The effect of surface roughness orientation on PEEK (polyetheretherketone) transfer film volume in multi-directional and linear sliding

Thumbnail Image
Date
2019-04-30
Authors
Placette, M. D.
Roy, S.
White, Derek
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Schwartz, Christian
Assistant Dean for Engineering Student Success
Person
Sundararajan, Sriram
Associate Dean
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

Polymer transfer films are thought to reduce friction and wear during sliding. In such cases, a continuous, uniform transfer film is thought to yield better wear performance. However, several polymers, including the thermoplastic polyetheretherketone (PEEK), do not always display this behavior. Recent works analyzing transfer film quality of PEEK resulted in no clear correlation to wear. Currently, the mechanisms for PEEK transfer film development are unknown, but there is evidence suggesting roughness orientation relative to sliding and frictional heating play key roles. In this work, the development of PEEK transfer film is explored in relation to multi-directional versus linear sliding, roughness orientation and temperature rise. Three distinct wear paths were chosen for wear tests. The transfer film of the square wear paths was analyzed using white light profilometry and imaging software to obtain the volume and area coverage by the film. The temperature rise during sliding of the bulk polymer pin was recorded with infrared camera radiometry for linear reciprocating tests. Scratch tests and chemical etching were conducted on the polymer pin surface to evaluate any directional bias or crystallinity orientation induced by sliding. It was found that wear debris and polymer chain orientation play no noticeable role in PEEK's transfer film formation. The transfer film gradient increased with frictional heating, and transfer film color changed under certain conditions. This color changed also correlated to reduced wear. This study also confirms that transfer film development is strongly dependent on roughness orientation, and its effects are examined.

Comments

This is a manuscript of an article published as Placette, M. D., S. Roy, D. White, S. Sundararajan, and C. J. Schwartz. "The effect of surface roughness orientation on PEEK (polyetheretherketone) transfer film volume in multi-directional and linear sliding." Wear 426-427, Part B (2019): 1345-1353. DOI: 10.1016/j.wear.2019.01.035. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2019
Collections