Instantaneous particle acceleration model for gas-solid suspensions at moderate Reynolds numbers

Thumbnail Image
Date
2010-01-01
Authors
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Person
Fox, Rodney
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Gas-solid flows are encountered in many industrial applications such as fluidized beds and coal gasification. The design and scale-up of such industrial devices required a better understanding of the characteristics of gas-solid suspensions. Device-scale computational fluid dynamics (CFD) simulations that solve for average quantities such as solid volume fraction and phasic mean velocity fields are being extensively used in the industrial design process. The capability of the simulations to accurately predict the characteristics of gas-solid flow depends upon the accuracy of the models for unclosed terms that appear in the equations for mass, momentum and energy conservation. Hrenya and Sinclair (1997) show that the particle granular temperature (particle velocity variance) plays an important role in the prediction of the core annular structure in riser flows. In statistically homogeneous suspensions undergoing elastic collisions, the particle acceleration-velocity covariance alone governs the evolution of granular temperature.

Comments

This article is from 7th International Conference on Multiphase Flow, ICMF 2010, Tampa, FL, May 30 - June 4, 2010. p.1-7.

Description
Keywords
Citation
DOI
Source
Copyright