = ̂  E E_ (v) . VE„ (v) = 0 (4.2) 
^2 veTg 1 1 

Substituting Equation 3.18 into Equation 4.1, we have 

1 1 k k 
E  = 7 pE[^S EE a a X(t - i) X(t - j + v) 

2 veT 2 1 tsT^ i=o j=o 

- KQ(v)]2 (4.3) 

Equation 4.2 then becomes 
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1 k 
- \(y)l ' [;;r  ̂  ̂a.[x(t - i)x(t - a + v) 

1̂ teT̂  i=o 

+ x(t - a)x(c - i + v)]]} 

= 0, o: = 0, 1, • • •, k (4.4) 

Equation 4.4 is not solvable in closed form, thus a computer gradient 

technique is necessary. A steepest descent method was chosen, which is 

described in Appendix A. 

Essentially, the steepest descent technique uses Equations 4.3 and 

4.4 to minimize the error function for a given k. However, it is not 

feasible to compute the time average each time the error and its gradient 

are computed. This problem.can be eliminated by interchanging the 

summations in Equation 4.3. That is, let 

%L (v) = Z X(t - i)X(t - j + v),i,j = 0, 1, • • -, k; 
l̂̂ J n teT 

vsT̂  (4.5) 

be a finite-time average, which can be computed separately as a three-

dimensional array independent of the â 's. Equation 4.3 and Equation 4.4 

become respectively, 

1 k k 
E = ̂  Z [ Z S a a M (v) - K̂ (v)]̂  (4.6) 

2̂ veTg i=o i=o  ̂̂  l̂̂ J 

and 
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= 0, a = 0, 1, • • •, k (4.7) 

Due to the finite length of record of the measured sequence 

{x(t), tel], a criterion is necessary for the selection of the ranges 

and , and how they fit along with the order k, into the record length 

T̂ . The criterion chosen is shown in Figure 4.1. 

It is usually desirable for T̂ , the range of v, to be no longer 

than 5 to 10% of (2). In this case, it was chosen even shorter to 

save computer time. There was no loss of accuracy in this because the 

covariance function being estimated was that of a "white noise" sequence, 

which has a very short correlation time. 

As shown in Figure 4.1, in order to compute the "sliding" averages 

of Equation 4.5, the record length T̂  is related to T̂ , T̂ , and k by 

T3 = Ti + T2 + k (4.8) 

Thus, the summation on t in Equations 4.3, 4.4 and 4.5 will be from 

t = k + 1 to t = T̂  + k, and the summation on v in Equations 4.1 through 

4.7 will be from v = T̂ +k + 1 to v = T̂  + k + Tg. 

B. Numerical Verification 

In order to verify the theory in Chapter III as well as the computer 

programs, a simulated sequence with known a_'s was generated. A simple 

random walk was selected. That is, a sequence {x(t), teT] represented 
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X ( t )  

a® ® 
O ®c,o 

O ̂  ® • • 

© o 
o o 

o O o 
o O 9 

<k— 

 ̂

-T, -Tc 
Ti 

Figure 4.1. Selection of the ranges of T^, T2, and k 
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by the difference equation 

X(t) = X(t - 1) + N(t), teT (4.9) 

was generated, where {N(t), teT} was a sequence of independent Gaussian 

random variables with zero mean and unity variance. This sequence was 

chosen from a table of Gaussian random variables (25). 

In this simulation, T̂  was chosen to be 950, and T̂  was 49. Thus 

T̂  = 1000. The steepest descent program was used to determine how 

accurately we could converge to the true values of â  and â , which were 

1 and - 1, not necessarily respectively. 

Using K̂ (v) = Ô(v, o), the covariance of input sequence used in 

Equations 4.6 and 4.7, the steepest descent program converged to coef­

ficients that were about 5% in error. This was understandable since the 

absolute values of the estimated correlations of the chosen random 

variables were as high as 0.06. 

