Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes

Thumbnail Image
Date
2018-01-01
Authors
Singh, Natalia
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% cases of SMA result from deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1due to predominant skipping of exon 7. However, correction of SMN2 exon 7 splicing has proven to confer therapeutic benefits in SMA patients. The only approved drug for SMA is an antisense oligonucleotide (Spinraza™/Nusinersen), which corrects SMN2 exon 7 splicing by blocking intronic splicing silencer N1 (ISS-N1) located immediately downstream of exon 7. ISS-N1 is a complex regulatory element encompassing overlapping negative motifs and sequestering a cryptic splice site. More than 40 protein factors have been implicated in the regulation of SMN exon 7 splicing. There is evidence to support that multiple exons of SMN are alternatively spliced during oxidative stress, which is associated with a growing number of pathological conditions. Here, we provide the most up to date account of the mechanism of splicing regulation of the SMN genes.

Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
article
Comments

This is a post-peer-review, pre-copyedit version of a book chapter published as Singh R.N., Singh N.N. "Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes." In Sattler R., Donnelly C. (eds.) RNA Metabolism in Neurodegenerative Diseases. Advances in Neurobiology, vol. 20. Springer, Cham (2018): 31-61. The final authenticated version is available online at DOI: 10.1007/978-3-319-89689-2_2. Posted with permission.

Rights Statement
Copyright
Mon Jan 01 00:00:00 UTC 2018
Funding
DOI
Supplemental Resources
Collections