A Computational Strategy for Design and Implementation of Equipment That Addresses Sustainable Agricultural Residue Removal at the Subfield Scale

Thumbnail Image
Date
2012-01-01
Authors
Muth, David
Koch, Joshua
McCorkle, Douglas
Bryden, Kenneth
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Journal Issue
Is Version Of
Versions
Series
Abstract

Agricultural residues are the largest potential near term source of biomass for bioenergy production. Sustainable use of agricultural residues for bioenergy production requires consideration of the important role that residues play in maintaining soil health and productivity. Innovation equipment designs for residue harvesting systems can help economically collect agricultural residues while mitigating sustainability concerns. A key challenge in developing these equipment designs is establishing sustainable reside removal rates at the sub-field scale. Several previous analysis studies have developed methodologies and tools to estimate sustainable agricultural residue removal by considering environmental constraints including soil loss from wind and water erosion and soil organic carbon at field scale or larger but have not considered variation at the sub-field scale. This paper introduces a computational strategy to integrate data and models from multiple spatial scales to investigate how variability of soil, grade, and yield within an individual cornfield can impact sustainable residue removal for bioenergy production. This strategy includes the current modeling tools (i.e., RUSLE2, WEPS, and SCI), the existing data sources (i.e., SSURGO soils, CLIGEN, WINDGEN, and NRCS managements), and the available high fidelity spatial information (i.e., LiDAR slope and crop yield monitor output). Rather than using average or representative values for crop yields, soil characteristics, and slope for a field, county, or larger area, the modeling inputs are based on the same spatial scale as the precision farming data available. There are three challenges for developing an integrated model for sub-field variability of sustainable agricultural residue removal—the computational challenge of iteratively computing with 400 or more spatial points per hectare, the inclusion of geoprocessing tools, and the integration of data from different spatial scales. Using a representative field in Iowa, this paper demonstrates the computational algorithms used and establishes key design parameters for an innovative residue removal equipment design concept.

Comments

This proceeding is from ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 2: 32nd Computers and Information in Engineering Conference, Parts A and B. (2012): 1287–1294, doi:10.1115/DETC2012-71430. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Sun Jan 01 00:00:00 UTC 2012