In looking at Equation 3.18, we can see that [N(t), tsT} need not 

be an independent sequence, but only a covariance stationary ergodic 

sequence, as long as K̂ (v) is known. If this is so, the procedure of 

Section B of Chapter III becomes one of system identification. 

In this case K̂ (v) was not known exactly, but could be estimated 

as in Equation 3.17. This estimated covariance function was used in 

Equations 4.6 and 4.7. The steepest descent program then converged to 

coefficients that were less than 0.2% in error. Thus, the accuracy of 

the steepest descent program was verified. 

All computation was performed on an IBM 360/50 computer system with 

double precision arithmetic. 
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V. APPLICATION TO ACTUAL GYRO DRIFT RATE DATA 

A. History 

The problem of modeling gyro drift rate has probably been one of the 

more troublesome problems in the field of inertial navigation. Previous 

papers on this subject have dealt with this problem in different ways. 

Hammon (14, 15) assumed that the gyro drift rate was a covariance 

stationary process, and estimated, by means of finite-time averages, an 

ensemble of autocorrelation functions, and then calculated the ensemble 

average of these finite-time averages. His result was a covariance 

function of the type 

where ĉ  » ĉ . The fallacy in this procedure is that time averages are 

meaningless if the process is nonstationary. 

Dushman (8) used the same procedure as Hammon when he assumed a co-

variance stationary process, but when he assumed a nonstationary process, 

he used an ensemble average. In both cases he used a least squares fit to 

an assumed model. This is a legitimate procedure for a nonstationary pro­

cess, but has two disadvantages. The first disadvantage is the require­

ment of an ensemble of sample functions. The second is the restriction 

imposed by the model he assumed. 

Thus, we can see why a new method is desired. 

The procedures discussed in Chapters III and IV were applied to 

three sets of gyro drift rate data. One set of data represents a gyro 

of a certain model number, and the other two sets of data represent a 

2 + Â  e (5.1) 

B. Applying the Kew Model 
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different gyro of the same model number on two different test runs. These 

data will be denoted as gyro 1, gyro 2A, and gyro 2B respectively. 

These data were furnished by the A-C Electronics Division of the 

General Motors Corporation. For security reasons, no amplitude scaling 

was furnished, therefore the amplitudes in the results are only relative 

amplitudes. The procedure in obtaining this data as well as the model 

number of the gyros was not made known to the author. 

The procedure used to analyze each set of data was the same, except 

for a minor difference in the length of the averaging time T̂ . ' Table 5.1 

illustrates the parameters described in Chapters III and IV. 

Table 5.1. Parameters used in computation of models 

Maximum Averaging Correlation Scale factor Variance of 
Gyro order time range of time N(t) 

k Ti T2 d̂  cr̂  

1 6 3500 150 103 sec 1 

2A 6 3300 150 103 sec 1 

2B 6 3700 150 103 sec 1 

The results of this procedure are given in Tables 5.2 through 5.6 

and Figures 5.1 through 5.18. Table 5.2 illustrates the coefficients 

(â , • * â ) of Equation 3.5 for each order k, and the estimated 

variance of N(t), (̂o), of Equation 3.18 for each order k. 

Table 5.3 illustrates the coefficients (â  ̂• • • â ,̂ b̂ ) of 



Table 5.2. Coefficients of the difference equations and variance of {N(t), teT} 

GYRO ORDER COEFFICIENTS (xlO"̂  ) of Equation 3.5 ESTIMATED 
VARIANCE 

k *0 *1 *2 3̂ *4 5̂ *6 

GYRO 1 1 -6.030337 6.052269 0.7687683 
2 "7.378874 4.400528 2.961585 0.8473576 
3 -8.041593 3.411092 2.734119 1.918171 0.8909514 
4 -8.377259 2.659770 2.508298 1.974056 1.256768 0.9067780 
5 -8.564317 2.472354 2.327785 1.835641 1.184016 0.733795 0.9216001 
6 -8.619262 1.695929 2.480060 2.005418 1.347830 0.894615 0.216904 0.9171443 

