The Ability of Plant Essential Oils to Inhibit Detoxification Enzymes in Aedes aegypti

Thumbnail Image
Date
2017-12-06
Authors
Johnson, Jacob
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Entomology

The Department of Entomology seeks to teach the study of insects, their life-cycles, and the practicalities in dealing with them, for use in the fields of business, industry, education, and public health. The study of entomology can be applied towards evolution and ecological sciences, and insects’ relationships with other organisms & humans, or towards an agricultural or horticultural focus, focusing more on pest-control and management.

History
The Department of Entomology was founded in 1975 as a result of the division of the Department of Zoology and Entomology.

Related Units

Journal Issue
Is Version Of
Versions
Series
Series
Honors Projects and Posters
University Honors Program

The Honors project is potentially the most valuable component of an Honors education. Typically Honors students choose to do their projects in their area of study, but some will pick a topic of interest unrelated to their major.

The Honors Program requires that the project be presented at a poster presentation event. Poster presentations are held each semester. Most students present during their senior year, but may do so earlier if their honors project has been completed.

This site presents project descriptions and selected posters for Honors projects completed since the Fall 2015 semester.

Department
Abstract

The yellow fever mosquito, Aedes aegypti, poses public health issues to human populations around the world. Aedes aegypti is a vector of multiple debilitating diseases, including dengue fever, yellow fever, zika, and chikungunya. Numerous synthetic insecticides have been developed to control Aedes aegypti populations. The effectiveness of these chemicals in mosquito control has been diminished due to the prevalence of insecticide-resistant mosquito populations. Insecticide resistance may be acquired via mutations in genes encoding target receptors and enzymes, or from upregulation of detoxifying enzymes. Plant essential oil toxicity has been well established in laboratory conditions, and plant essential oils are known to be capable of enhancing insecticides. This study assessed the ability of plant essential oils, when applied topically, to modulate detoxification enzyme processes in Aedes aegypti. Three enzyme systems were examined: cytochromes p450, glutathione S-transferase, and esterase. Select plant essential oils were identified as capable of inhibiting cytochromes p450 de-ethylase activity, and many caused a decrease in glutathione S-transferase activity. Additionally, one plant essential oil decreased esterase activity. This study highlights some physiological interactions that contribute to the effectiveness of plant essential oils as insecticide additives.

Comments
Description
Keywords
Citation
DOI
Source
Subject Categories
Copyright