Block Stanley Deompositions II. Greedy Algorithms, Applications and Open Problems

Thumbnail Image
Date
2017-06-26
Authors
Murdock, Theodore
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Stanley decompositions are used in applied mathematics (dynamical systems) and sl2 invariant theory as finite descriptsions of the set of standard monomials of a monomial ideal. The block notation for Stanley decompositions has proved itself in this context as a shorter notation and one that is useful in formulating algorithms such as the "box product." Since the box product appears only in dynamical systems literature, we sketch its purpose and the role of block notation in this application. Then we present a greedy algorithm that produces incompressible block decompositions (called "organized") from the monomial ideal; these are desirable for their likely brevity. Several open problems are proposed. We also continue to simplify the statement of the Soleyman-Jahan condition for a Stanley decomposition to be prime (come from a prime filtration) and for a block decomposition to be subprime, and present a greedy algorithm to produce "stacked decompositions," which are subprime.

Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
article
Comments

This is a preprint produced by James Murdock & Theodore Murdock (2017).

Rights Statement
Copyright
Sun Jan 01 00:00:00 UTC 2017
Funding
Subject Categories
DOI
Supplemental Resources
Source
Collections