GYRO 2A 1 -4.945278 4.950623 0.7813316 
2 -5.870314 3.617453 2.253356 0.8524017 
3 -6.099647 3.073251 2.076643 0.950359 0.8533329 
4 -6.466069 2.530700 2.032015 1.275629 0.628597 0.9154538 
5 -6.504750 2.500743 2.044353 1.258221 0.577624 0.124707 0.9243927 
6 -6.443399 2.420226 1.959986 1.277867 0.656700 0.112537 0.016977 0.9038569 

GYRO 2B 1 -4.119961 4.131025 0.8061708 
2 -4.787996 3.070820 1.707786 0.8788611 
3 -5.055638 2.747711 1.576405 0.723162 0.9172960 
4 -5.258580 2.274809 1.450335 0.951224 0.575211 0.9479334 
5 -5.283877 2.203978 1.284865 0.904790 0.581298 0.302893 0.9457614 
6 -5.27282 2.181925 1.234312 0.876286 0.554348 0.270784 0.149469 0.9377204 

to 
CO 



Table 5.3. Entries of transition matrix and input vector, and average error 

GYRO ORDER ENTRIES OF A MATRIX AND b VECTOR 

kl k2 k3 k4 k5 k6 

ERROR 

b (xlÔ ) E(xlÔ ) 

GYRO 1 

GYRO 2A 

GYRO 2B 

1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 

1.003637 
0.596368 
0.424181 
0.317499 
0.288681 
0.196762 
1.001081 
0.616228 
0.503840 
0.391381 
0.384449 
0.375613 
1.002685 
0.641358 
0.543495 
0.432589 
0.417113 
0.413806 

0.401360 
0.339997 
0.299418 
0.271801 
0.287734 

0.383890 
0.340453 
0.314258 
0.314286 
0.304185 

0.356681 
0.311817 
0.275800 
0.243167 
0.234090 

0.238531 
0.235645 
0.214336 
0.232667 

0.155806 
0.197280 
0.193431 
0.198322 

0.143042 
0.180888 
0.171236 
0.166189 

0.150020 
0.138250 
0.156374 

0.097215 
0.088800 
0.101918 

0.109385 
0.110014 
0.105133 

0.085681 
0.103793 

0.017172 
0.017465 

0.025167 

0.002635 

0.057324 
0.0513546 0.028347 

0.145397 
0.124751 
0.117378 
0.113671 
0.112093 
0.111109 
0.178742 
0.157275 
0.151445 
0.147971 
0.147808 
0.147549 
0.217932 
0.195797 
0.189443 
0.185149 
0.184051 
0.183651 

1.654418 
1.018298 
0.732370 
0.611820 
0.543228 
0.539170 
1.557472 
0.895983 
0.664902 
0.538518 
0.538091 
0.537201 
1.330861 
0.786405 
0.568196 
0.449188 
0.425015 
0.414403 
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Equations 3.8 and 3.9 for each order k, where the variance of the sequence 

{iSi(t), teT} is unity. Also shown is the average error as given in 

Equation 4.1. 

Table 5.4. Discrete filters for gyro 1 

ORDER RESPONSE OF H TO Ô(i, o) 

5 
k h(t) = E h(t - i) ô(i, o) (xlO ) t = 0, 1, 2, 3, * * • 

i=o 

1 -14.54 exp(.00363t) 
2 -8.894 exp (-.00162t)-3.581 exp (-. 91i3t)cosTTt 
3 -6.471 exp(.00149t)+5.267 exp (-.7174t)cos (2.204tH-3.133) 
4 -5.129 exp(.00116t)-2.122 exp (-. 6791t)cosrrt 

