Wet Spots as Hotspots: Moisture Responses of Nitric and Nitrous Oxide Emissions From Poorly Drained Agricultural Soils

Thumbnail Image
Supplemental Files
Reyes, L.
Huang, W.
Homyak, P. M.
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Iowa Nutrient Research Center
The Iowa Nutrient Research Center was established to pursue science-based approaches to evaluating the performance of current and emerging nutrient management practices and providing recommendations on practice implementation and development. Publications in this digital repository are products of INRC-funded research. The INRC is headquartered at Iowa State University and operates in collaboration with the University of Iowa and the University of Northern Iowa. Additional project information is available at: https://www.cals.iastate.edu/inrc/
Journal Issue
Is Version Of
Ecology, Evolution and Organismal BiologyIowa Nutrient Research Center

A classic framework for soil nitrogen (N) cycling, the hole in the pipe (HIP) model, posits a trade‐off in emissions of nitric oxide (NO) and nitrous oxide (N2O) as a function of soil moisture. This has been incorporated into ecosystem models but not tested experimentally and remains an important uncertainty for understanding potential hotspots of reactive N emissions: poorly drained agricultural soils that experience episodically high moisture following intensive fertilization. We incubated soils at moisture ranging from 44% to 100% water‐filled pore space (WFPS). Counter to HIP, we did not observe a consistent trade‐off in NO and N2O emissions at intermediate moisture levels following fertilization, and prefertilization emissions were low. Emissions of N as N2O exceeded NO by 2–200‐fold at all moisture levels and peaked at 73–82% WFPS. Emissions of NO declined with moisture but remained significant even under saturated conditions. Increases in nitrite and reduced iron at high moisture indicated possible NO production from chemodenitrification. Potential nitrification rates were 100–1,000‐fold greater than potential denitrification. Emission factors for fertilizer N ranged from 0.05% to 0.58% (mean = 0.2%) for NO and from 0.4% to 16.9% (mean = 5.3%) for N2O. Our results caution the use of WFPS to predict NO:N2O emission ratios as often employed in ecosystem models. Subsurface N cycling may suppress emissions of NO relative to N2O, and N2O emissions can persist under saturated conditions. Elevated N2O emissions from in‐field wet spots comprising a small landscape extent could potentially address disparities between top‐down and bottom‐up N2O budgets.


This article is published as Hall, S. J., L. Reyes, W. Huang, and P. M. Homyak. "Wet Spots as Hotspots: Moisture Responses of Nitric and Nitrous Oxide Emissions From Poorly Drained Agricultural Soils." Journal of Geophysical Research: Biogeosciences 123 (2018): 3589-3602. doi: 10.1029/2018JG004629. ©2018. American Geophysical Union. Posted with permission.

Mon Jan 01 00:00:00 UTC 2018