Population Genetic Diversity in a Maize Reciprocal Recurrent Selection Program

Thumbnail Image
Date
2005-11-01
Authors
Hinze, Lori
Kresovich, Stephen
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Nason, John
Professor Emeritus
Person
Lamkey, Kendall
Associate Dean
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Abstract

The genetic structures of the Iowa Corn Borer Synthetic #1 (CB) and Iowa Stiff Stalk Synthetic (SS) maize (Zea mays L.) populations are important because these populations serve as the model for development of modern commercial hybrids. In 1949, CB and SS were used to start a reciprocal recurrent selection (RRS) breeding program at Iowa State University. This study was conducted to analyze more thoroughly the genetic diversity within this RRS program and illustrate how the RRS program has changed over time at the molecular level. The progress of this program was measured by analyzing the variation at 86 SSR loci among 28 progenitor lines and 30 plants sampled from each of seven cycles (Cycle 0, Cycle 1, Cycle 3, Cycle 6, Cycle 9, Cycle 12, and Cycle 15) in each population. The progenitors of these populations show a high amount of variation on the basis of expected heterozygosity (0.557). As the RRS program proceeded, this variation decreased (Cycle 15, 0.245). In total, a larger amount of genetic variation was found among plants within cycles (66%) than among cycles (13%) or between populations (21%). The repartitioning of variation from within populations (96% in progenitors) to between populations (58% in Cycle 15) over time is consistent with theoretical expectations of divergence between the populations. By sampling intermediate time points, we gained a comprehensive genetic view of CB and SS permitting evaluation of the molecular-level changes occurring as a result of reciprocal recurrent selection.

Comments

This article is from Crop Science 45 (2005): 2435–2442, doi:10.2135/cropsci2004.0662.

Description
Keywords
Citation
DOI
Copyright
Collections