+4.119 exp(-.60951)cos(1.734t-3.103) 
5 -4.555 exp (-.00051t)T3.508 exp (-. 6398t)cos (2.556ti-3.126) 

+3.148 exp(-.5886t)cos(1.418t-3.109) 
6 -4.030 exp (. 00090t) -.709 exp (-1.0724t)cosTrt 

+3.794 exp(-.7204t)cos(2.406t-2.855) 
+2.787 exp(-.5860t)cos(1.335t-2.944) 

In Tables 5.4 through 5.6 we have the discrete filters representing 

each gyro for each order k. The coefficients (â , ' ' â ) of Equation 

3.5 used in Equation B.14 of Appendix B are normalized by dividing each 

computed â  by the estimated standard deviation [K̂  ̂ (o)]̂ . 

Figures 5.1 through 5.18 are the estimated covariance functions 

A 
(̂T), TST̂ , for each gyro and each order k. 
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Table 5.5. Discrete filters for gyro 2A 

ORDER RESPONSE OF H TO ô(i, o) 

5 k h(t) = S h(t - i) ô(i, o) (xlO ) t = 0, 1, 2, * * * 
i=o 

1 -17.88 exp(.00108t) 
2 -11.365 exp(.000085t)-4.362 exp(-.9575t)cosrrt 
3 -9.158 exp(.000GÔ0t)+5.980 exp (-.9296t)cos(2.251t-3.112) 
4 -7.398 exp(.000068t)-2.582exp(-.8190t)cosTTt 

+4.820 exp(-.7560t)cos(1.750t-3.113) 
5 -7.231 exp(.000067t)+3.644 exp(-1.115t)cos(2.688t-2.946) 

+4.057 exp(-0.8618t)cos(1.602t-2.941) 
6 -7.062 exp(.000066t)-2.516 exp(-.9572t)cosrrt 

+5.057 exp(-.8611t)cos(1.642t-2.931) 
+4.260 exp (-1.6301)cos (2.048t+-2.145) 

Table 5.6. Discrete filters for gyro 2B 

ORDER RESPONSE OF H TO ô(i, o) 

t 5 
k h(t) = S h(t - i) 6(i, o) (xlO ) t = 0, 1, 2, 3, * ' " 

i=o 

1 -21.8 exp(.002685t) 
2 -14.421 exp (-. 00145t)-5.159exp (-1.0295t)cosTT 

3 -11.844 exp(-.00103t)+7.105 exp (-.97181)cos (2.217tri-3.104) 
4 -9.409 exp(-.00058t)-3.034 exp(-.7853t)cosTTt 

+6.108 exp(-.7135t)cos(1.ô84t+3.032) 
5 -8.572 exp(-.00053t)+4.752 exp(-.7735t)cos(2.556t+3.073) 

+5.145 exp(-.65571)cos (1.390t+2.999) 
6 -8.231 exp(-.0004831)-2.078 exp(-.7416t)cosTTt 

+4.116 exp(-.7418t)cos(2.116t+2.940) 
+4.058 exp(-.6688t)cos(1.186t+3.012) 
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C. Discussion of Results 

The goodness of each model for a particular gyro is best shown on 

Figures 5.1 through 5.18. That is, if the estimated covariance function 

TST̂ , is satisfactory for the applicable engineering problem, 

the model which produced this approximately independent random sequence 

is satisfactory. 

We can see from the figures that if the covariance at T = 1 is not 

critical, the first order model for all three gyros is quite satisfactory. 

However, if it is critical, we may need a model of as high as fifth order 

to bring the covariance at T = 1 down to an acceptable value. 

For the sample sizes T̂  of Table 5.1, the probabilities, that the 

absolute value of the correlations exceed e, as given in Equation 3.21, 

for s = .1 and e = .05 are respectively, nearly zero (less than .0001) 

and approximately .0025. Thus, with this in mind, we can see we should 

have all applicable correlations in the range - .1 ̂  pCr) ̂  .1, and a 

high percentage of the applicable correlations in the range 

- .05 ̂  O(T) ̂ .05. In fact, we should not have any correlations very 

far out of the range - .05 ̂  P(T) ̂ .05. It can be seen in Figures 5.1 

through 5.18 that this is so for all T for the higher order models, and 

this is so for T > 1 in. even the first order models. 

