A Three-Dimensional Boundary Element Model for Eddy Current NDE

Date
1989
Authors
Beissner, R.
Journal Title
Journal ISSN
Volume Title
Publisher
Source URI
Altmetrics
Authors
Research Projects
Organizational Units
Journal Issue
Series
Abstract

The long-range objective of the work reported here is to provide a theoretical basis for the prediction of the probability of flaw detection in eddy current nondestructive evaluation (NDE). As demonstrated in a previous communication [1], much of the labor involved in probability of detection analyses can be transferred to a computer if one has available a reliable algorithm for the prediction of flaw signals as a function of flaw size and shape, probe geometry, and the other parameters defining an eddy current inspection. Because there is no simplifying symmetry in the interaction of a general eddy current field with a flaw of arbitrary shape and position, the model used for flaw signal predictions must be three dimensional, and capable of predicting the probe impedance change for a flaw at an arbitrary position in the field of an eddy current probe. The immediate objective of the present work is to develop such a three-dimensional model.

Description
Keywords
Citation