The Effects of Large-Scale Winds on the Sea–Land-Breeze Circulations in an Area of Complex Coastal Heating

Thumbnail Image
Zhong, Shiyuan
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Takle, Eugene
Distinguished Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Aerospace Engineering

The Department of Aerospace Engineering seeks to instruct the design, analysis, testing, and operation of vehicles which operate in air, water, or space, including studies of aerodynamics, structure mechanics, propulsion, and the like.

The Department of Aerospace Engineering was organized as the Department of Aeronautical Engineering in 1942. Its name was changed to the Department of Aerospace Engineering in 1961. In 1990, the department absorbed the Department of Engineering Science and Mechanics and became the Department of Aerospace Engineering and Engineering Mechanics. In 2003 the name was changed back to the Department of Aerospace Engineering.

Dates of Existence

Historical Names

  • Department of Aerospace Engineering and Engineering Mechanics (1990-2003)

Related Units

Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Organizational Unit
Geological and Atmospheric Sciences

The Department of Geological and Atmospheric Sciences offers majors in three areas: Geology (traditional, environmental, or hydrogeology, for work as a surveyor or in mineral exploration), Meteorology (studies in global atmosphere, weather technology, and modeling for work as a meteorologist), and Earth Sciences (interdisciplinary mixture of geology, meteorology, and other natural sciences, with option of teacher-licensure).

The Department of Geology and Mining was founded in 1898. In 1902 its name changed to the Department of Geology. In 1965 its name changed to the Department of Earth Science. In 1977 its name changed to the Department of Earth Sciences. In 1989 its name changed to the Department of Geological and Atmospheric Sciences.

Dates of Existence

Historical Names

  • Department of Geology and Mining (1898-1902)
  • Department of Geology (1902-1965)
  • Department of Earth Science (1965-1977)
  • Department of Earth Sciences (1977-1989)

Related Units

Journal Issue
Is Version Of

A three-dimensional mesoscale numerical model has been used to examine the effects of large-scale background winds on the characteristics of the sea-land-breeze circulations over an area with an irregular coastline and complex surface-heating patterns at Kennedy Space Center/Cape Canaveral in Florida. A series of numerical experiments was performed in which the large-scale winds were varied in both speed and direction. The surface heating was based on measured surface-temperature variation from the Kennedy Space Center Atmospheric Boundary Layer Experiment (KABLE) during the spring season when the land-sea temperature gradient reaches its maximum. The results from the simulations compared reasonably well with data available from KABLE.

The results show that an onshore large-scale flow produces weaker sea-breeze perturbations compared to those generated by an offshore flow. However, the coastal rivers and lagoons create intense surface convergence with strong vertical motion on the seaward side of the river by the merging of the onshore flow with the offshore river breezes, and such strong vertical motion can last for several hours. The disturbances caused by the inland water bodies are significant in the sea-breeze phase but are very minor in the land-breeze phase. An onshore synoptic wind causes an earlier onset of the sea breeze, but delays the onset of the land breeze, and a strong onshore flow of more than 5 m s−1 does not allow the land breeze to develop at all. The maximum offshore wind speed and vertical motion at night are less sensitive to the magnitude of surface cooling than to the large-scale flow and daytime surface heating, which together determine the initial flow at the beginning of the land-breeze phase. The results also show that the magnitude, the sense of rotation, and the diurnal variation of the dominant forces governing the wind-vector rotation change as the orientation of the synoptic wind direction changes. The rate of rotation in the sea-breeze phase is dominated mainly by the balance between the mesoscale pressure gradient and friction; at night, the Coriolis effect also contributes significantly to the balance of forces in the land-breeze phase.


This article is published as Zhong, Shiyuan, and Eugene S. Takle. "The effects of large-scale winds on the sea–land-breeze circulations in an area of complex coastal heating." Journal of Applied Meteorology 32, no. 7 (1993): 1181-1195. DOI:10.1175/1520-0450(1993)032<1181:TEOLSW>2.0.CO;2. Posted with permission.

Fri Jan 01 00:00:00 UTC 1993