In Tables 5.4 through 5.6, we see that the even order models have a 

frequency component of TT radians per unit of time. This results from a 

negative eigenvalue of the A matrix. 

In all cases, we have an exponential term which has a relatively small 

exponent, either positive or negative. This has a strong resemblance to 
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a random walk, which would have a zero exponent. 

The exponentials associated with the oscillatory terms have larger 

negative exponents, indicating correlation between adjoining times in the 

processes, but very little correlation otherwise. 

Thus, we may arrive at the conclusion that all three gyros have a 

drift rate that is very nearly a random walk with additional correlation 

between adjoining times, which may be either positive or negative, 
depending on the model. In many inertial applications, it would appear 

that a random walk model would be an acceptable model. 
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VI. SUMMARY AND CONCLUSIONS 

A new technique for modeling nonstationary random processes has been 

introduced and investigated. Under the assumption that the nonstationary 

process being investigated can be thought of as the result of passing 

stationary ergodic "white noise" through a time-invariant linear filter, 

this technique requires no ensemble averaging. Instead, time averages 

of products of the process at different times'are performed. These 

averages are then used in a steepest descent method to determine the 

coefficients of a difference equation with a "white noise" sequence 

forcing function to describe the process at discrete times. 

This technique would not be feasible if time averages had to be 

computed for each iteration of the steepest descent calculations. How­

ever, it has been shown that these time averages need be calculated only 

once, and then stored for use in the steepest descent calculations. 

The main advantage in applying this technique rather than that of 

ensemble averaging is that a large number of sample functions of the 

process is not required. We may wish to observe the results of more than 

one sample function, but not the large number required for ensemble 

averaging. 

Another advantage is that only one sample function must be stored 

in the computer while applying the time averaging technique. 

The transformation of the model to the form necessary for augmenta­

tion of a system for "Kalman" filtering is also presented. As the 

difference equation model is only defined for integer values of normalized 
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time, a technique for extending this model to an interpolated model, 

from which other discrete models with different time bases can be derived, 

has been presented in Appendix C. This technique is not unique, and the 

use of it depends on the applicable engineering problem. 

Also presented is a technique for calculating the covariance 

function of the process being investigated. This covariance function 

can be calculated from the difference equation model directly, or from 

a discrete filter describing this difference equation. This last method 

results in a covariance function in closed form. 

The above techniques were applied to three records of gyro drift 

rate with very satisfactory results. These results are given and 

discussed in Chapter V. From this analysis, it appears that gyro drift 

rate can be modeled using the techniques presented. 
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IX. APPENDIX A — METHOD OF STEEPEST DESCENT 

A. Theory of Steepest Descent (20) 

Suppose it is desirable to minimize a real valued function of m 

variables 

C = CCuu, u,, (A.l) 

in some domain (where C is continuous with continuous partial derivatives) 

by finding the values u^, u^; u^ which produce this minimum. 

These minimum values are a solution to the equation 

'sc 

vc = 
du. 

oC 
ÔU m 

= 0 (A. 2) 

This equation, however, is not always solvable in closed form. 

Thus, some numerical method must be used. One such method is the method 

of steepest descent. 

As the name implies, this method seeks, from a given point u°, 

o O * 
Ug 3 • • *5 u 5 the steepest path to u,, , • • •, u • It can be shown 
^ in i z m 

that the direction of this path is directed along the negative gradient 

vector VC. 

Furthermore, the point u,, u», * • * u , is the solution of the 
1 z m 

differential equation 

dUj, (cr) 

da 
= - k 

ÔC(u^, u^, * • •, u^) 

du. i = 1, • • -, m (A. 3) 

as where k > o. This can be extended to a discrete process. That 

is, to move do^-m the path of steepest descent, a step in the direction 
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of the negative gradient is taken. Thus, from a point * * "> u^^^), 
m 

a new point 

u , m 

(A. 4) 

is'computed, where k is a positive constant which determines the step 

descent may be one to a relative minimum or a saddle point. Usually, 

a satisfactory starting point can be estimated from a knowledge of the 

problem at hand. 

Step-size control is basically a set of tests, mainly of a logical 

nature, which determine a suitable step'size, and hence a variable 

perturbation for each successive iteration of the steepest descent. 

This control is necessary in order to keep computer time within reasonable 

bounds, and to insure convergence to a minimum. 

The step-size control used in this study is discussed in detail by 

Hague (13). 

size. 

To achieve an absolute minimum, however, one must start from a 

point (u^°\ , u^°^) that is located in a neighborhood 

N(u^, • * *, u^) of the absolute minimum. Otherwise, the path of steepest 

B. Step-Size Control 
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X. APPENDIX B — DISCRETE FILTERS 

The output y of the linear time-invariant discrete filter H of 

Figure B.1 is related to the input u by the superposition equation 

CO 
y(t) = S h(t - i) u(i), t = 0, 1, 2, • • • (B.l) 

i=o 

The set of weighting coefficients h(t - i), which is sometimes called 

the one-sided Green's function (21), is defined by (10) 

h(t - i) = response of H to 6(t, i) (B.2) 

where 

6(C - i) = to' r ^ i (B'3) 
t T 1 A. 

Since H is physically realizable, 

h(t - i) = 0 (B.4) 

for i > t. Therefore, Equation B.l can be written as 

t 
y(t) = Z h(t - i) u(i), t = 0, 1, 2, • • • 

i=o 

t 
= Z h(i) u(t - i), t = 0, 1, 2, • • • 
i=o 

= h * u (B.5) 

B.5 is kno;fn as the convolution of h(t) and u(t). 

A. Maclaurin Transform (4) 

If we obtain a function F(x) by the Maclaurin expansion 

CO 
F(x) = E f(t)x^, |x| < R . (B.6) 

t=o 

of a sequence [f(t)}, which will converge for some radius Ixi < R, 
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y 
H 

Figure B.l. Linear time-invariant discrete filter H 



62 

F(x) is the Maclaurin transformation of f(t) with an inverse transforma­

tion 

,(t) 
f(t) = ^ (B.7) 

We shall write 

F(x) =T%{f:(t)}, f(t) =7n"^{F(x)} (B.8) 

as transform pairs. 

Some useful transform pairs are 

7?]{5(t, i)} = x^, |x| < = (B.9) 

= (1 - px) |xj < p ^ . (B.IO) 

7/'|[h * u] =/7]{h(t)} (B.ll) 
and 

77]{f(t - i)} = x^F(x) (B.12) 

if f(t) = 0 for t < o. 

B. Determination of Weighting Coefficients 

We wish to determine the set of weighting coefficients corresponding 

to a difference equation. That is, if we have a difference equation of 

the type 

k 
S a.y(t - i) = u(t) (B. 13) 
i=o 

we wish to determine the response of H of Figure B.l to 6(t, i) that will 

yield a solution to Equation B.13 in the form of Equation B.5. 

If we let u(t) = ô(t, o), y(t) of Equation B.13 will be the response 

due to 6(t, o). That is, the solution of 
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k 
S a.y(t - i) = ô(t, o) (B.14) 
i=o ^ 

will be y(t) = h(t). This can be shown by operating on each side of 

Equation B.5 with the Maclaurin transform. We have 

Y(x) = H(x) • U(x) (B.15) 

or 

Y(x) = H(x) (B.16) 

for u(t) = 5(t, o). 

Operating on each side of Equation B.14, we have 

k 
S a.x^Y(x) = 1 (B.17) 
i=o ^ 

or 

Y(x) = H(x) = (B.18) 

E a.x^ 
i=o ^ 

The denominator of Equation B.18 can be factored. Thus 

a^ ^(1 - p^x)(l - p^x) • • • (1 - p^x)^ (B.19) 

Assuming all the p^'s are unique, a partial fraction expansion yields 

Using the transform paii? of Equation B.IO, we have 

k C 
h(t) = 2 c (p ) , t = 0, 1, 2, • • • CB.21) 

i=l ^ 

Now, 



64 

_ (Inp.)t 

(p.) = e , i = 0, 1, ' ' k (B.22) 

If is real negative, 

C (la|p.|c (injp l)t 
(p^) = e e^ = e cosTTt (B.23) 

-Jc 
for integer values of t. If p^ and are complex pairs, 

j. * * t jargc^ (Inlp^l)t j(argp^)t 
c^(p^) + c_(p^) = e e e e 

Inic^l -jargc^ (lnlp^|)t -j(argp^)t 
e 

(lnlp^!)t 
= 2|c_|e cos[ (argp^)t + argc^] 

(B.24) 

for integer values of t. 

Thus, Equation B.21 may be written as 

(Inp )t (ln|p |)t 
h(t) = Ec.e + Sc.e cosrrt 

p.>0 ^ p.<0 

(Inlp^l)t. 
+ S 21c.je cos[(argp^)t + argc^] 

p. complex ^ 
(B.25) 
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XI. APPENDIX G — EXTENDING THE MODEL FOR 

NON-INTEGER VALUES OF TIME 

As stated in Section D of Chapter III, Equations 3.24, 3.25 and 

3.26 are not defined for a scale factor d^ of § that is not an integer 

multiple of the scale factor d^ of t. However, we can define a random 

process {X(T), TST], where T is the set of positive real numbers, and 

where 

x(t) = X(t) (c.l) 

for teT. For other values of TST, X(T) is defined to be a reasonable 

interpolation of X(t). Then X(T) can be represented by the vector 

difference equation 

X(T) =©(T, T - AT) X(T - AT) + W(T, T - AT) (C.2) 

for all TST, and all ATST, where 

k ~ 
S a.X(t - i) = N(t) (C.3) 
i=o ^ 

for teT. 

One reasonable interpolation is to define powers of a matrix other 

than integer powers. One way to do this is by the Lagrange interpolating 

polynomial as described by Zadeh and Desoer (28). That is, if the 

minimal polynomial of matrix A has distinct roots, and if the function 

to be interpolated, f(X), is an analytic function in an open set con­

taining the eigenvalues • • *, of A, then 
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k f(X.) k 
f(A) = Z [ ̂ \ n (A - X,I)] (C.4) 

j=l jj V i=l 
i=l 

In the investigations of this study, it is highly improbable that the 

eigenvalues would not be distinct, thus the minimal polynomial of A would 

have distinct roots. 

In this case, the function is 

'Vd _ _ 
f(X) = X ATET (C.5) 

which is analytic everywhere in the complex plane except for an axis 

extending from the origin to the point at infinity. This axis can be 

chosen anyivhere so that it doesn't pass through any of the eigenvalues 

of A except for a possible eigenvalue at the origin, the occurrence of 

which is improbable. However, if an eigenvalue of A lies on the negative 

real axis, the function of Equation C.4 is a complex valued function, 

which is not permissible. We are justified, however, to discard a model 

of order k for which the transition matrix A has a negative eigenvalue. 

This eigenvalue indicates that the process being modeled has an oscil­

latory component, and the negative eigenvalue restricts the frequency 

of this oscillation to ^/d^ radians per second. Thus, a model of order 

k + 1 is necessary to remove this restriction by allowing a pair of 

complex eigenvalues. 

Thus, we may define the matrix A to a power as 
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k ^3 k 
A = z [-^ n (A - X-D], AxeT (C.6) 

N, ('J - 5J 

and the transition matrix of Equation C.2 is 

Ar/d 
©(T, T - AT) = a , AreT (C.7) 

The problem of defining W(T, T - AT) is not as simple as defining 

©(T, T - AT). Let us first consider the case where AT is greater than d^. 

Case AT > d^ 

If AT is greater than D^, as in Figur>. C.L, the input sequence of 

the equation 

X(T) = AX(T - d^) -f BN(T), T = d^, 2d^, • • • (C.8) 

is added to the augmented system (greatest integer less than ̂ ) 

times with probability 1 + ^ and [•^] + 1 times with probability 
t °t 

 ̂- [̂ J during the time interval AT at times 1, 2, * ' , [^] or 

[F] ̂ 1' 

Equation C.2 then becomes 

at/. [r]-: 

Â bN([f 
t 

(C.9) 

X(T) = A  ̂X(T - AT) + 2 A'̂ BN([̂ ] - j), T = AT, 2AT, 

with probability 1 + [^] - and 
t t 
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1 
Figure C.l. Illustration of the time scale when AT > 
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rAl-i 
At/^ dt"* 

X(T) = A  ̂X(T - AT) + Z A^BN([̂ ] + 1 - j), 
j=o t 

T = AT, 2AT, • • • (C.IO) 

with probability ̂  - [^] • Thus, the random sequence W(T, T - AT) as a 

covariance matrix 

[R>I 

2 ^ IC = 0- 2 Â  bb 'a 
Ë j=o 

(C.ll) 

with probability 1 + [^] - and 

[#;] 
K = s A^ ^'A'^ (C.12) 

j=o 

with probability ̂  - [^] . 
t t 

We can use an average covariance matrix 

[|̂ ]-1 AR AT 

\ = Z Â '̂A'̂  4- - [|̂ ]) A ̂  ;̂ 'A' ̂  (C.13) 
- j=o t t 

or we can keep track of the time and use the covariances in Equations 

C.ll and C.12 during the applicable time intervals. 

Case II: d^ > AT 

If AT is less than d^, as in Figure C.2, an input sequence M(T) 

of the equation 

AT/, 
~ t ~ 
X(T) = A X(T - AT) + M(T), T = AT, 2. - , • * • (C.14) 
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Figure C.2. Illustration of the time scale when AT < 
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dt 
is added to the augmented system [—] times vith probability 

dt d{- dt d̂  dj. 
1 + [—1 - — and [—1 + 1 times with probability [—] times during AT AT AT ÂT"' ® 

d ̂  d ̂  
the time interval d , at times 1, 2, , [—] or [—] +1. t iiT At 

The equation 

X(T) = AX(T - D̂ ) + bN(T), T = D 2D • • • (C.15) 

becomes 

X(T) = AX(T - d ) -i- S A M([~]- j), 
j=0 

with probability 1 + [-^] - and 

T = d 2d • • • (C.16) 
d d 

~ ~ A 
X(T) = AX(T - d^) + Z A M([—] + 1 - j), 

^ j=o 

T = d^, 2d^, • * • (C.17) 

with probability — - [—]. Thus, the random sequence W(T, T - AT) = M(T) 

of Equation C.2 has a covariance matrix which is the solution of the 

equation 

I ; :  ,  
E A ^ V = c bb' (C.18) 

with probability 1 + [—] - —, and a solution of the equation 
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[;̂ ] 1̂ 3 r : 
Y. A ^ ^ = a hh' (C.19) 

with probability — - [—]. 

Equations C.18 and C.19 are solvable for K because there are, for 

2 — ^ + k 
a order system, —^— independent linear equations of —^ 

unknowns. Once the solutions are found, we can use an average covariance 

matrix or a time-varying covariance matrix, as described for the case 

where AT is greater than d^. 


